八年级数学动点问题专项训练
初二数学动点练习题

初二数学动点练习题1. 题目描述:在二维坐标系中,有一个动点P,起始坐标为(3, 2),经过以下规则的移动:每次向上移动一格,或向右移动一格。
现有以下几组指令,请计算指定指令下动点P的坐标。
a) 指令1:向上移动3格,向右移动5格,再向上移动2格。
b) 指令2:向上移动4格,向右移动2格,再向下移动1格。
c) 指令3:向右移动7格,向上移动1格。
2. 解题过程及计算:a) 指令1:- 向上移动3格:由于起始坐标为(3, 2),所以移动后坐标为(3, 2 + 3) = (3, 5)。
- 向右移动5格:移动后坐标为(3 + 5, 5) = (8, 5)。
- 再向上移动2格:移动后坐标为(8, 5 + 2) = (8, 7)。
指令1执行后动点P的坐标为(8, 7)。
b) 指令2:- 向上移动4格:由于起始坐标为(3, 2),所以移动后坐标为(3, 2 + 4) = (3, 6)。
- 向右移动2格:移动后坐标为(3 + 2, 6) = (5, 6)。
- 再向下移动1格:移动后坐标为(5, 6 - 1) = (5, 5)。
指令2执行后动点P的坐标为(5, 5)。
c) 指令3:- 向右移动7格:由于起始坐标为(3, 2),所以移动后坐标为(3 + 7, 2) = (10, 2)。
- 向上移动1格:移动后坐标为(10, 2 + 1) = (10, 3)。
指令3执行后动点P的坐标为(10, 3)。
3. 答案总结:根据指令执行结果,动点P的坐标如下:- 指令1执行后动点P的坐标为(8, 7)。
- 指令2执行后动点P的坐标为(5, 5)。
- 指令3执行后动点P的坐标为(10, 3)。
注:以上计算过程以及答案仅供参考,具体计算时请以实际情况为准。
人教版八年级数学(初二)动点问题专项训练-最新

人教版八年级数学(初二)动点问题专项训练1、(宁夏回族自治区)已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积;(2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.2、如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.3、如图,在平面直角坐标系中,四边形OABC 是梯形,OA ∥BC ,点A 的坐标为(6,0),点B 的坐标为(4,3),点C 在y 轴的正半轴上.动点M 在OA 上运动,从O 点出发到A 点;动点N 在AB 上运动,从A 点出发到B 点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t (秒).(1)求线段AB 的长;当t 为何值时,MN ∥OC ? (2)设△CMN 的面积为S ,求S 与t 之间的函数解析式, 并指出自变量t 的取值范围;S 是否有最小值? 若有最小值,最小值是多少?(3)连接AC ,那么是否存在这样的t ,使MN 与AC C PQBA MNC若存在,求出这时的t 值;若不存在,请说明理由. 4、(河北卷)如图,在Rt △ABC 中,∠C =90°,AC =12,BC =16,动点P 从点A 出发沿AC 边向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ 关于直线PQ 对称的图形是△PDQ .设运动时间为t (秒).(1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形?(3)是否存在时刻t ,使得PD ∥AB ?若存在,求出t 的值;若不存在,请说明理由; (4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD ⊥AB ?若存在,请估计t 的值在括号中的哪个时间段内(0≤t ≤1;1<t ≤2;2<t ≤3;3<t ≤4);若不存在,请简要说明理由.5、(山东济宁)如图,A 、B 分别为x 轴和y 轴正半轴上的点。
初二数学动点练习题

初二数学动点练习题1. 直线上的动点问题- 题目:在直线AB上,点C是动点,当点C沿着直线AB移动时,求证∠ACB是一个恒定的角度。
2. 圆上的动点问题- 题目:圆O的半径为5,点P是圆上的动点。
求证:无论点P在圆上如何移动,OP的长度始终为5。
3. 动点与线段的关系- 题目:线段AB的长度为10,点C是线段AB上的动点。
当点C从A向B移动时,求线段AC的长度与线段BC的长度之和是否恒定。
4. 动点与三角形的面积- 题目:三角形ABC的面积为30平方单位,点D是边AB上的动点。
求证:无论点D在AB上如何移动,三角形ACD的面积始终是三角形ABC面积的一半。
5. 动点与平行四边形的对角线- 题目:平行四边形ABCD中,点E是边AB上的动点,点F是边CD 上的动点,且EF始终是平行四边形的对角线。
求证:无论点E和点F如何移动,EF的长度始终等于AB和CD的长度之和。
6. 动点与圆的切线- 题目:圆O的半径为6,点P是圆O外的一点,点Q是圆O上的动点。
当点Q沿着圆O移动时,求证:点P到圆O的切线长度始终等于点P到点Q的距离。
7. 动点与相似三角形- 题目:三角形ABC与三角形DEF相似,点G是三角形ABC的动点,点H是三角形DEF的动点,且GH始终是三角形ABC和三角形DEF的对应边的平行线。
求证:无论点G和点H如何移动,三角形AGH与三角形DEF始终相似。
8. 动点与坐标系- 题目:在平面直角坐标系中,点A的坐标为(2,3),点B的坐标为(5,6)。
点C是线段AB上的动点,其坐标为(x,y)。
求证:无论点C如何移动,x和y的和始终等于点A和点B坐标的和。
练习题答案提示:- 对于直线上的动点问题,可以利用角度的恒定性,结合直线的性质来证明。
- 对于圆上的动点问题,可以利用圆的半径性质来证明。
- 对于动点与线段的关系问题,可以利用线段长度的加法性质来证明。
- 对于动点与三角形的面积问题,可以利用三角形面积的计算公式来证明。
初中八年级上册数学动点问题试卷附答案

初中八年级上册数学动点问题试卷附答案
一、选择题
1. 一辆汽车以每小时60千米的速度向东行驶,经过2小时后改变方向,以每小时40千米的速度向北行驶,求其位移。
A. 40千米
B. 80千米
C. 100千米
D. 120千米
答案:D. 120千米
2. 一辆自行车向前行驶30分钟后,记下此时的位置。
然后车辆停下来,待30分钟后,以相同的时间和速度往后倒退,到达原点。
求此自行车的位移。
A. 0千米
B. 5千米
C. 10千米
D. 15千米
答案:A. 0千米
二、填空题
1. 一个物体从A点出发,以每秒2米的速度向东行驶10秒,
然后改变方向,以每秒3米的速度向南行驶15秒,最后以每秒4
米的速度向西行驶20秒。
求物体的位移为______米。
答案:-20
2. 一架飞机以每秒200米的速度向东飞行30秒,然后改变方向,以每秒300米的速度向南飞行40秒,最后以每秒400米的速
度向西飞行50秒。
求飞机的位移为______米。
答案:-4000
三、解答题
1. 一个人从原点出发,以每小时5千米的速度向西行驶1小时,然后改变方向,以每小时8千米的速度向南行驶2小时,最后以每
小时10千米的速度向东行驶3小时。
求此人的位移和位移方向。
答案:位移为-23千米,位移方向为东南方向。
2. 一个物体以每秒10米的速度向北行驶30秒,然后改变方向,以每秒15米的速度向东行驶40秒,最后以每秒20米的速度向南
行驶50秒。
求物体的位移和位移方向。
答案:位移为20米,位移方向为南方。
初二数学动点问题练习(含答案)

动态问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.【数学思想:分类思想数形结合思想转化思想】1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC∴AO=12AC.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(备用图)CBED图1NMA BCDEMACBEDNM图3(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD FC G E B 图1 AD FG B 图3A D FC GE B 图2A D F C GB M A D FC G B N7、如图1,在等腰梯形ABCD中,AD BC∥,E是AB的中点,过点E作EF BC∥交CD于点F.46AB BC==,,60B=︒∠.求:(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM EF⊥交BC于点M,过M作MN AB∥交折线ADC 于点N,连结PN,设EP x=.①当点N在线段AD上时(如图2),P M N△的形状是否发生改变?若不变,求出PMN△的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使PMN△为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由解(1)如图1,过点E作EG BC⊥于点G.∵E为AB的中点,∴122BE AB==.在Rt EBG△中,60B=︒∠,∴30BEG=︒∠.∴112BG BE EG====,A DEBFC图4(备用)A DEBFC图5(备用)A DEBFC图1 图2A DEBFCPNM图3A DEBFCPNM(第25题)即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,, ∴PM EG ∥. ∵EF BC ∥, ∴EP GM =,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM == ∴3cos302MH PM =︒=. 则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-= 当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠. 因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=. 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5-时,PMN △为等腰三角形.8、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动图3A D E BFCPN M 图4A D EBF CP MN 图5A DEBF (P ) CM NGGRG图1A D EBF CG 图2A D EBFCPNMG H①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
(完整)八年级数学动点问题专题

(2)设四边形APQC的面积为y(cm2),求y与t的关系式.
10.如图1,在长方形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts.
(1)出发2秒后,求△ABP的周长。
(2)问t为何值时,△BCP为等腰三角形?
(3)另有一点Q,从点C开始,按 的路径运动,且速度为每秒2㎝,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动。当t为何值时,直线PQ把△ABC的周长分成相等的两部分?
(备用图)
12.如图,在△ABC中,∠B=60°,AB=12㎝,BC=4㎝,现有一动点P从点A出发,以2㎝/秒的速度沿射线AB运动,试回答下列问题:
八年级数学动点问题专题
班级姓名
1.如图:已知正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,求DN+MN的最小值是。
2.等边三角形ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC上一点,若AE=2,则EM+CM最小值为。
第1题第2题第3题
3.如图,锐角三角形ABC中,∠C=45°,N为BC上一点,NC=5,BN=2,M为边AC上的一个动点,则BM+MN的最小值是。
4.如图,在直角梯形ABCD中,∠ABC=90°,DC//AB,BC=3,DC=4,AD=5.动点P从B点出发,由B→C→D→A沿边运动,则△ABP的最大面积为()
A.10 B.12 C.14 D.16
5.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是( )
初二数学-八年级数学动点问题专项训练.doc

初二数学-八年级数学动点问题专项训练.docS ABC.1、当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S DEF S CEF122、当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请赐予证明;若不可立,S DEF、S CEF、S ABC又有怎样的数量关系?请写出你的猜想,不需证明.例3、正方形四条边都相等,四个角都是90°.如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.(1)如图1,当点E在线段BC上(不与点B、C重合)时:①判断△ADG与△ABE是否全等,并说明原因:②过点F作FH⊥MN,垂足为点H,察看并猜测线段BE与线段CH的数量关系,并说明原因;(2)如图2,当点E在射线CN上(不与点C重合)时:①判断△ADG与△ABE是否全等,不需说明原因:②过点F作FH⊥MN,垂足为点H,已知GD=4,求△CFH的面积.例4,在△ABC中,∠CAB=70°。
在同一平面内,将△ABC绕点A旋转到△AB'C'的地点,使得CC'∥AB,则∠B'AB=练习1。
已知:如图,AB=16cm,动点P从点A出发,沿AB以2cm/s的速度向点B运动,设点P运动的时间为t秒,请解答下列问题:(1)用含t的式子表示线段AP,PB的长分别为()cm.A。
t;16-tB.2t: 16-2tC. 2t: 16—tD. t: 16-2t2.(上接第1题)(2)点P出发()秒抵达B点。
A. 4B.8C. 10D. 163.已知:如图,AB=18cm,动点P从点A出发,沿AB以2cm/s的速度向点B运动,动点QA运从点B出发,沿BA以1cm/s的速度向点动.P,Q两点同时出发,当点P抵达点B时,点P,Q同时停止运动,设点P运动的时间为t秒,请解答下列问题:(1)用含t的式子表示线段AP,QB长分别()cm.A. 18-2t: 2t为B. t: 18-t c. t: 2tD.2t: t。
八年级数学动点专题(人教版)(含答案)

动点专题(人教版)一、单选题(共10道,每道10分)1.已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=12,BC=24,动点P从点A出发沿AD向点D以每秒1个单位的速度运动,动点Q从点C出发沿CB向点B以每秒2个单位的速度运动,P,Q同时出发,当点P停止运动时,点Q也随之停止,连接PQ,DQ.设点P的运动时间为t秒,当t为( )秒时,△PDQ≌△CQD.A.6B.5C.4D.3答案:C解题思路:试题难度:三颗星知识点:动点问题2.已知:如图,在矩形ABCD中,AB=4,AD=10,点E为边AD上一点,且AE=7.动点P从点B出发,沿BC向点C以每秒2个单位的速度运动,连接AP,DP.设点P的运动时间为t 秒.当t为( )秒时,△DCP≌△CDE.A.7B.3C. D.答案:C解题思路:试题难度:三颗星知识点:动点问题3.已知:如图,在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.点P在线段BC上以每秒2cm的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.设点P 的运动时间为t秒,当t为( )秒时,△BPD与△CQP可能全等.A. B.C.3D.3或4答案:B解题思路:试题难度:三颗星知识点:动点问题4.已知:如图,在矩形ABCD中,AB=4cm,BC=6cm,点E为AB的中点,如果点P在线段BC上以每秒1cm的速度由点B向点C运动,同时,点Q在线段CD上由点C向点D运动.设点P的运动时间为t秒,若某一时刻△BPE与△CQP全等,则点Q的运动速度是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:动点问题5.已知:如图,在长方形ABCD中,AB=DC=4,AD=BC=5.延长BC到点E,使CE=2,连接DE.动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒.当t为( )秒时,△ABP和△DEC全等.A.2B.2或12C.1D.1或6答案:D解题思路:试题难度:三颗星知识点:动点问题6.如图,在长方形ABCD中,AB=20cm,BC=4cm,动点P以4cm/s的速度从B点出发,沿BA 方向向点A移动,同时动点Q以1cm/s的速度,沿CD方向向点D移动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t(s),则当t为( )秒时,线段PQ恰好平分长方形ABCD的面积.A.3B.4C.5D.6答案:B解题思路:试题难度:三颗星知识点:动点问题7.如图,在梯形ABCD中,AD∥BC,DC=4,BC=6,动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒2个单位长度的速度向终点D运动,当其中一个动点到达终点时,另一动点也随之停止运动.设运动时间为t秒,当t为( )时,△MNC是以MN为底的等腰三角形.A.1B.2C.3D.答案:D解题思路:试题难度:三颗星知识点:动点问题8.如图,在长方形ABCD中,∠B=90°,AB=6m,BC=8m,动点P以3m/s的速度从点A出发,沿AC方向向点C移动,同时动点Q以2m/s的速度从点C出发,沿CB方向向点B移动;当P,Q两点中其中一点到达终点时,则停止运动.设运动时间为t秒,则当t为( )秒时,△PQC是以PQ为底的等腰三角形.A.2B.5C. D.答案:A解题思路:试题难度:三颗星知识点:动点问题9.已知:如图1,点G是BC的中点,点H在AF上,动点P以每秒2cm的速度沿图1的边线运动,运动路径为:G—C—D—E—F—H,相应的△ABP的面积y()关于运动时间t (s)的图象如图2.若AB=6cm,则下列四个结论中正确的个数有( )①图1中的BC长是4cm;②图2中的M点表示第4秒时y的值为24;③图1中的CD长是4cm;④图2中的N点表示第12秒时y的值为18.A.1个B.2个C.3个D.4个答案:C解题思路:试题难度:三颗星知识点:动点问题的函数图象10.如图1,在长方形ABCD中,动点P从B点出发,以2cm/s的速度沿BC-CD-DA运动到A 点停止,设点P的运动时间为x(s),△ABP的面积为y(),y关于x的函数图象如图2所示,则长方形ABCD的面积是( ).A.4B.8C.10D.16答案:D解题思路:试题难度:三颗星知识点:动点问题的函数图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题专项训练1.如图,在矩形ABCD中,AB=2,1BC=,动点P从点B出发,沿路线B C D→→作匀速运动,那么ABP△的面积S与点P运动的路程x之间的函数图象大致是()2.如图1,在直角梯形ABCD中,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△BCD的面积是()A.3 D.63.如图,△ABC和的△DEF是等腰直角三角形,∠C=∠F=90°,AB=2.DE=4.点B与点D重合,点A,B(D),E在同一条直线上,将△ABC沿D E→方向平移,至点A与点E重合时停止.设点B,D之间的距离为x,△ABC与△DEF重叠部分的面积为y,则准确反映y与x之间对应关系的图象是()4.如图,点G、D、C在直线a上,点E、F、A、B在直线b上,若a b Rt GEF∥,△从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中GEF△与矩形ABCD重合部分....的面积(S)随时间(t)变化的图象大致是()O311 3SxA.O11 3Sx O 3Sx3O11 3SxB.C.D.2D CPBA图12O 5 xCPD图2G D CE F A Ba(第4题sOsOsOsO5.(2009年)如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )6.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则矩形ABCD的面积是( )A .10 8.16 C. 20 D .367.如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到达点E .运动过程中PEF ∆的面积(s )随时间(t )变化的图象大致是( )8.如图8,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发,沿O-C-D-O 的路线作匀速运动.设运动时间为t 秒, ∠APB 的度数为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是9. 13.一正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图4所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图象是:1 2 3 4 1 2 y s O 1 2 3 4 1 2 y s O s 1 2 3 4 1 2 y s O 12341 2 y O A BC D s t A .。
O s t B O s D O s t C O t (第6题图) A B C D E . F .P.·10.如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA AB BO --的路径运动一周.设OP 为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间关系的是( )11.锐角△ABC 中,BC =6,,12=∆ABC S 两动点M 、N 分别在边AB 、AC 上滑动,且MN ∥BC ,以MN 为边向下作正方形MPQN ,设其边长为x ,正方形MPQN 与△ABC 公共部分的面积为y (y >0),当x = ,公共部分面积y 最大,y 最大值= ,6. (201212分)如图,△ABC 是边长为6的等边三角形,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作PE ⊥AB 于E ,连接PQ交AB 于D .(1)当∠BQD =30°时,求AP 的长;(2)当运动过程中线段ED 的长是否发生变化?如果不变,求出线段ED 的长;如果变化请说明理由.【答案】解:(1)∵△ABC 是边长为6的等边三角形,∴∠ACB =60°。
∵∠BQD =30°,∴∠QCP =90°。
设AP =x ,则PC =6﹣x ,QB =x ,∴QC =QB +C =6+x 。
∵在Rt △QCP 中,∠BQD =30°,∴PC =12QC ,即6﹣x =12(6+x ),解得x =2。
∴当∠BQD =30°时,AP =2。
(2)当点P 、Q 运动时,线段DE 的长度不会改变。
理由如下:作QF ⊥AB ,交直线AB 的延长线于点F ,连接QE ,PF 。
∵PE ⊥AB 于E ,∴∠DFQ =∠AEP =90°。
∵点P 、Q 做匀速运动且速度相同,∴AP =BQ 。
∵△ABC 是等边三角形,∴∠A =∠ABC =∠FBQ =60°。
∴在△APE 和△BQF 中,∵∠A =∠FBQ ,AP =BQ ,∠AEP =∠BFQ =90°,∴△APE ≌△BQF (AAS )。
∴AE =BF ,PE =QF 且PE ∥QF 。
∴四边形PEQF 是平行四边形。
PAOB stOsOOstOstA .B .C .D .∴DE =12EF 。
∵EB +AE =BE +BF =AB ,∴DE =12AB 。
又∵等边△ABC 的边长为6,∴DE =3。
∴当点P 、Q 运动时,线段DE 的长度不会改变。
12. (201212分) 如图,已知一次函数1y kx b =+的图象与x 轴相交于点A ,与反比例函数2cy x= 的图象相交于B (-1,5)、C (25,d )两点.点P (m ,n )是一次函数1y kx b =+的图象上的动点. (1)求k 、b 的值; (2)设31m 2-<<,过点P 作x 轴的平行线与函数2cy x=的图象相交于点D .试问△PAD 的面积是 否存在最大值?若存在,请求出面积的最大值及此时点P 的坐标;若不存在,请说明理由; (3)设m 1a =-,如果在两个实数m 与n 之间(不包括m 和n )有且只有一个整数,数a 的取值 围.【答案】解:(1)将点B 的坐标代入2c y x =,得c51=- ,解得c=5-。
∴反比例函数解析式为25y x=-。
将点C (52,d )的坐标代入25y x =-,得5d =252=--。
∴C (52,-2)。
∵一次函数1y kx b =+的图象经过B (-1,5)、C (52,-2)两点,∴5k b52k b 2=-+⎧⎪⎨-=+⎪⎩,解得k=2b=3-⎧⎨⎩。
(2)存在。
令1y 0=,即2x 30-+=,解得3x 2=。
∴A (32,0)。
由题意,点P (m ,n )是一次函数1y 2x 3=-+的图象上的动点,且31m 2-<< ∴点P 在线段AB 上运动(不含A 、B )。
设P (3nn 2-,)。
∵DP ∥x 轴,且点D 在25y x =-的图象上, ∴D P D 5y y n x =n ==-,,即D (5n n-,)。
∴△PAD 的面积为2113n 51349S PD OP=+n=n +222n 4216-⎛⎫⎛⎫=⋅⋅⋅--⎪ ⎪⎝⎭⎝⎭。
∴S 关于n 的二次函数的图象开口向下,有最大值。
又∵n =2m 3-+,31m 2-<<,得0n 5<<,而30n=52<<。
∴当3n=2时,即P (3342 ,)时,△PAD 的面积S 最大,为4916。
(3)由已知,P (1a,2a+1- )。
易知m ≠n ,即1a 2a+1-≠,即a 0≠。
若a 0>,则m 1n <<。
由题设,m 0n 2>≤,,解出不等式组的解为10a 2<≤。
若a 0<,则n 1m <<。
由题设,n 0m 2<≥,,解出不等式组的解为1a 02<-≤。
综上所述,数a 的取值围为1a 02<-≤,10a 2<≤。
【考点】反比例函数和一次函数综合问题,曲线上点的坐标与方程的关系,平行的性质,二次函数的性质,不等式组的应用。
【分析】(1)根据曲线上点的坐标与方程的关系,由B 的坐标求得c=5-,从而得到25y x =-;由点C 在25y x=-上求得d 2=-,即得点C 的坐标;由点B 、C 在1y kx b =+上,得方程组,解出即可求得k 、b 的值。
(2)求出△PAD 的面积S 关于n 的二次函数(也可求出关于m ),应用二次函数的最值原理即可求得面积的最大值及此时点P 的坐标。
(3)由m ≠n 得到a 0≠。
分a 0>和a 0<两种情况求解。
22. (20129分)如图,已知双曲线ky x=,经过点D (6,1),点C 是双曲线第三象限上的动点,过C 作CA ⊥x 轴,过D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC . (1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.【答案】解:(1)∵双曲线k y x =经过点D (6,1),∴k16=,解得k =6。
(2)设点C 到BD 的距离为h ,∵点D的坐标为(6,1),DB⊥y轴,∴BD=6,∴S△BCD=12×6•h=12,解得h=4。
∵点C是双曲线第三象限上的动点,点D的纵坐标为1,∴点C的纵坐标为1-4= -3。
∴63x=,解得x= -2。
∴点C的坐标为(-2,-3)。
设直线CD的解析式为y=kx+b,则2k b36k b1-+=-⎧⎨+=⎩,解得1k2b2⎧=⎪⎨⎪=-⎩。
∴直线CD的解析式为1y x22=-。
(3)AB∥CD。
理由如下:∵CA⊥x轴,DB⊥y轴,点C的坐标为(-2,-3),点D的坐标为(6,1),∴点A、B的坐标分别为A(-2,0),B(0,1)。
设直线AB的解析式为y=mx+n,则2m n0n1-+=⎧⎨=⎩,解得1m2n1⎧=⎪⎨⎪=⎩。
∴直线AB的解析式为1y x12=+。
∵AB、CD的解析式k都等于12相等。
∴AB与CD的位置关系是AB∥CD。
【考点】反比例函数综合题,待定系数法,曲线上点的坐标与方程的关系,平行的判定。
【分析】(1)把点D的坐标代入双曲线解析式,进行计算即可得解。
(2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答。
(3)根据题意求出点A、B的坐标,然后利用待定系数法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行。