2018年陕西省西安工大附中中考数学五模试卷〔精品解析版〕
陕西省2018年中考数学真题试题(含解析)含答案

陕西省2018年中考数学真题试题一、选择题:(本大题共10题,每题3分,满分30分)1. -的倒数是A. B. - C. D. -【答案】D【解析】【分析】根据乘积为1的两个数互为倒数进行求解即可得.【详解】∵=1,∴-的倒数是-,故选D.【点睛】本题考查了倒数的定义,熟知乘积为1的两个数互为倒数是解题的关键.2. 如图,是一个几何体的表面展开图,则该几何体是A. 正方体B. 长方体C. 三棱柱D. 四棱锥【答案】C【解析】根据表面展开图中有两个三角形,三个长方形,由此即可判断出此几何体为三棱柱。
【详解】观察可知图中有一对全等的三角形,有三个长方形,所以此几何体为三棱柱,故选C【点睛】本题考查了几何体的展开图,熟记常见立体图形的展开图特点是解决此类问题的关键.3. 如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】如图根据平行线的性质可得∠2=∠4,∠1+∠2=180°,再根据对顶角的性质即可得出与∠1互补的角的个数.【详解】如图,∵l1∥l2,l3∥l4,∵∠2=∠4,∠1+∠2=180°,又∵∠2=∠3,∠4=∠5,∴与∠1互补的角有∠2、∠3、∠4、∠5共4个,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4. 如图,在矩形ABCD中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为A. -B.C. -2D. 2【答案】A【解析】【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k. 【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB是矩形,∴BC=OA=2,AC=OB=1,∵点C在第二象限,∴C点坐标为(-2,1),∵正比例函数y=kx的图像经过点C,∴-2k=1,∴k=-,故选A.【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.5. 下列计算正确的是A. a2·a2=2a4B. (-a2)3=-a6C. 3a2-6a2=3a2D. (a-2)2=a2-4【答案】B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得. 【详解】A. a2·a2=a4,故A选项错误;B. (-a2)3=-a6,正确;C. 3a2-6a2=-3a2,故C选项错误;D. (a-2)2=a2-4a+4,故D选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.6. 如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为A. B. 2 C. D. 3【答案】C【分析】由已知可知△ADC是等腰直角三角形,根据斜边AC=8可得AD=4,在Rt△ABD中,由∠B=60°,【解析】可得BD==,再由BE平分∠ABC,可得∠EBD=30°,从而可求得DE长,再根据AE=AD-DE即可【详解】∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=8,∴AD=4,在Rt△ABD中,∠B=60°,∴BD===,∵BE平分∠ABC,∴∠EBD=30°,∴DE=BD•tan30°==,∴AE=AD-DE=,故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.7. 若直线l1经过点(0,4),l2经过(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为A. (-2,0)B. (2,0)C. (-6,0)D. (6,0)【答案】B【解析】【分析】根据l1与l2关于x轴对称,可知l2必经过(0,-4),l1必经过点(3,-2),然后根据待定系数法分别求出l1、l2的解析式后,再联立解方程组即可得.【详解】由题意可知l1经过点(3,-2),(0,4),设l1的解析式为y=kx+b,则有,解得,所以l1的解析式为y=-2x+4,由题意可知由题意可知l2经过点(3,2),(0,-4),设l1的解析式为y=mx+n,则有,解得,所以l2的解析式为y=2x-4,联立,解得:,所以交点坐标为(2,0),故选B.【点睛】本题考查了两直线相交或平行问题,关于x轴对称的点的坐标特征,待定系数法等,熟练应用相关知识解题是关键.8. 如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是A. AB=EFB. AB=2EFC. AB=EFD. AB=EF【答案】D【解析】【分析】连接AC、BD交于点O,由菱形的性质可得OA=AC,OB=BD,AC⊥BD,由中位线定理可得EH=BD,EF=AC,根据EH=2EF,可得OA=EF,OB=2EF,在Rt△AOB中,根据勾股定理即可求得AB=EF,由此即可得到答案.【详解】连接AC、BD交于点O,∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,∵E、F、G、H分别是边AB、BC、CD和DA的中点,∴EH=BD,EF=AC,∵EH=2EF,∴OA=EF,OB=2OA=2EF,在Rt△AOB中,AB==EF,故选D.【点睛】本题考查了菱形的性质、三角形中位线定理、勾股定理等,正确添加辅助线是解决问题的关键.9. 如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为A. 15°B. 35°C. 25°D. 45°【答案】A【详解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,故选A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.10. 对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】先由题意得到关于a的不等式,解不等式求出a的取值范围,然后再确定抛物线的顶点坐标的取值范围,据此即可得出答案.【详解】由题意得:a+(2a-1)+a-3>0,解得:a>1,∴2a-1>0,∴<0,,∴抛物线的顶点在第三象限,故选C.【点睛】本题考查了抛物线的顶点坐标公式,熟知抛物线的顶点坐标公式是解题的关键.二、填空题:(本大题共4题,每题3分,满分12分)11. 比较大小:3_________ (填<,>或=).【答案】<【解析】【分析】根据实数大小比较的方法进行比较即可得答案.【详解】∵32=9,9<10,∴3<,故答案为:<.【点睛】本题考查了实数大小的比较,熟练掌握实数大小比较的方法是解题的关键.12. 如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为________【答案】72°【解析】【分析】首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.【详解】∵五边形ABCDE为正五边形,∴AB=BC=AE,∠ABC=∠BAE=108°,∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,∴∠AFE=∠BAC+∠ABE=72°,故答案为:72°.【点睛】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键13. 若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______【答案】【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=,故答案为:y=.【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.14. 点O是平行四边形ABCD的对称中心,AD>AB,E、F分别是AB边上的点,且EF=AB;G、H分别是BC 边上的点,且GH=BC;若S1,S2分别表示∆EOF和∆GOH的面积,则S1,S2之间的等量关系是______________ 【答案】2S1=3S2【解析】【分析】过点O分别作OM⊥BC,垂足为M,作ON⊥AB,垂足为N,根据点O是平行四边形ABCD的对称中心以及平行四边形的面积公式可得AB•ON=BC•OM,再根据S1=EF•ON,S2=GH•OM,EF=AB,GH=BC,则可得到答案.【详解】过点O分别作OM⊥BC,垂足为M,作ON⊥AB,垂足为N,∵点O是平行四边形ABCD的对称中心,∴S平行四边形ABCD=AB•2ON, S平行四边形ABCD=BC•2OM,∴AB•ON=BC•OM,∵S1=EF•ON,S2=GH•OM,EF=AB,GH=BC,∴S1=AB•ON,S2=BC•OM,∴2S1=3S2,故答案为:2S1=3S2.【点睛】本题考查了平行四边形的面积,中心对称的性质,正确添加辅助线、准确表示出图形面积是解题的关键.三、解答题(共11小题,计78分.解答应写出过程)15. 计算:(-)×(-)+|-1|+(5-2π)0【答案】【解析】【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可.【详解】(-)×(-)+|-1|+(5-2π)0=3+-1+1=4.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键.16. 化简:【答案】【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算即可得.【详解】===.【点睛】本题考查了分式的混合运算,熟练掌握分式混合运算的顺序是解题的关键.17. 如图,已知在正方形ABCD中,M是BC边上一定点,连接AM,请用尺规作图法,在AM上求作一点P,使得△DPA∽△ABM(不写做法保留作图痕迹)【答案】作图见解析.【解析】【分析】根据尺规作图的方法过点D作AM的垂线即可得【详解】如图所示,点P即为所求作的点.【点睛】本题考查了尺规作图——作垂线,熟练掌握作图的方法是解题的关键.18. 如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.【答案】证明见解析.【解析】【分析】利用AAS先证明∆ABH≌∆DCG,根据全等三角形的性质可得AH=DG,再根据AH=AG+GH,DG =DH+GH即可证得AG=HD.【详解】∵AB∥CD,∴∠A=∠D,∵CE∥BF,∴∠AHB=∠DGC,在∆ABH和∆DCG中,,∴∆ABH≌∆DCG(AAS),∴AH=DG,∵AH=AG+GH,DG=DH+GH,∴AG=HD.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.19. 对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息,解答下列问题:(1)求得m=,n= ;(2)这次测试成绩的中位数落在组;(3)求本次全部测试成绩的平均数.【答案】(1)30;19%;(2)B;(3)80.1分.【解析】【分析】(1)根据B组的频数以及频率可求得样本容量,然后用样本容量乘以D组的百分比可求得m的值,用A的频数除以样本容量即可求得n的值;(2)根据中位数的定义进行解答即可得解;(3)根据平均数的定义进行求解即可得.【详解】(1)72÷36%=200,m=200×15%=30,n==19%,故答案为:30,19%;(2)一共有200个数据,从小到大排序后中位数是第100个、第101个数据的平均数,观察可知中位数落在B组,故答案为:B;(3)本次全部测试的平均成绩==80.1分.【点睛】本题考查了频数分布表,扇形统计图,中位数,平均数等知识,熟练掌握相关的概念是解题的关键.20. 周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.【答案】河宽为17米.【解析】【分析】由题意先证明∆ABC∽∆ADE,再根据相似三角形的对应边成比例即可求得AB的长.【详解】∵CB⊥AD,ED⊥AD,∴∠CBA=∠EDA=90°,∵∠CAB=∠EAD,∴∆ABC∽∆ADE,∴,又∵AD=AB+BD,BD=8.5,BC=1,DE=1.5,∴,∴AB=17,即河宽为17米.【点睛】本题考查了相似三角形的应用,熟记相似三角形的判定与性质是解题的关键.21. 经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg,其中,这种规格的红枣的销售量不低于600kg.假设这后五个月,销售这种规格的红枣味x(kg),销售这种规格的红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.【答案】(1)前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋;(2)小明家网店销售这种规格的红枣和小米至少获得总利润23200元.【解析】【分析】(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据等量关系:①销售红枣和小米共3000kg,②获得利润4.2万元,列方程组进行求解即可得;(2)根据总利润=红枣的利润+小米的利润,可得y与x间的函数关系式,根据一次函数的性质即可得答案.【详解】(1)设前五个月小明家网店销售这种规格的红枣a袋,销售小米b袋,根据题意得:,解得:,答:前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋;(2)根据题意得:y=(60-40)x+(54-38)×=12x+16000,∵k=12>0,∴y随x的增大而增大,∵x≥600,∴当x=600时,y取得最小值,最小值为y=12×600+16000=23200,∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,弄清题意,找出各个量之间的关系是解题的关键.22. 如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.【答案】(1);(2).【解析】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为=;(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.23. 如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC相交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)如图,连接ON,根据直角三角形斜边中线等于斜边的一半可得AD=CD=DB,从而可得∠DCB=∠DBC,再由∠DCB=∠ONC,可推导得出ON∥AB,再结合NE是⊙O的切线,ON//AB,继而可得到结论;(2)如图,由(1)可知ON∥AB,继而可得N为BC中点,根据圆周角定理可知∠CMD=90°,继而可得MD∥CB,再由D是AB的中点,根据得到MD=NB.【详解】(1)如图,连接ON,∵CD是Rt△ABC斜边AB上的中线,∴AD=CD=DB,∴∠DCB=∠DBC,又∵OC=ON,∴∠DCB=∠ONC,∴∠ONC=∠DBC,∴ON∥AB,∵NE是⊙O的切线,ON是⊙O的半径,∴∠ONE=90°,∴∠NEB=90°,即NE⊥AB;(2)如图所示,由(1)可知ON∥AB,∵OC=OD,∴∴CN=NB=CB,又∵CD是⊙O的直径,∴∠CMD=90°,∵∠ACB=90°,∴∠CMD+∠ACB=180°,∴MD//BC,又∵D是AB的中点,∴MD=CB,∴MD=NB.【点睛】本题考查了切线的性质、三角形中位线、圆周角定理等,正确添加辅助线、熟练应用相关知识是解题的关键.24. 已知抛物线L:y=x2+x-6与x轴相交于A、B两点(点A在点B的左侧),并与y轴相交于点C.(1)求A、B、C三点的坐标,并求出△ABC的面积;(2)将抛物线向左或向右平移,得到抛物线L´,且L´与x轴相交于A´、B´两点(点A´在点B´的左侧),并与y轴交于点C´,要使△A´B´C´和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.【答案】(1)A(-3,0),B(2,0),C(0,6);15;(2)y=x2-7x-6,y=x2+7x-6,y=x2-x-6.【解析】【分析】(1)在抛物线解析式中分别令x=0、y=0即可求得抛物线与坐标轴的交点坐标,然后根据三角形面积公式即可求得三角形的面积;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A´B´C´和△ABC 的面积相等,高也只能是6,分点C´在x轴上方与x轴下方两种情况分别讨论即可得.【详解】(1)当y=0时,x2+x-6=0,解得x1=-3,x2=2,当x=0时,y=-6,∴A(-3,0),B(2,0),C(0,6),∴S△ABC=AB·OC=×5×6=15;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A´B´C´和△ABC的面积相等,高也只能是6,设A(a,0),则B(a+5,0),y=(x-a)(x-a-5),当x=0时,y=a2+5a,当C´点在x轴上方时,y=a2+5a=6,a=1或a=-6,此时y=x2-7x-6或y=x2+7x-6;当C´点在x轴下方时,y=a2+5a=-6,a=-2或a=-3,此时y=x2-x-6或y=x2+x-6(与原抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y=x2-7x-6,y=x2+7x-6,y=x2-x-6.【点睛】本题考查了抛物线与坐标轴的交点、抛物线的平移等知识,熟知抛物线沿x轴左右平移时,抛物线与x轴两个交点间的距离不变是解(2)小题的关键.25. 问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM的最大值.问题解决(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,∠BAC=60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P 的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③【答案】(1)5;(2)18;(3)(3-9)km.【解析】【分析】(1)如图(1),设外接圆的圆心为O,连接OA, OB,根据已知条件可得△AOB是等边三角形,由此即可得半径;(2)如图(2)所示,连接MO并延长交⊙O于N,连接OP,显然,MN即为MP的最大值,根据垂径定理求得OM的长即可求得MN的最大值;(3)如图(3)所示,假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP",则P´P"即为最短距离,其长度取决于PA的长度,根据题意正确画出图形,得到点P的位置,根据等边三角形、勾股定理等进行求解即可得PE+EF+FP的最小值.【详解】(1)如图(1),设外接圆的圆心为O,连接OA, OB,∵O是等腰三角形ABC的外心,AB=AC,∴∠BAO=∠OAC=∠BAC==60°,∵OA=OB,∴△AOB是等边三角形,∴OB=AB=5,故答案为:5;(2)如图(2)所示,连接MO并延长交⊙O于N,连接OP,显然,MP≤OM+OP=OM+ON=MN,ON=13,OM==5,MN=18,∴PM的最大值为18;(3)如图(3)所示,假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP"由对称性可知PE+EF+FP=P´E+EF+FP"=P´P",且P´、E、F、P"在一条直线上,所以P´P"即为最短距离,其长度取决于PA的长度,如图(4),作出弧BC的圆心O,连接AO,与弧BC交于P,P点即为使得PA最短的点,∵AB=6km,AC=3km,∠BAC=60°,∴∆ABC是直角三角形,∠ABC=30°,BC=3,BC所对的圆心角为60°,∴∆OBC是等边三角形,∠CBO=60°,BO=BC=3,∴∠ABO=90°,AO=3,PA=3-3,∠P´AE=∠EAP,∠PAF=∠FAP",∴∠P´AP"=2∠ABC=120°,P´A=AP",∴∠AP´E=∠AP"F=30°,∵P´P"=2P´Acos∠AP´E=P´A=3-9,所以PE+EF+FP的最小值为3-9km.【点睛】本题考查了圆的综合题,涉及到垂径定理、最短路径问题等,正确添加辅助线、灵活应用相关知识是解题的关键.。
精品陕西省西安市2018-2019年精品中考数学模拟试卷(含答案)

陕西省西安市2019届中考数学模拟试卷(解析版)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.的相反数是()A.﹣B.C.﹣D.1.414【分析】根据相反数的意义,可得答案.【解答】解:的相反数是﹣,故选:A.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2.下列几何体中,左视图与主视图相同的是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,从正面看得到的图形是主视图,可得答案.【解答】解:的主视图与左视图都是下边是梯形上边是矩形,故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,从正面看得到的图形是主视图.3.下列计算正确的是()A.(﹣3a2b)3=﹣3a5b3B.ab2•(﹣4a3b)=﹣2a4b3C.4m3n2÷m3n2=0 D.a5﹣a2=a3【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵(﹣3a2b)3=﹣27a6b3,故选项A错误,∵,故选项B正确,∵4m3n2÷m3n2=4,故选项C错误,∵a5﹣a2不能合并,故选项D错误,故选B.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.4.如图,直线a、b被c所截,若a∥b,∠1=45°,∠3=100°,则∠2的度数为()A.70°B.65°C.60°D.55°【分析】先根据平行线的性质,得到∠4=∠1=45°,再根据∠3=∠2+∠4,即可得到∠2的度数.【解答】解:∵a∥b,∠1=45°,∴∠4=∠1=45°,∵∠3=∠2+∠4,∴100°=∠2+45°,∴∠2=55°,故选:D.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.5.如果y=(1﹣m)x是正比例函数,且y随x的增大而减小,则m的值为()A.m=﹣B.m=C.m=3 D.m=﹣3【分析】先根据正比例函数的定义列出关于m的不等式组,求出m的值即可.【解答】解:∵y=(1﹣m)x是正比例函数,且y随x的增大而减小,∴,∴m=,故选B.【点评】本题考查的是正比例函数的定义和性质,即形如y=kx(k≠0)的函数叫正比例函数.6.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD=()A.3 B.4 C.4.8 D.5【分析】直接利用勾股定理的逆定理得出△ABC是直角三角形,进而得出线段DE是△ABC的中位线,再利用勾股定理得出AD,再利用线段垂直平分线的性质得出DC的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC==5.故选:D.【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD的长是解题关键.7.如图,1﹣4月份,甲、乙两工厂月生产增长量的变化情况,则甲工厂和乙工厂生产增长量差值最大的月份是()A.1月份B.2月份C.3月份D.4月份【分析】折线最陡的一段线,就是增长量差值最大的月份.【解答】解:甲工厂和乙工厂生产增长量差值最大的月份是2月份,故选B.【点评】本题考查了折线统计图,根据图中的折线的变化和数据进行求解.8.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<0【分析】先将函数解析式整理为y=(k﹣1)x+b,再根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:一次函数y=kx+b﹣x即为y=(k﹣1)x+b,∵函数值y随x的增大而增大,∴k﹣1>0,解得k>1;∵图象与x轴的正半轴相交,∴图象与y轴的负半轴相交,∴b<0.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.熟知一次函数的增减性是解答此题的关键.9.如图,在矩形ABCD中,AB=4,BC=6,将矩形ABCD绕B逆时针旋转30°后得到矩形GBEF,延长DA交FG于点H,则GH的长为()A.8﹣4B.﹣4 C.3﹣4 D.6﹣3【分析】作辅助线,构建直角△AHM,先由旋转得BG的长,根据旋转角为30°得∠GBA=30°,利用30°角的三角函数可得GM和BM的长,由此得AM和HM的长,相减可得结论.【解答】解:如图,延长BA交GF于M,由旋转得:∠GBA=30°,∠G=∠BAD=90°,BG=AB=4,∴∠BMG=60°,tan∠30°==,∴,∴GM=,∴BM=,∴AM=﹣4,Rt△HAM中,∠AHM=30°,∴HM=2AM=﹣8,∴GH=GM﹣HM=﹣(﹣8)=8﹣4,故选A.【点评】本题考查了矩形的性质、旋转的性质、特殊角的三角函数及直角三角形30°的性质,熟练掌握直角三角形30°所对的直角边等于斜边的一半及特殊角的三角函数值,属于基础题.10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(共4小题,每小题3分,计12分)11.﹣13+﹣12sin30°=﹣5.【分析】根据乘方的意义,开平方、特殊角三角函数值,可得答案.【解答】解:原式=﹣1+2﹣12×=﹣1+2﹣6=﹣5,故答案为:﹣5.【点评】本题考查了实数的运算,利用乘方的意义,开平方、特殊角三角函数值,注意﹣13的底数是1.12.(1)正三角形的边长为4,则它的面积为2(2)31+2sin18°≈31.62(保留两位小数)【分析】(1)求出等边三角形一边上的高,即可确定出三角形面积;【解答】解:如图,过A作AD⊥BC,∵AB=AB=BC=4,∴BD=CD=BC=2,在Rt△ABD中,根据勾股定理得:AD==2,则S△ABC=BC•AD=2;(2)31+2sin18°≈31+2×0.3090=31.62.故答案为:2,31.62.【点评】此题考查了等边三角形的性质,计算器﹣三角函数,熟练掌握等边三角形的性质是解本题的关键.13.如图所示,直线y=kx(k<0)与双曲线y=﹣交于M(x1,y1),N(x2,y2)两点,则x1y2﹣3x2y1的值为﹣.【分析】由反比例函数图象的特征,得到两交点坐标关于原点对称,故x1=﹣x2,y1=﹣y2,再代入x1y2﹣3x2y1,由k=xy得出答案.【解答】解:由图象可知点M(x1,y1),N(x2,y2)关于原点对称,即﹣x1=x2,﹣y1=y2,把M(x1,y1)代入双曲线y=﹣,得x1y1=﹣2,则x1y2﹣3x2y1=﹣x1y1+3x1y1=﹣6=﹣.故答案为:﹣.【点评】本题考查了正比例函数与反比例函数交点坐标的性质,解决问题的关键是利用两交点坐标关于原点对称.14.如图,在Rt△ABC中,∠C=90°,AB=13,AC=12,经过点C且与AB边相切的动圆与BC、CA分别相交于点M、N,则线段MN长度的最小值为.【分析】设MN的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;由勾股定理可求得BC的长,由MN=PD+CP可得到MN≥CD,故此当MN=CD时,MN有最小值,此时点C、P、D在一条直线上,最后利用面积法可求得CD的长,从而得到MN的最小值.【解答】解:如图,设MN的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;∵AB=13,AC=12,∴BC==5.∵PC+PD=MN,∴PC+PD≥CD,MN≥CD.∴当MN=CD时,MN有最小值.∵PD⊥AB,∴CD⊥AB.∵AB•CD=BC•AC,∴CD===.∴CD的最小值.∴MN的最小值为.故答案为:.【点评】此题主要考查了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解,得出CD=BC•AC÷AB是解题关键.三、解答题.(共11小题,满分78分,解答题后写出过程)15.(5分)1﹣1﹣2sin30°+|3.14﹣π|+(﹣1)0.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣1+π﹣3.14+1=π﹣2.14.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(5分)解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x2+x=x2﹣1,即2x2﹣x﹣4=0,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用转化的思想,解分式方程注意要检验.17.(5分)如图,已知锐角三角形ABC,求作⊙C,使⊙C与AB所在的直线相切于点D(保留作图痕迹,不写作法).【分析】根据切线的性质,过C先作AB的垂线,垂足为D,以C为圆心,由CD作半径的圆即和AB相切.【解答】解:作法:①过C作CE⊥AB于D,②以C为圆心,以CD为半径画圆,则⊙C就是所求作的圆.【点评】本题考查了切线的性质和复杂作图问题,明确过直线外一点作已知直线的垂线,并熟练掌握圆的切线的性质.18.(5分)某校为了了解七年级学生课外活动情况,随机调查了该校若干名学生,调查他们喜欢各类课外活动的情况(课外活动分为四类:A﹣﹣喜欢打乒乓球的人,B﹣﹣喜欢踢足球的人,C﹣﹣喜欢打篮球的人,D﹣﹣喜欢其他的人),并将调查结果绘制成如下两幅不完整的统计图.根据统计图信息完成下列问题:(1)调查的学生人数为120人.(2)补全条形统计图和扇形统计图.(3)若该校七年级共有600人,请估计七年级学生中喜欢打乒乓球的人数.【分析】(1)利用A人数除以所占百分比即可得到调查学生数;(2)首先计算出喜欢踢足球的人数,然后计算出喜欢踢足球的人所占百分比,再计算出喜欢其他的人所占百分比,然后补图即可;(3)利用总人数乘以样本中喜欢打乒乓球的人数所占百分比即可.【解答】解:(1)30÷25%=120,故答案为:120;(2)喜欢踢足球的人数:120﹣30﹣60﹣6=24,所占百分比:×100%=20%,喜欢其他的人所占百分比:×100%=5%,如图所示;(3)600×=150(人),答:七年级学生中喜欢打乒乓球的人数为150人.【点评】此题主要考查了条形统计图,以及利用样本估计总体,关键是读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.(7分)已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠EDG,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵DE=BF,∠EOD=∠BOF,∠EDO=∠FBO,∴△EDO≌△FBO,∴OB=OD,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.【点评】本题考查了全等三角形的性质和判定,平行线的性质,菱形的判定,等腰三角形的性质,平行四边形的性质和判定等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.20.(7分)已知某山区的平均气温与该山的海拔高度的关系见下表:(1)若海拔高度用x(米)表示,平均气温用y(℃)表示,试写出y与x之间的函数关系式;(2)若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,请问该植物适宜种植在海拔为多少米的山区?【分析】(1)分析数据可知:高度每增加100米,温度下降0.5℃.据此列关系式;(2)取y=18,20,分别求出高度x的值,再回答问题.【解答】解:(1)y=22﹣0.5×=22﹣0.005x;(2)当y=18时,即22﹣0.005x=18,解得x=800;当y=20时,即22﹣0.005x=20,解得x=400.∴若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,那么该植物适宜种植在海拔为400~800米的山区.【点评】此题考查一次函数的应用,正确表示函数关系式是关键.难度不大.21.(7分)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.【分析】根据题意可得出△CDG∽△ABG,△EFH∽△ABH,再根据相似三角形的对应边成比例即可得出结论.【解答】解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∵CD=DG=EF=2m,DF=52m,FH=4m,∴=,=,∴=,解得BD=52,∴=,解得AB=54.答:建筑物的高为54米.【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.22.(7分)“五一”小长假期间,某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性购物满500元以上均可获得两次摸球的机会(摸出小球后放回).超市根据两小球所标金额的和返还相应的代金券.(1)顾客甲购物1000元,则他最少可获0元代金券,最多可获60元代金券.(2)请用树形图或列表方法,求出顾客甲获得不低于30元(含30元)代金券的概率.【分析】(1)至少得到的金额数为0+0=0元,至多得到的金额数为30+30=60元;(2)列举出所有情况,看该顾客所获得购物券的金额不低于30元的情况数占总情况数的多少即可.【解答】解:(1)至少得到的金额数为0+0=0元,至多得到的金额数为30+30=60元,故答案为0、60;(2)画树状图如下:共16种情况,不低于30元的情况数有10种,所以所求的概率为=.【点评】本题考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.23.(8分)已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.(1)求证:直线AC是圆O的切线;(2)如果∠ACB=75°,圆O的半径为2,求BD的长.【分析】(1)证明OC⊥AC即可.根据∠DOC是等腰直角三角形可得∠DCO=45°.又∠ACD=45°,所以∠ACO=90°,得证;(2)如果∠ACB=75°,则∠BCD=30°;又∠B=∠O=45°,解斜三角形BCD求解.所以作DE⊥BC,把问题转化到解直角三角形求解.先求CD,再求DE,最后求BD得解.【解答】(1)证明:∵OD=OC,∠DOC=90°,∴∠ODC=∠OCD=45°.∵∠DOC=2∠ACD=90°,∴∠ACD=45°.∴∠ACD+∠OCD=∠OCA=90°.∵点C在圆O上,∴直线AC是圆O的切线.(2)解:方法1:∵OD=OC=2,∠DOC=90°,∴CD=2.∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,作DE⊥BC于点E,则∠DEC=90°,∴DE=DCsin30°=.∵∠B=45°,∴DB=2.方法2:连接BO∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,∴∠BOD=60°∵OD=OB=2∴△BOD是等边三角形∴BD=OD=2.【点评】此题考查了切线的判定方法和解直角三角形,内容单一,难度不大.注意:解斜三角形通常通过作垂线把问题转化为解直角三角形求解.24.(10分)已知抛物线y=3ax2+2bx+c,(Ⅰ)若a=b=1,c=﹣1,求该抛物线与x轴公共点的坐标;(Ⅱ)若a=b=1,且当﹣1<x<1时,抛物线与x轴有且只有一个公共点,求c的取值范围;(Ⅲ)若a+b+c=0,且x1=0时,对应的y1>0;x2=1时,对应的y2>0,试判断当0<x<1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.【分析】(Ⅰ)把a,b,c的值代入可得抛物线的解析式,求出两根即可;(Ⅱ)把a,b代入解析式可得△=4﹣12c≥0,等于0时可直接求得c的值;求出y的相应的值后可得c的取值范围;(Ⅲ)抛物线y=3ax2+2bx+c与x轴公共点的个数就是一元二次方程3ax2+2bx+c=0的实数根的个数,因此,本题的解答就是研究在不同的条件下一元二次方程3ax2+2bx+c=0根的判别式的符号,依据判别式的符号得出相应的结论.【解答】解:(Ⅰ)当a=b=1,c=﹣1时,抛物线为y=3x2+2x﹣1,方程3x2+2x﹣1=0的两个根为x1=﹣1,.∴该抛物线与x轴公共点的坐标是(﹣1,0)和(,0);(Ⅱ)当a=b=1时,抛物线为y=3x2+2x+c,且与x轴有公共点.对于方程3x2+2x+c=0,判别式△=4﹣12c≥0,有c≤.①当时,由方程3x2+2x+=0,解得x1=x2=﹣.此时抛物线为y=3x2+2x+与x轴只有一个公共点(﹣,0);(4分)②当时,x1=﹣1时,y1=3﹣2+c=1+c;x2=1时,y2=3+2+c=5+c.由已知﹣1<x<1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为,应有即,解得﹣5<c≤﹣1.综上,或﹣5<c≤﹣1.(6分)(Ⅲ)对于二次函数y=3ax2+2bx+c,由已知x1=0时,y1=c>0;x2=1时,y2=3a+2b+c>0,又∵a+b+c=0,∴3a+2b+c=(a+b+c)+2a+b=2a+b.∴2a+b>0.∵b=﹣a﹣c,∴2a﹣a﹣c>0,即a﹣c>0.∴a>c>0.(7分)∵关于x的一元二次方程3ax2+2bx+c=0的判别式△=4b2﹣12ac=4(a+c)2﹣12ac=4[(a﹣c)2+ac]>0,∴抛物线y=3ax2+2bx+c与x轴有两个公共点,顶点在x轴下方.(8分)又该抛物线的对称轴,由a+b+c=0,c>0,2a+b>0,得﹣2a<b<﹣a,∴.又由已知x1=0时,y1>0;x2=1时,y2>0,观察图象,可知在0<x<1范围内,该抛物线与x轴有两个公共点.(10分)【点评】借助图象,可将抽象的问题直观化;二次函数与x轴的交点的纵坐标为0;抛物线与x轴交点的个数就是一元二次方程根的个数.25.(12分)问题探究(1)请在图①的正方形ABCD的对角线BD上作一点P,使PA+PC最小;(2)如图②,点P为矩形ABCD的对角线BD上一动点,AB=2,BC=2,点E为BC边的中点,求作一点P,使PE+PC最小,并求这个最小值.问题解决(3)如图③,李师傅有一块边长为1000米的菱形ABCD采摘园,AC=1200米,BD为小路,BC的中点E为一水池,李师傅现在准备在小路BD上建一个游客临时休息纳凉室P,为了节省土地,使休息纳凉室P到水池E与大门C的距离之和最短,那么是否存在符合条件的点P?若存在,请作出的点P位置,并求出这个最短距离;若不存在,请说明理由.【分析】(1)利用正方形的对称性直接连接AC即可;(2)作出点C关于BD的对称性,连接C'E交BD于P,进而判断出△CEC'是直角三角形,利用勾股定理即可求出;(3)直接连接AE交BD于P,再过点E作EF⊥AC,构造出直角三角形,再利用三角形的中位线求出EF,进而利用勾股定理求出CF,最后在Rt△AEF中利用勾股定理即可.【解答】解:(1)如图①,连接AC交BD于P,则AP+CP最小=AC;(2)如图②,作点C关于BD的对称点C'交BD于F,连接C'E交BD于P,则PE+PC最小=C'E.∵BD是矩形ABCD的对角线,∴CD=AB=2,∠BCD=90°,在Rt△BCD中,CD=2,BC=2,∴tan∠CBD===,∴∠CBD=30°,由对称知,CC'=2CF,CC'⊥BD,∴∠CFD=90°,∴∠BCF=60°,∠DCF=30°,在Rt△CDF中,CD=2,∠DCF=30°,∴CF=,∴CC'=2CF=2,∵点E为BC边的中点,∴CE=BC=,∴CF=CE,连接EF,∴△CEF是等边三角形,∴EF=CF=C'F,∴△CEC'是直角三角形,在Rt△CEC'中,CC'=2,CE=,∴C'E=3,∴PE+PC最小为3;(3)如图③,菱形ABCD的对角线相交于点O,∴OC=OA=AC=600,AC⊥BD,在Rt△BOC中,OB==800,过点E作EF⊥AC于F,∴EF∥OB,∵点E是BC的中点,EF=OB=400,∵CE=BC=500,.................... 根据勾股定理得,CF==300,∴AF=AC ﹣CF=1200﹣300=900,连接AE 交BD 于P ,即:PC +PE 最小=AE , 在Rt △AEF 中,根据勾股定理得,AE==100,【点评】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,菱形的性质,对称的性质,三角形的中位线,勾股定理;解(2)的关键是判断出△CEC'是直角三角形,解(3)的关键是构造出直角三角形AEF .。
2018年陕西省中考数学试题及解析

2018年陕西省中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)(2018•陕西)计算:(﹣)0=()A.1B.C.0D.2.(3分)(2018•陕西)如图是一个螺母的示意图,它的俯视图是()A.B.C.D.3.(3分)(2018•陕西)下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a2b2÷a2b2=3ab4.(3分)(2018•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′5.(3分)(2018•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣46.(3分)(2018•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个7.(3分)(2018•陕西)不等式组的最大整数解为()A.8B.6C.5D.48.(3分)(2018•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度9.(3分)(2018•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或810.(3分)(2018•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2018•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为.12.(3分)(2018•陕西)正八边形一个内角的度数为.13.(2018•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为(用科学计算器计算,结果精确到0.1°).14.(3分)(2018•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为.15.(3分)(2018•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2018•陕西)计算:×(﹣)+|﹣2|+()﹣3.17.(5分)(2018•陕西)解分式方程:﹣=1.18.(5分)(2018•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2018•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)(2018•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)(2018•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)(2018•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)(2018•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)24.(8分)(2018•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.25.(10分)(2018•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y 轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.26.(12分)(2018•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.2018年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.(3分)(2018•陕西)计算:(﹣)0=()A.1B.C.0D.考点:零指数幂.分析:根据零指数幂:a0=1(a≠0),求出(﹣)0的值是多少即可.解答:解:(﹣)0=1.故选:A.点评:此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.2.(3分)(2018•陕西)如图是一个螺母的示意图,它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看外面是一个正六边形,里面是一个没有圆心的圆,故选:B.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.(3分)(2018•陕西)下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a2b2÷a2b2=3ab考点:整式的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.解答:解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.点评:本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则.4.(3分)(2018•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠2的度数为()A.43°30′B.53°30′C.133°30′D.153°30′考点:平行线的性质.分析:先根据平行线的性质求出∠EFD的度数,再根据补角的定义即可得出结论.解答:解:∵AB∥CD,∠1=46°30′,∴∠EFD=∠1=46°30′,∴∠2=180°﹣46°30′=133°30′.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两线平行,同位角相等.5.(3分)(2018•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣4考点:正比例函数的性质.分析:直接根据正比例函数的性质和待定系数法求解即可.解答:解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B点评:本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0,图象经过第一、三象限,y值随x的增大而增大;当k<0,图象经过第二、四象限,y值随x的增大而减小.6.(3分)(2018•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个考点:等腰三角形的判定与性质.分析:根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.解答:解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.点评:此题考查了等腰三角形的判定,用到的知识点是等腰三角形的判定、三角形内角和定理、三角形外角的性质、三角形的角平分线定义等,解题时要找出所有的等腰三角形,不要遗漏.7.(3分)(2018•陕西)不等式组的最大整数解为()A.8B.6C.5D.4考点:一元一次不等式组的整数解.分析:先求出各个不等式的解集,再求出不等式组的解集,最后求出答案即可.解答:解:∵解不等式①得:x≥﹣8,解不等式②得:x<6,∴不等式组的解集为﹣8≤x<6,∴不等式组的最大整数解为5,故选C.点评:本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.8.(3分)(2018•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,则下列平移作法正确的是()A.将l1向右平移3个单位长度B.将l1向右平移6个单位长度C.将l1向上平移2个单位长度D.将l1向上平移4个单位长度考点:一次函数图象与几何变换.分析:利用一次函数图象的平移规律,左加右减,上加下减,得出即可.解答:解:∵将直线l1:y=﹣2x﹣2平移后,得到直线l2:y=﹣2x+4,∴﹣2(x+a)﹣2=﹣2x+4,解得:a=﹣3,故将l1向右平移3个单位长度.故选:A.点评:此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.9.(3分)(2018•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7B.4或10C.5或9D.6或8考点:平行四边形的性质;勾股定理;正方形的性质.专题:分类讨论.分析:设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.10.(3分)(2018•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判断,正确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧考点:抛物线与x轴的交点.分析:根据函数值为零,可得相应的方程,根据根的判别式,公式法求方程的根,可得答案.解答:解:当y=0时,ax2﹣2ax+1=0,∵a>1∴△=(﹣2a)2﹣4a=4a(a﹣1)>0,ax2﹣2ax+1=0有两个根,函数与有两个交点,x=>0,故选:D.点评:本题考查了抛物线与x轴的交点,利用了函数与方程的关系,方程的求根公式.二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2018•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为﹣6.考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:≈2.236,π≈3.14,∵﹣6<0<2.236<3.14,∴﹣6.故答案为:﹣6.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)(2018•陕西)正八边形一个内角的度数为135°.考点:多边形内角与外角.分析:首先根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数.解答:解:正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为×1080°=135°.故答案为:135°.点评:此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•180(n≥3)且n为整数).13.(2018•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).考点:解直角三角形的应用-坡度坡角问题.分析:直接利用坡度的定义求得坡角的度数即可.解答:解:∵tan∠A==≈0.5283,∴∠A=27.8°,故答案为:27.8°.点评:本题考查了坡度坡角的知识,解题时注意坡角的正切值等于铅直高度与水平宽度的比值,难度不大.14.(3分)(2018•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.考点:反比例函数系数k的几何意义.分析:设点A的坐标为(a,b),点B的坐标为(c,d),根据反比例函数y=的图象过A,B两点,所以ab=4,cd=4,进而得到S△AOC=|ab|=2,S△BOD=|cd|=2,S矩形MCDO=3×2=6,根据四边形MAOB的面积=S△AOC+S△BOD+S矩形MCDO,即可解答.解答:解:如图,设点A的坐标为(a,b),点B的坐标为(c,d),∵反比例函数y=的图象过A,B两点,∴ab=4,cd=4,∴S △AOC =|ab|=2,S △BOD =|cd|=2,∵点M (﹣3,2),∴S 矩形MCDO =3×2=6,∴四边形MAOB 的面积=S △AOC +S △BOD +S 矩形MCDO =2+2+6=10,故答案为:10.点评:本题主要考查反比例函数的对称性和k 的几何意义,根据条件得出S △AOC =|ab|=2,S △BOD =|cd|=2是解题的关键,注意k 的几何意义的应用.15.(3分)(2018•陕西)如图,AB 是⊙O 的弦,AB=6,点C 是⊙O 上的一个动点,且∠ACB=45°.若点M ,N 分别是AB ,BC 的中点,则MN 长的最大值是3.考点:三角形中位线定理;等腰直角三角形;圆周角定理.分析:根据中位线定理得到MN 的最大时,AC 最大,当AC 最大时是直径,从而求得直径后就可以求得最大值.解答:解:∵点M ,N 分别是AB ,BC 的中点,∴MN=AC ,∴当AC 取得最大值时,MN 就取得最大值,当AC 时直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3故答案为:3.点评:本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN 的值最大,难度不大.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2018•陕西)计算:×(﹣)+|﹣2|+()﹣3.考点:二次根式的混合运算;负整数指数幂.专题:计算题.分析:根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.解答:解:原式=﹣+2+8=﹣3+2+8=8﹣.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数整数幂、17.(5分)(2018•陕西)解分式方程:﹣=1.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(5分)(2018•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)考点:作图—复杂作图.分析:作BC边上的中线,即可把△ABC分成面积相等的两部分.解答:解:如图,直线AD即为所求:点评:此题主要考查三角形中线的作法,同时要掌握若两个三角形等底等高,则它们的面积相等.19.(5分)(2018•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据各个等级的百分比得出答案即可;(2)根据中位数的定义知道中位数是第25和26个数的平均数,由此即可得出答案;(3)首先根据扇形图得出优秀人数占的百分比,条形统计图可以求出平均数的最小值,然后即可求出答案.解答:解:(1);(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.点评:本题难度中等,主要考查统计图表的识别;解本题要懂得频率分布直分图的意义.同时考查了平均数和中位数的定义.20.(7分)(2018•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.考点:全等三角形的判定与性质.专题:证明题.分析:根据平行线的性质得出∠EAC=∠ACB,再利用ASA证出△ABD≌△CAE,从而得出AD=CE.解答:证明:∵AE∥BD,∴∠EAC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE,∴AD=CE.点评:此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、平行线的性质,关键是利用ASA证出△ABD≌△CAE.21.(7分)(2018•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)考点:相似三角形的应用.分析:先证明△CAD~△MND,利用相似三角形的性质求得MN=9.6,再证明△EFB~△MFN,即可解答.解答:解:由题意得:∠CAD=∠MND=90°,∠CDA=MDN,∴△CAD~△MND,∴,∴,∴MN=9.6,又∵∠EBF=∠MNF=90°,∠EFB=∠MFN ,∴△EFB ~△MFN ,∴,∴∴EB ≈1.75,∴小军身高约为1.75米.点评:本题考查的是相似三角形的判定及性质,解答此题的关键是相似三角形的判定.22.(7分)(2018•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x 人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (元)与x (人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.考点:一次函数的应用.专题:应用题.分析:(1)根据总费用等于人数乘以打折后的单价,易得y 甲=640×0.85x ,对于乙两家旅行社的总费用,分类讨论:当0≤x ≤20时,y 乙=640×0.9x ;当x >20时,y 乙=640×0.9×20+640×0.75(x ﹣20);(2)把x=32分别代入(1)中对应得函数关系计算y 甲和y 乙的值,然后比较大小即可.解答:解:(1)甲两家旅行社的总费用:y 甲=640×0.85x=544x ;乙两家旅行社的总费用:当0≤x ≤20时,y 乙=640×0.9x=576x ;当x >20时,y 乙=640×0.9×20+640×0.75(x ﹣20)=480x+1920;(2)当x=32时,y 甲=544×32=17408(元),y 乙=480×32+1920=17280,因为y 甲>y 乙,所以胡老师选择乙旅行社.点评:本题考查了一次函数的应用:利用实际问题中的数量关系建立一次函数关系,特别对乙旅行社的总费用要采用分段函数解决问题.23.(7分)(2018•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)考点:游戏公平性;列表法与树状图法.分析:(1)首先判断出向上一面的点数为奇数有3种情况,然后根据概率公式,求出小亮掷得向上一面的点数为奇数的概率是多少即可.(2)首先应用列表法,列举出所有可能的结果,然后分别判断出小亮、小丽获胜的概率是多少,再比较它们的大小,判断出该游戏是否公平即可.解答:解:(1)∵向上一面的点数为奇数有3种情况,∴小亮掷得向上一面的点数为奇数的概率是:.(2)填表如下:1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,一共有36种等可能的结果,其中小亮、小丽获胜各有9种结果.∴P(小亮胜)=,P(小丽胜)==,∴游戏是公平的.点评:(1)此题主要考查了判断游戏公平性问题,要熟练掌握,首先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.(2)此题主要考查了列举法(树形图法)求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.24.(8分)(2018•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.考点:切线的性质;勾股定理;相似三角形的判定与性质.分析:(1)根据切线的性质,和等角的余角相等证明即可;(2)根据勾股定理和相似三角形进行解答即可.解答:(1)证明:∵AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,∴∠ABE=90°,∴∠BAE+∠E=90°,∵∠DAE=90°,∴∠BAD+∠BAE=90°,∴∠BAD=∠E;(2)解:连接BC,如图:∵AB是⊙O的直径,∴∠ACB=90°,∵AC=8,AB=2×5=10,∴BC=,∵∠BCA=∠ABE=90°,∠BAD=∠E,∴△ABC∽△EAB,∴,∴,∴BE=.点评:本题考查了切线的性质、相似三角形等知识点,关键是根据切线的性质和相似三角形的性质分析.25.(10分)(2018•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y 轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.考点:二次函数综合题.分析:(1)令y=0,求出x的值;令x=0,求出y,即可解答;(2)先求出A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),再代入解析式,即可解答;(3)取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,由此判定四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,从而平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,求出抛物线的顶点坐标M,根据,即可解答.解答:解:(1)令y=0,得x2+5x+4=0,∴x1=﹣4,x2=﹣1,令x=0,得y=4,∴A(﹣4,0),B(﹣1,0),C(0,4).(2)∵A,B,C关于坐标原点O对称后的点为(4,0),(1,0),(0,﹣4),∴所求抛物线的函数表达式为y=ax2+bx﹣4,将(4,0),(1,0)代入上式,得解得:,∴y=﹣x2+5x﹣4.(3)如图,取四点A,M,A′,M′,连接AM,MA′,A′M′,M′A,MM′,由中心对称性可知,MM′过点O,OA=OA′,OM=OM′,∴四边形AMA′M′为平行四边形,又知AA′与MM′不垂直,∴平行四边形AMA′M′不是菱形,过点M作MD⊥x轴于点D,∵y=,∴M(),又∵A(﹣4,0),A′(4,0)∴AA′=8,MD=,∴=点评:本题考查了二次函数的性质与图象、中心对称、平行四边形的判定、菱形的判定,综合性较强,解决本题的关键是根据中心对称,求出抛物线的解析式,在(3)中注意菱形的判定与数形结合思想的应用.26.(12分)(2018•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.。
【初三英语试题精选】2018年中考数学五模试卷(西安市含答案和解释)

2018年中考数学五模试卷(西安市含答案和解释)
陕西省西安市2018年中考数学五模试卷
一、选择题
1下列算式中,运算结果为负数的是()
A ﹣|﹣1|
B ﹣(﹣2)3
C ﹣(﹣)
D (﹣3)2
2一个几何体的三视图如图所示,则这个几何体是()
A 三棱锥
B 三棱柱
C 圆柱
D 长方体
3下列计算中正确的是()
A a a2=a2
B 2a a=2a2
C (2a2)2=2a4
D 6a8÷3a2=2a4
4如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()
A 85°
B 60°
C 50°
D 35°
5本市5月份某一周每天的最高气温统计如下表
温度/℃22242629
天数2131
则这组数据的中位数和平均数分别是()
A 24,25
B 25,26
C 26,24
D 26,25
6对于一次函数y=k2x﹣k(k是常数,k≠0)的图象,下列说法正确的是()
A 是一条抛物线
B 过点(,0)
C 经过一、二象限
D y随着x 增大而减小
7如图,A(0,﹣),点B为直线y=﹣x上一动点,当线段AB 最短时,点B的坐标为()
A (0,0)
B (1,﹣1)
C (,﹣)
D (,﹣)
8如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为()
A B C D
9已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=3。
2018年陕西师大附中中考数学五模试卷-解析版

2018年陕西师大附中中考数学五模试卷一、选择题(本大题共10小题,共30.0分)1.下列运算结果为正数的是A. B. C. D.【答案】A【解析】解:A 、原式,符合题意;B 、原式,不符合题意;C 、原式,不符合题意;D 、原式,不符合题意,故选:A.各式计算得到结果,即可作出判断.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.如图,一个放置在水平实验台上的锥形瓶,它的俯视图为A. B. C. D.【答案】B【解析】解:一个放置在水平实验台上的锥形瓶,它的俯视图为两个同心圆.故选:B.俯视图是从物体的上面看,所得到的图形.本题考查了几何体的三种视图,掌握定义是关键注意所有的看到的棱都应表现在三视图中.3.估计的值应在A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】解:,,故选:B.根据被开方数越大算术平方根越大,可得答案.本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出是解题关键,又利用了不等式的性质.4.直角三角板和直尺如图放置,若,则的度数为A.B.C.D.【答案】C【解析】解:如图,过E 作,则,,,,,,,故选:C.过E 作,则,根据平行线的性质即可得到结论.本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.5.已知正比例函数,则下列坐标对应的点可能在该正比例函数的图象上的是A. B. C. D.【答案】B【解析】解:对于正比例函数,,图象在二、四象限,只有选项B符合题意,故选:B.根据正比例函数的图象的位置即可判断;本题考查一次函数的性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.如图,是的内切圆,则点O 是的A. 三条边的垂直平分线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条高的交点【答案】B【解析】解:是的内切圆,则点O到三边的距离相等,点O 是的三条角平分线的交点;故选:B.根据三角形的内切圆得出点O到三边的距离相等,即可得出结论.本题考查了三角形的内切圆与内心;熟练掌握三角形的内切圆的圆心性质是关键.7.若直线经过点和,且,则n 的值可以是A. 3B. 4C. 5D. 6【答案】C【解析】解:依题意得:,,,,,故选:C.根据题意列方程组得到,由于,于是得到,即可得到结论.考查了一次函数的图象与系数的关系,注重考察学生思维的严谨性,易错题,难度中等.8.已知平行四边形ABCD,AC,BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为菱形的是A. B. C. D.【答案】B 【解析】解:四边形ABCD是平行四边形,,,,,,四边形ABCD 是菱形邻边相等的平行四边形是菱形故选:B.根据菱形的定义得出答案即可.本题考查菱形的判定方法有三种:定义:一组邻边相等的平行四边形是菱形;四边相等;对角线互相垂直平分的四边形是菱形.9.如图,将半径为2,圆心角为的扇形OAB绕点A 逆时针旋转,点O,B的对应点分别为,,连接,则图中阴影部分的面积是A.B.C.D.【答案】C【解析】解:连接,,将半径为2,圆心角为的扇形OAB绕点A 逆时针旋转,,是等边三角形,,,点中上,,,是等边三角形,,,,,图中阴影部分的面积.故选:C.连接,,根据旋转的性质得到,推出是等边三角形,得到,推出是等边三角形,得到,得到,根据图形的面积公式即可得到结论.本题考查了扇形面积的计算,等边三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.10.设直线是函数b,c 是实数,且的图象的对称轴,A. 若,则B. 若,则C. 若,则D. 若,则【答案】C【解析】解:由对称轴,得:.,当时,,与0无法判断.当时,.故选:C.根据对称轴,可得,根据有理数的乘法,可得答案.本题考查了二次函数图象与系数的关系,利用对称轴得出是解题关键.二、填空题(本大题共4小题,共12.0分)11.使有意义的x的取值范围是______.【答案】【解析】解:有意义,,解得.故答案为:.先根据二次根式有意义的条件列出关于x的不等式组,求出x的取值范围即可.本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.12.两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O ,其摆放方式如图所示,则等于______度【答案】108【解析】解:如图,由正五边形的内角和,得,,.,故答案为:108.根据多边形的内角和,可得,,,,根据等腰三角形的内角和,可得,根据角的和差,可得答案.本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.13.如图,点A 在函数的图象上,轴于点B,点C在x 轴上点B 的右边,点D是AC的中点,连接DB并延长交y轴于点E,连接若的面积为3,则k的值为______.【答案】6【解析】解:为的斜边AC上的中线,,,又,,又,∽,,即.又,,即.反比例函数图象在第一象限,..故答案是:6.先根据题意证明∽,根据相似比及面积公式得出的值即为的值,再由函数所在的象限确定k的值.本题考查反比例函数系数k的几何意义反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.14.如图,在中,,,点D,E都在边BC上,且若,则DE的长为______.【答案】【解析】解:中,,,,由勾股定理得:,把绕A 点旋转到,使AB和AC重合,连接DF.则,,,,,,在和中≌,,设,则,,,,,,,故答案为:.根据等腰直角三角形性质好勾股定理求出,,根据旋转的性质得出,,,求出,证≌,根据全等得出,设,则,,,根据,列方程,求出x即可.本题考查了旋转的性质,全等三角形的性质和判定,等腰直角三角形的应用,对学生的分析问题,解决问题的能力要求比较高.三、计算题(本大题共1小题,共5.0分)15.计算:【答案】解:原式.【解析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.四、解答题(本大题共10小题,共73.0分)16.计算:【答案】解:原式【解析】根据分式的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.如图,在中,,于点求作射线BM,分别交AD,AC于P,Q 两点,使得保留作图痕迹,不写作法【答案】解:如图,点P、Q为所作.【解析】作的角平分线即可.本题考查了作图基本作图:熟练掌握基本作图作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.18.某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图部门员工人数每人所创的年利润万元A 510B b 8C c5在扇形图中,C部门所对应的圆心角的度数为______在统计表中,______,______求这个公司平均每人所创年利润.【答案】;9;6【解析】解:在扇形图中,C部门所对应的圆心角的度数为:;部门的员工人数所占的百分比为:,各部门的员工总人数为:人,,,故答案为:,9,6;这个公司平均每人所创年利润为:万元.根据扇形圆心角的度数部分占总体的百分比进行计算即可;先求得A部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;根据总利润除以总人数,即可得到这个公司平均每人所创年利润.本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数单位,用圆的扇形面积表示各部分占总数的百分数.19.如图,在正方形ABCD中,点G在对角线BD上不与点B,D重合,于点E,于点F,连结AG.写出线段AG,GE,GF长度之间的数量关系,并说明理由;若正方形ABCD的边长为1,,求线段BG的长.【答案】解:结论:.理由:连接CG.四边形ABCD是正方形,、C关于对角线BD对称,点G在BD上,,于点E ,于点F,,四边形EGFC是矩形,,在中,,.过点A 作,四边形ABCD是正方形,,,,,,在中,,,在中,,,,.【解析】结论:只要证明,四边形EGFC是矩形,推出,在中,利用勾股定理即可证明;过点A 作,在、中,求出AH、HG即可解决问题.本题考查正方形的性质、矩形的判定和性质、勾股定理直角三角形30度的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.20.如图是小明阁楼储藏室的侧面示意图,现他有一个棱长为的正方体包裹,请通过计算判断,该包裹能否平放入这个储藏室参考数据:,,【答案】解:如图所示:设,则,故DE,则,故EF,则.故该包裹能平放入这个储藏室.【解析】直接构造直角三角形,再利用锐角三角函数关系得出答案.此题主要考查了解直角三角形的应用,正确构造直角三角形是解题关键.21.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计加长或缩短设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:单层部分的长度46810150双层部分的长度737271根据表中数据的规律,完成以下表格,并直接写出y关于x的函数解析式;根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;设挎带的长度为lcm,求l的取值范围.【答案】解:观察表格可知,y 是x的一次函数,设,则有,解得,.当时,,时,;补全表格如图所示:由题意,解得,单层部分的长度为90cm.由题意当,,当时,,.【解析】观察表格可知,y是x 的一次函数,设,利用待定系数法即可解决问题;列出方程组即可解决问题;由题意当,,当时,,可得.本题考查一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者根据国家信息中心发布的中国分享经济发展报告显示,2016 年我国共享经济市场交易额约为 34520 亿元,比上年增长;超 6 亿人参与共享经济活动,比上年增加约 1 亿人.小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片除编号和内容外,其余完全相同他们将这四张卡片背面朝上,洗匀放好.从中随机抽取一张,恰好抽到“共享服务”的概率是______.从中随机抽取一张不放回,再从中随机抽取一张请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率这四张卡片分别用它们的编号A,B,C,D表示.【答案】【解析】解:有共享出行、共享服务、共享物品以及共享知识,共四张卡片,刚好抽到“共享服务”的概率是,故答案为:;根据题意画图如下:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率.根据概率公式直接得出答案;根据题意先画树状图列出所有等可能结果数的,根据概率公式求解可得.此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比.23.如图,PA,PB 是的切线,A,B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交于点D.求证:PO 平分;连接DB ,若,求证:.【答案】解:如图,连接OB,,PB 是的切线,平分;,,,,,平分,,,又,是等边三角形,,,,.【解析】连接OB,根据切线长定理即可解答;先证明是等边三角形,得到,再由,即可得到.本题考查了切线的性质,角平分线的判定,等边三角形的判定和性质,解本题的关键是判断出是等边三角形.24.已知抛物线:.求抛物线的对称轴;无论a 为何值,抛物线都经过两个定点,求这两个定点的坐标;将抛物线沿中两个定点所在直线翻折,得到抛物线,当的顶点到x轴的距离为1时,求抛物线的解析式.【答案】解:根据题意可得:对称轴抛物线都经过定点与a的取值无关即a的系数为0即,定点,抛物线:顶点坐标根据题意得:过定点,的直线为将抛物线沿直线翻折,得到抛物线,的顶点的顶点到x轴的距离为1,抛物线的解析式:或【解析】由对称轴可得.由抛物线都经过两个定点,可得a的系数为0,可得和4,可得这两个定点的坐标.由题意得过定点的直线为,可求顶点的坐标,由的顶点到x轴的距离为1,可求a的值,即可求抛物线的解析式.本题考查了二次函数的性质,考查了抛物线翻折后对称轴不变的原理,考查了抛物线顶点的求解,关键是求关于直线的顶点坐标.25.如图,四边形ABCD 是矩形,,,点P是对角线AC 上的动点不与点A,C 重合,连接PD ,作交射线BC于点E,以线段PD,PE为邻边作矩形PEFD .线段PD的最小值为______;求证:,并求矩形PEFD面积的最小值;是否存在这样的点P ,使得是等腰三角形?若存在,请求出PE的长;若不存在,请说明理由.【答案】【解析】解:如图1中,根据垂线段最短可知,当时,DP的值最小.在中,,,,,.故答案为.证明:如图2中,连接DE、PF交于点O,连接FC,OC.四边形DPEF是矩形,,,,,、P、E、C、F五点共圆,是直径,,,,,,,,∽,,,.解:如图3中,设AC交DE于H.当时,易证≌,,,,,,,.如图4中,当时,,,在CD上取一点H ,速度,则,设,则,,,,,,,综上所述,PE 的长为或.如图1中,根据垂线段最短可知,当时,DP的值最小利用面积法即可解决问题;如图2中,连接DE、PF交于点O,连接FC ,首先证明D、P、E、C、F五点共圆,由∽,推出,即可解决问题;分两种情形:点E在线段BC上,点E在线段BC分别求解即可解决问题;本题考查相似三角形综合题、矩形的性质、相似三角形的判定和性质、勾股定理、圆的有关知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.第11页,共11页。
2021年陕西省西安工大附中中考数学五模试卷(解析版)

陕西省西安工大附中中考数学五模试卷一、选择题(每小题3分,共10小题,计30分,每小题只有一个选项是符合题意的)1.﹣2的相反数是()A.2B.﹣2C.D.﹣2.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.3.=()A.2B.C.D.4.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()A.34°B.54°C.56°D.66°5.正比例函数y=3x的图象如图所示,则∠α的正弦值为()A.B.C.D.36.如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=4,过点D作DF∥BE交AC于F,则EF的长等于()A.2B.3C.D.7.直线y=﹣5x+m与直线y=2x+4的交点在第二象限,则m的取值范围是()A.m>4B.3<m<4C.﹣1<m<4D.﹣10<m<48.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18B.C.D.9.如图,⊙O中,AC=6,BD=4,AB⊥CD于E点,∠CDB=30°,则⊙O的半径为()A.B.5C.D.10.已知抛物线y=﹣x2+2x+3和一点P(2,),过P点的直线l,若直线l与该抛物线只有一个交点,则这样的直线l的条数是()A.0B.1C.2D.3二、填空题(每小题3分,共4小题,计12分)11.不等式4x﹣3<﹣2x+1的解集为.12.如图,⊙O的半径为1cm,正六边形内接于⊙O,则图中阴影部分面积为.13.如图,已知一次函数y=2x﹣3的图象与x轴,y轴分别交于A,B两点,反比例函数y=(x >0)交于C点,且AB:AC=3:4,则k的值为.14.如图,在矩形ABCD中,AB=8,BC=6,点P为BC边上的一个动点、过点P作PQ∥AC交AB边于点Q,把线段PB绕点P旋转至PE(点B与点E对应),点E落在线段PQ上,若AE 恰好平分∠BAC,则BP的长为.三、解答题(共11小题,计78分,解答应写出过程)15.(5分)计算:﹣2﹣2﹣|1﹣tan60°|+×16.(5分)解分式方程:+=1.17.(5分)已知:四边形ABCD.求作:点P,使∠PCB=∠B,且点P到边AD和CD的距离相等.18.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)补全条形统计图,补全扇形统计图中乐器所占的百分比;(2)本次调查学生选修课程的“众数”是;(3)若该校有1200名学生,估计选修绘画的学生大约有多少名?19.(7分)已知:如图点A,E,F,C在同一直线上,AE=CF,过E,F分别作DE⊥AC,BF⊥AC,连接AB,CD,BD,BD交AC于点G,若AB=CD,求证:△DEG≌△BFG.20.(7分)如图,一辆摩托单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于底面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)21.(7分)随着“西成高铁”的开通,对于加强关中﹣天水经济区与成渝经济区的交流合作,促进区域经济发展和提高人民出行质量,具有十分重要的意义.成都某单位计划组织优秀员工利用周末乘坐“西成高铁”到西安观光旅游,计划游览著名景点“大唐芙蓉园”,该景区团体票价格设置如下:超过30人的部分人数/人10人以内(含10人)超过10人但不超过30人的部分单价(元/张)12010896(1)求团体票价y与游览人数x之间的函数关系式;(2)若该单位购买团体票共花费3456元,且所有人都购买了门票,那么该单位共有多少人游览了“大唐芙蓉园”?22.(7分)篮球运动是全世界最流行的运动之一,近年流行千百少年之间的“3对3”篮球将登上2020年奥运会赛场.为备战某市中学生“3对3”篮球联赛,某校甲、乙、丙三位同学作为“兄弟战队”的主力队员进行篮球传球训练,篮球由一个人随机传给另一个人,且每位传球人传球给其余两人的机会是均等的.现在由甲开始传球.(1)求甲第一次传球给乙的概率;(2)三次传球后.篮球在谁手中的可能性大?请利用树状图说明理由.23.(8分)如图,在△ABC中,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E,BC与⊙O相切于点B.(1)求证:DE∥AB;(2)若AB=6,BC=8,求DE的长.24.(10分)抛物线y=ax2bx+c经过点A(﹣1,0)、B(4,0),与y轴交于点C(0,4).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线上的一点,分别连接PB、PC,若直线BC恰好平分四边形COBP 的面积,求P点坐标;(3)在(2)的条件下,是否在该抛物线上存在一点Q,该抛物线对称轴上存在一点N,使得以A、P、Q、N为顶点的四边形为平行四边形?若存在,求出Q点坐标;若不存在,请说明理由.25.(12分)已知:如图①,在等腰直角△ABC中,斜边AC=2.(1)请你在图①的AC边上求作一点P,使得∠APB=90°;(2)如图②,在(1)问的条件下,将AC边沿BC方向平移,使得点A、P、C对应点分别为E、Q、D,连接AQ,BQ.若平移的距离为1,求∠AQB的大小及此时四边形ABDE的面积;(3)将AC边沿BC方向平移m个单位至ED,是否存在这样的m,使得在直线DE上有一点M,满足∠AMB=30°,且此时四边形ABDE的面积最大?若存在,求出四边形ABDE面积的最大值及平移距离m的值;若不存在,请说明理由.2018年陕西省西安工大附中中考数学五模试卷参考答案与试题解析一、选择题(每小题3分,共10小题,计30分,每小题只有一个选项是符合题意的)1.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:四个汉字中只有“善”字可以看作轴对称图形,故选:D.【点评】考查了轴对称图形的知识,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.3.【分析】先根据同分母分式的加减运算法则计算,再约分即可得.【解答】解:原式===2,故选:A.【点评】本题主要考查分式的加减法,解题的关键是掌握同分母分式加减运算法则.4.【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°﹣34°=56°.【解答】解:∵a∥b,∴∠1=∠3=34°,又∵AB⊥BC,∴∠2=90°﹣34°=56°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.5.【分析】根据正比例函数的图象和三角函数解答即可.【解答】解:过正比例函数上一点作AB⊥x轴,设点A的坐标为(x,3x),在Rt△OAB中,OA=,∴sin∠α=,故选:B.【点评】此题考查正比例函数的图象,关键是根据正比例函数的图象和三角函数解答.6.【分析】根据三角形的中位线定理得出DF=2,再根据勾股定理得出AF,进而解答即可.【解答】解:∵DF∥BE,AD是△ABC的中线,∴DF=BE=2,∵AD⊥BE,DF=2,AD=4,∴AF=,∴EF=,故选:C.【点评】本题考查了三角形中线和角平分线的性质以及勾股定理的应用,根据三角形的中位线定理得出DF=2是解题的关键.7.【分析】首先联立方程组求得交点的坐标,再根据交点在第二象限列出不等式组,从而求得m 的取值范围.【解答】解:令﹣5x+m=2x+4,解得x=,则y=.又交点在第二象限,∴x<0,y>0,即<0且>0解得﹣10<m<4.故选:D.【点评】本题考查了两条直线相交或平行问题,能够根据二元一次方程组求两条直线的交点,同时根据所在象限的位置确定字母的取值范围.8.【分析】先根据题意得出△ABM∽△MCG,故可得出CG的长,再求出DG的长,根据△MCG ∽△EDG即可得出结论.【解答】解:∵四边形ABCD是正方形,AB=12,BM=5,∴MC=12﹣5=7.∵ME⊥AM,∴∠AME=90°,∴∠AMB+∠CMG=90°.∵∠AMB+∠BAM=90°,∴∠BAM=∠CMG,∠B=∠C=90°,∴△ABM∽△MCG,∴=,即=,解得CG=,∴DG=12﹣=.∵AE∥BC,∴∠E=CMG,∠EDG=∠C,∴△MCG∽△EDG,∴=,即=,解得DE=.故选:B.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.9.【分析】如图,作OM⊥AB于M,ON⊥CD于N,连接OD.解直角三角形求出ON,DN即可解决问题.【解答】解:如图,作OM⊥AB于M,ON⊥CD于N,连接OD.∵AB⊥CD,∴∠OME=∠ONE=∠MEN=90°,∴四边形OMEN是矩形,∴OM=EN,ON=EM,在Rt△ACE中,∵AC=6,∠A=∠ADB=30°,∴CE=AC=3,AE=3,在Rt△DEB中,∵BD=4,∠BDE=30°,∴BE=BD=2,DE=2,∴CD=3+2,AB=2+3,∵OM⊥AB,ON⊥CD,∴AM=BM=,CN=DN=,∴EM=ON=,∴OD===.故选:C.【点评】本题考查垂径定理,圆周角定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10.【分析】由直线l与抛物线只有一个公共点,设直线l=kx+b,代入点P,得k、b的关系式,两者联立方程求得函数解析式即可.【解答】解:设经过点P且与抛物线y=﹣x2+2x+3只有一个公共点的直线解析式为y=kx+b ∴2k+b=,∴b=﹣2k,∴经过点P且与抛物线只有一个公共点的直线解析式为y=kx+﹣2k,∵与抛物线只有一个交点∴kx+﹣2k=﹣x2+2x+3只有一个实数根,即方程的△=0,∴,此方程没有实数根,∴过P点的直线l,与抛物线y=﹣x2+2x+3只有一个交点的直线l的条数是0条.故选:A.【点评】本题考查了二次函数性质,正确的设出解析式并用一个系数表示出另一个系数是解答本题的关键.二、填空题(每小题3分,共4小题,计12分)11.【分析】移项,合并同类项,系数化成1即可.【解答】解:4x﹣3<﹣2x+1,4x+2x<1+3,6x<4,x<,故答案为:x<.【点评】本题考查了解一元一次不等式,注意:解一元一次不等式和解一元一次方程类似:去分母、去括号、移项、合并同类项、系数化成1,但是不等式的两边都乘以或除以同一个负数,不等号的方向要改变.12.【分析】根据图形分析可得求阴影部分面积实为求扇形面积,将原图阴影部分面积转化为扇形面积求解即可.【解答】解:如图,连接BO,CO,OA.由题意得,△OBC,△AOB都是等边三角形,∴∠AOB=∠OBC=60°,∴OA∥BC,∴△OBC的面积=△ABC的面积,∴图中阴影部分的面积等于扇形OBC的面积=.故答案为:【点评】本题考查正多边形与圆、扇形的面积公式、平行线的性质等知识,解题的关键是学会用转化的扇形思考问题,属于中考常考题型.13.【分析】作CD⊥x轴于D,易得△AOB∽△ADC,根据全等三角形的性质得出OB:CD=3:4,根据图象上的点满足函数解析式,把C点纵坐标代入反比例函数解析式,可得反比例函数的解析式中的k值.【解答】解:作CD⊥x轴于D,则OB∥CD,在△AOB和△ADC中,∵∠OAB=∠DAC,∠AOB=∠ADC=90°,∴△AOB∽△ADC,∴OA:AD=OB:CD=AB:AC=3:4,由直线y=2x﹣3可知A(0,1.5),B(0,﹣3),∴OA=1.5,OB=3,∴AD=2,CD=4,∴OD=3.5,∴C(3.5,4),把x=3.5,y=4代入y=(x>0),得4=解得k=14,故答案为:14.【点评】本题考查了反比例函数与一次函数的交点问题,图象上的点满足函数解析式,求得C点的坐标是解题的关键.14.【分析】因为PQ∥AC,可得tan∠QPB=tan∠ACB=,设QB=4x,BP=3x,则QP=5x,PE =PB=3x,QE=5x﹣3x=2x,因为AE恰好平分∠BAC,可得∠CAE=∠QAE=∠QEA,所以AQ =QE=2x,AB=AQ+QB=2x+4x=6x=8,解得x的值,即可得出BP的长.【解答】解:如图,∵在矩形ABCD中,AB=8,BC=6,∴tan∠ACB=,∵PQ∥AC,∴∠QPB=∠ACB,∴tan∠QPB=tan∠ACB=,设QB=4x,BP=3x,则QP=5x,∵把线段PB绕点P旋转至PE(点B与点E对应),点E落在线段PQ上,∴PE=PB=3x,QE=5x﹣3x=2x,∵AE恰好平分∠BAC,∴∠CAE=∠QAE,∵PQ∥AC,∴∠QEA=∠CAE,∴∠QEA=∠QAE,∴AQ=QE=2x,∴AB=AQ+QB=2x+4x=6x=8,∴BP=3x=4.故答案为:4.【点评】本题考查图形旋转的性质,锐角三角函数的定义,平行线的性质和角平分线的定义,等腰三角形的判定.解题的关键是掌握图形旋转的性质.三、解答题(共11小题,计78分,解答应写出过程)15.【分析】直接利用绝对值的性质以及二次根式的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=﹣﹣(﹣1)+4=﹣﹣+1+4=3+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.【分析】两边都乘以(x+3)(x﹣1),化分式方程为整式方程,解之求得x的值,再检验即可得出答案.【解答】解:去分母得:2x﹣2+x2+3x=(x+3)(x﹣1),解得:x=﹣,经检验x=﹣是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.17.【分析】根据角平分线上的点到角两边的距离相等可知:到边AD和CD的距离相等的点在∠ADC的平分线上,所以第一步作∠ADC的平分线DE,要想满足∠PCB=∠B,则作CP1∥AB,得到点P1,再作两角相等得点P2.【解答】解:作法:①作∠ADC的平分线DE,②过C作CP1∥AB,交DE于点P1,③以C为角的顶点作∠P2CB=∠P1CB,则点P1和P2就是所求作的点;【点评】本题是作图题,考查了角平分线的性质、平行线的性质,熟练掌握角平分线上的点到角两边距离相等是关键.18.【分析】(1)舞蹈人数及其所占百分比求得总人数,总人数乘以书法对应百分比可得其人数,依据各科目人数之和等于总人数求得绘画人数,再用乐器人数除以总人数可得其对应百分比;(2)根据众数的定义求解可得;(3)用总人数乘以样本中绘画对应的比例即可得.【解答】解:(1)被调查的总人数为20÷40%=50(人),∴书法的人数为50×10%=5人,绘画的人数为50﹣(15+20+5)=10(人),则乐器所占百分比为15÷50×100%=30%,(2)本次调查学生选修课程的“众数”是舞蹈,故答案为:舞蹈;(3)估计选修绘画的学生大约有1200×=240(人).【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.【分析】求出∠AFB=∠CED=90°,推出AF=CE,根据HL证Rt△ABF≌Rt△CDE,推出DE=BF,然后根据AAS即可证得结论.【解答】证明:∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,∴Rt△ABF≌Rt△CDE,∴DE=BF,∵在△BFG和△DEG中,∴△BFG≌△DEG(AAS).【点评】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.20.【分析】过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH =CH=x,BH=CH cot68°=0.4x,由AB=49知x+0.4x=49,解之求得CH的长,再由EF=BE sin68°=3.72根据点E到地面的距离为CH+CD+EF可得答案.【解答】解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CH cot68°=0.4x,由AB=49 知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BE sin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.【点评】本题主要考查解直角三角形的应用﹣坡度坡角问题,解题的关键是理解题意构建直角三角形并熟练掌握三角函数的定义.21.【分析】(1)根据表格中的数据和题意可以写出团体票价y与游览人数x之间的函数关系式;(2)根据题意和(1)中的函数解析式可以求得该单位共有多少人游览了“大唐芙蓉园”.【解答】解:(1)由题意可得,当0<x≤10时,y=120x,当10<x≤30时,y=120×10+108(x﹣10)=108x+120,当x>30时,y=120×10+108×(30﹣10)+96(x﹣30)=96x+480,由上可得,团体票价y与游览人数x之间的函数关系式是y=;(2)当x=30时,y=108×30+120=3360<3456,令96x+480=3456,解得,x=31,答:该单位共有31人游览了“大唐芙蓉园”.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.22.【分析】(1)直接利用概率公式计算可得;(2)画出树状图,然后找到落在谁手上的结果数多即可得.【解答】解:(1)甲第一次传球给乙的概率为;(2)根据题意画出树状图如下:可看出三次传球有8种等可能结果,篮球在乙、丙手中的可能性大.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.【分析】(1)根据直角三角形斜边上的中线定理得AM=BM,进而得∠A=∠ABM,再根据圆内接四边形的性质得∠MDE=∠ABM,进而得∠A=∠MDE,便可得结果;(2)连接BD,由三角形面积求出BD,进而由勾股定理求得AD,再由△MDE∽△MAB求得DE.【解答】解:(1)证明:∵BC与⊙O相切于点B.∴∠ABC=90°,∵点M是AC的中点,∴BM=AM=CM,∴∠MAB=∠MBA,∵四边形ABED是⊙O的内接四边形,∴∠ADE+∠ABE=180°,∵∠MDE+∠ADE=180°,∴∠MDE=∠MBA,∴∠MDE=∠MAB,∴DE∥AB;(2)连接BD,∵AB=6,BC=8,∠ABC=90°,∴AC =,∵AB 是⊙O 的直径,∴∠ADB =90°,∵AB •BC =AC •BD ,∴BD =, ∴AD =, ∴DM =AM ﹣AD =AC ﹣AD =5﹣3.6=1.4,∵DE ∥AB ,∴△MDE ∽△MAB , ∴,即,∴DE =1.68.【点评】本题是一个圆的综合题,主要考查了切线的性质,圆周角性质,勾股定理,相似三角形的判定与性质,圆内接四边形的性质,平行线的性质与判定,已知直径往往构造直径所对的圆周角,运用直角三角形的性质解决问题.24.【分析】(1)根据点A ,B ,C 的坐标,利用待定系数法即可求出抛物线的表达式;(2)过点P 作PE ⊥x 轴于点E ,设点P 的坐标为(m ,﹣m 2+3m +4),则点E 的坐标为(m ,0),进而可得出PE ,OE ,BE 的长,由三角形的面积公式、梯形的面积公式结合S △BPC =S 梯形COEP +S △PEB ﹣S △COB 可得出S △BPC =﹣2m 2+8m ,由直线BC 恰好平分四边形COBP 的面积可得出S △BPC =S △COB ,进而可得出关于m 的一元二次方程,解之即可得出点P 的坐标;(3)利用配方法可求出抛物线的对称轴为直线x =,设点N 的坐标为(,n ),分AN 为对角线、AQ 为对角线以及AP 为对角线三种情况考虑,由点A ,P ,N 的坐标,利用平行四边形的对角线互相平分可得出点Q 的横坐标,再利用二次函数图象上点的坐标特征即可求出点Q 的坐标.【解答】解:(1)将A (﹣1,0)、B (4,0),C (0,4)代入y =ax 2bx +c ,得: ,解得:,∴抛物线的表达式为y =﹣x 2+3x +4.(2)过点P 作PE ⊥x 轴于点E ,如图1所示.设点P的坐标为(m,﹣m2+3m+4),则点E的坐标为(m,0),∴PE=﹣m2+3m+4,OE=m,BE=4﹣m,∴S△BPC =S梯形COEP+S△PEB﹣S△COB,=(OC+PE)•OE+BE•PE﹣OB•OC,=×(4﹣m2+3m+4)•m+(﹣m2+3m+4)•(4﹣m)﹣×4×4,=﹣2m2+8m.∵直线BC恰好平分四边形COBP的面积,∴S△BPC =S△COB,∴﹣2m2+8m=8,∴m1=m2=2,∴点P的坐标为(2,6).(3)∵y=﹣x2+3x+4=﹣(x﹣)2+,∴抛物线的对称轴为直线x=.设点N的坐标为(,n).分三种情况考虑(如图):①当AN为对角线时,∵A(﹣1,0),点P(2,6),点N(,n),∴点Q的横坐标为﹣1+﹣2=﹣,∴点Q的坐标为(﹣,﹣);②当AQ为对角线时,∵A(﹣1,0),点P(2,6),点N(,n),∴点Q的横坐标为2+﹣(﹣1)=,∴点Q的坐标为(,﹣);③当AP为对角线时,∵A(﹣1,0),点P(2,6),点N(,n),∴点Q的横坐标为﹣1+2﹣=﹣,∴点Q的坐标为(﹣,).综上所述:存在点Q,N使得以A、P、Q、N为顶点的四边形为平行四边形,点Q的坐标为(﹣,﹣),(,﹣)或(﹣,).【点评】本题考查了待定系数法求二次函数解析式、三角形的面积、梯形的面积、二次函数图象上点的坐标特征、解一元二次方程以及平行四边形的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)由S △BPC =S △COB ,找出关于m 的一元二次方程;(3)分AN 为对角线、AQ 为对角线以及AP 为对角线三种情况,利用平行四边形的性质及二次函数图象上点的坐标特征,求出点Q 的坐标.25.【分析】(1)利用等腰三角形“三线合一”的性质,取AC 中点为点P ,即可.(2)延长AP 、CD 相交于点M ,取AB 的中点F ,连接PF .证明△APE ≌△MPD ,得到AP =MP ,从而可得PF 是△ABM 的中位线.进而得到PF 是AB 的垂直平分线,这样可以得出∠APB =2∠M =2∠EAP .由AE =PE 可得∠M =∠MPD =∠EPA =∠EAP ,所以可得∠PDB =2∠M ,由AC ∥ED 可得∠PDB =∠ACB =45°,所以∠APB =45°.(3)如图,以AB 为边长,在直线AB 的右侧作等边三角形ABO ,在以O 为圆心、OA 长为半径作⊙O.过点O作OM⊥AC,交⊙O于点M,点M在AC的右上方.过点M作AC的平行线DE,AE∥BC,BC的延长线交DE于点D.则此时满足∠AMB=30°,此时四边形ABDE的面积最大.【解答】解:(1)如图,取AC的中点,连接BP,则∠APB=90°.(2)如图,延长AP、CD相交于点M,取AB的中点F,连接PF.由平移的性质可得,DE=AC=2,AE=CD=1,AC∥DE,AE∥CD设∠EAP=x∵点P是DE的中点∴PE=PD=DE=1∴PE=AE∴∠APE=∠EAP=x∴∠MPD=∠APE=x∵AE∥CD∴∠M=∠EAP=x在△APE和△MPD中∴△APE≌△MPD(AAS)∴AP=MP∵点F是AB的中点∴PF是△ABP的中位线∵由题知,∠ABC=90°∴∠AFP=90°∴PF⊥AB,点F是AB的中点∴BP=AP∴BP=MP∴∠PBM=∠M=x∴∠APB=∠PBM+∠M=2x∵由题知,∠ACB=45°∵AC∥DE∴∠PDB=∠ACB=45°∵∠PDB=∠MPD+∠M=2x∴2x=45°∴∠APB=45°在等腰直角三角形ABC中,斜边AC的长是2,则直角边AB=BC=∴BD=BC+CD=+1=•(AE+BD)•AB=×(1++1)×=+1;∴S四边形ABDE(3)存在.如图,以AB为边长,在直线AB的右侧作等边三角形ABO,在以O为圆心、OA长为半径作⊙O.过点O作OM⊥AC,交⊙O于点M,点M在AC的右上方.过点M作AC的平行线DE,AE∥BC,BC的延长线交DE于点D,AE交⊙O于点H.则此时满足∠AMB=30°,此时四边形ABDE的面积最大.作OF⊥AE于F,OM与AE相交于点N.∵AE∥CD,DE∥AC∴四边形ACDE是平行四边形∴AE=CD,DE=AC=2∴∠EDC=∠ACB=45°∴∠AEM=∠EDC=45°∵OM⊥AC∴OM⊥DE∴∠NME=90°∴NE=MN,∠MNH=45°由(2)知,AB=BC=∴⊙O的半径是连接BH∵AE∥BC,∠ABC=90°∴∠BAH=180°﹣∠ABC═90°∵∠AMB=30°,弧AB=弧AB∴∠AHB=∠AMB=30°∴AH=AB=∵OF⊥AH,点O是圆心∴AF=AH=根据勾股定理得OF==∵∠FNO=∠MNH=45°∴ON=OF=,FN=OF=∴MN=OM﹣ON=﹣∴NE=MN=2﹣∴CD=AE=AF+FN+NE=++2﹣=2+∴BD=BC+CD=+2+∴S四边形ABDE=•(AE+BD)•AB=×(2+++2+)×=2++1∴四边形ABDE最大面积是2++1,此时平移距离m=2+【点评】本题主要考查了等腰直角三角形的性质、平移的性质、平行四边形的判定及其性质以及圆的性质.本题综合性强,难度大,在第三问中,根据定弦定圆周角找到辅助圆解决问题,这是近年来中考的一个热点.。
2018年中考数学模拟试题及答案(共五套)

中考模拟试卷数学卷一、仔细选一选。
(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列四个运算中,结果最小的是( ). A 、2017的相反数 B 、2017的绝对值 C 、2017的0次幂 D 、2017的立方根 2.已知∠α=23°45′,则∠α的余角=( ).A .66°55′B .156°15′C .66°15′D .156°55′3.若代数式x 2+bx 可以分解因式,则常数b 不可以是( ). A .﹣1B .0C .1D .24.在代数式x ﹣y, 4a, y+,,yz, ,中有( ).A .5个整式B .3个单项式,4个多项式C .6个整式,4个单项式D .单项式与多项式的个数相同5.下图是小方送给她外婆的生日蛋糕,则下面关于三种视图判断正确的( ).A.主视图、俯视图、左视图都正确B.主视图、俯视图、左视图都错误C.主视图、左视图正确、俯视图错误D. 左视图、俯视图正确、主视图错误 6.已知⎩⎨⎧>≤-,,a xb x 则的值( ).A.大于0B.小于0C.大于或等于0D.小于或等于07.某超市举办促销活动,促销方式是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该超市促销方式的是( ).A. 原价减去10元后再打8折B. 原价打8折后再减去10元C. 原价减去10元后再打2折D. 原价打2折后再减去10元8.如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ).(第8题图) A .△ACD 的外心 B .△ABC 的外心C .△ACD 的内心 D .△ABC 的内心9.在同一直角坐标系中,对于以下四个函数①y=-x-1;②y=x+1;③y=-x+1; ④y=-2(x+1)的图像。
【初三英语试题精选】2018年中考数学五模试卷(西安市碑林区含答案和解释)

2018年中考数学五模试卷(西安市碑林区含答案和解释) 2018年陕西省西安市碑林区中考数学五模试卷一、选择题(共10小题,第小题3分,共30分,每小题只有一个正确答案)1.(3分)4的平方根是()
A.2B. C.±2D.±
2.(3分)下列各式计算正确的是()A.2a2+a3=3a5B.(﹣2x)3=8x3
C.2ax 3a5=6a6D.(﹣2x3)÷(﹣6x2)= x
3.(3分)如图是由一些相同的小立方块搭成的几何体的主视图和左视图,则该几何体的小立方块最多有()
A.4块B.5块C.6块D.7块
4.(3分)如图,点G为△ABC的重心,则S△ABGS△ACGS△BCG 的值是()
A.123B.212C.111D.无法确定
5.(3分)关于x的不等式组的解集为x<3,那么m的取值范围为()
A.m=3B.m>3C.m<3D.m≥3
6.(3分)如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()
A.12B.14C.15D.16
7.(3分)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边 AB=6,DC=7,把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙),此时AB与CD1交于点O,则线段AD1的长为()
A. B.5C.4D.
8.(3分)将正方形AOCB和A1CC1B1按如图所示方式放置,点A (0,1)和点A1在直线y=x+1上,点C,C1在x轴上,若平移直线y=x+1至经过点B1,则直线y=x+1向右平移的距离为()A.4B.3C.2D.1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
∴sin∠α=
,
故选:B. 6.(3 分)如图,AD、BE 分别是△ABC 的中线和角平分线,AD⊥BE,AD=BE=4,过点
D 作 DF∥BE 交 AC 于 F,则 EF 的长等于( )
第 9 页(共 29 页)
A.2
B.3
C.
D.
【解答】解:∵DF∥BE,AD 是△ABC 的中线,
∴DF= BE=2,
∴ = ,即 = ,解得 DE= .
故选:B.
9.(3 分)如图,⊙O 中,AC=6,BD=4,AB⊥CD 于 E 点,∠CDB=30°,则⊙O 的半 径为( )
A.
B.5
C.
D.
【解答】解:如图,作 OM⊥AB 于 M,ON⊥CD 于 N,连接 OD.
第 11 页(共 29 页)
∵AB⊥CD, ∴∠OME=∠ONE=∠MEN=90°, ∴四边形 OMEN 是矩形, ∴OM=EN,ON=EM, 在 Rt△ACE 中,∵AC=6,∠A=∠ADB=30°, ∴CE= AC=3,AE=3 ,
D 作 DF ∥ BE 交 AC 于 F , 则 EF 的 长 等 于 (
)
大家拿到 考卷后 ,先看 是不是 本科考 试的试 卷,再 清点试 卷页码 是否齐 全,检 查试卷 有无破 损或漏 印、重 印、字 迹模糊 不清等 情况。 如果发 现问题 ,要及 时报告 监考老 师处理 。:1. 从前向 后,先 易后难 。通常 试题的 难易分 布是按 每一类 题型从 前向后 ,由易 到难。 因此, 解题顺 序 也宜按试 卷题号 从小到 大,从 前至后 依次解 答。当 然,有 时但也 不能机 械地按 部就班 。中间 有难题 出现时 ,可先 跳过去 ,到最 后攻它 或放弃 它。先 把容易 得到的 分数拿 到手, 不要“ 一条胡 同走到 黑”, 总的原 则是先 易后难 ,先选 择、填 空题, 后解答 题。2. 规范答 题,分 分计较 。 数学分 I 、II 卷, 第 I 卷 客观性 试题, 用计算 机阅读 ,一要 严格按 规定涂 卡,二 要认真 选择答 案。 第 II 卷为 主观性 试题, 一般情 况下, 除填空 题外, 大多解 答题一 题设若 干小题 ,通常 独立给 分。解 答时要 分步骤 (层次 )解答 ,争取 步步得 分。 解题中 遇到困 难时, 能做几 步做几 步, 一分地争 取,也 可以跳 过某一 小
∴∠1=∠3=34°,
第 8 页(共 29 页)
D.66°
又∵AB⊥BC, ∴∠2=90°﹣34°=56°, 故选:C.
5.(3 分)正比例函数 y=3x 的图象如图所示,则∠α 的正弦值为( )
函数上一点作 AB⊥x 轴,
D.3
设点 A 的坐标为(x,3x),
在 Rt△OAB 中,OA=
2018 年陕西省西安工大附中中考数学五模试卷
一、选择题(每小题 3 分,共 10 小题,计 30 分,每小题只有一个选项是符合题意的) 1.(3 分)﹣2 的相反数是( )
A.2
B.﹣2
C.
D.﹣
2.(3 分)在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称 图形的是( )
A.
人,且每位传球人传球给其余两人的机会是均等的.现在由甲开始传球.
(1)求甲第一次传球给乙的概率; (2)三次传球后.篮球在谁手中的可能性大?请利用树状图说明理由. 23.(8 分)如图,在△ABC 中,点 M 是 AC 的中点,以 AB 为直径作⊙O 分别交 AC,BM 于点 D,E,BC 与⊙O 相切于点 B. (1)求证:DE∥AB; (2)若 AB=6,BC=8,求 DE 的长.
13.(3 分)如图,已知一次函数 y=2x﹣3 的图象与 x 轴,y 轴分别交于 A,B 两点,反比例
函数 y= (x>0)交于 C 点,且 AB:AC=3:4,则 k 的值为
.
14.(3 分)如图,在矩形 ABCD 中,AB=8,BC=6,点 P 为 BC 边上的一个动点、过点 P
作 PQ∥AC 交 AB 边于点 Q,把线段 PB 绕点 P 旋转至 PE(点 B 与点 E 对应),点 E 落
AB=12,BM=5,则 DE 的长为( )
A.18
B.
C.
D.
9.(3 分)如图,⊙O 中,AC=6,BD=4,AB⊥CD 于 E 点,∠CDB=30°,则⊙O 的半 径为( )
A.
B.5
C.
D.
10.(3 分)已知抛物线 y=﹣x2+2x+3 和一点 P(2, ),过 P 点的直线 l,若直线 l 与该抛
第 6 页(共 29 页)
第 7 页(共 29 页)
2018 年陕西省西安工大附中中考数学五模试卷
参考答案与试题解析
一、选择题(每小题 3 分,共 10 小题,计 30 分,每小题只有一个选项是符合题意的) 1.(3 分)﹣2 的相反数是( )
A.2
B.﹣2
C.
D.﹣
【解答】解:根据相反数的定义,﹣2 的相反数是 2. 故选:A. 2.(3 分)在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称 图形的是( )
∴x<0,y>0,
即 <0 且
>0
解得﹣10<m<4. 故选:D. 8.(3 分)如图,正方形 ABCD 中,M 为 BC 上一点,ME⊥AM,ME 交 AD 的延长线于点 E.若 AB=12,BM=5,则 DE 的长为( )
A.18
B.
C.
D.
【解答】解:∵四边形 ABCD 是正方形,AB=12,BM=5,
第 5 页(共 29 页)
24.(10 分)抛物线 y=ax2bx+c 经过点 A(﹣1,0)、B(4,0),与 y 轴交于点 C(0,4). (1)求抛物线的表达式; (2)点 P 为直线 BC 上方抛物线上的一点,分别连接 PB、PC,若直线 BC 恰好平分四 边形 COBP 的面积,求 P 点坐标; (3)在(2)的条件下,是否在该抛物线上存在一点 Q,该抛物线对称轴上存在一点 N, 使得以 A、P、Q、N 为顶点的四边形为平行四边形?若存在,求出 Q 点坐标;若不存在, 请说明理由.
在线段 PQ 上,若 AE 恰好平分∠BAC,则 BP 的长为
.
三、解答题(共 11 小题,计 78 分,解答应写出过程) 15.(5 分)计算:﹣2﹣2﹣|1﹣tan60°|+ × 16.(5 分)解分式方程: + =1. 17.(5 分)已知:四边形 ABCD.
求作:点 P,使∠PCB=∠B,且点 P 到边 AD 和 CD 的距离相等.
在 Rt△DEB 中,∵BD=4,∠BDE=30°, ∴BE= BD=2,DE=2 ,
∴CD=3+2 ,AB=2+3 , ∵OM⊥AB,ON⊥CD,
∴AM=BM=
,CN=DN=
,
∴EM=ON=
,
∴OD=
=
=.
故选:C. 10.(3 分)已知抛物线 y=﹣x2+2x+3 和一点 P(2, ),过 P 点的直线 l,若直线 l 与该抛
∵AD⊥BE,DF=2,AD=4,
∴AF=
,
∴EF= ,
故选:C.
7.(3 分)直线 y=﹣5x+m 与直线 y=2x+4 的交点在第二象限,则 m 的取值范围是( )
A.m>4
B.3<m<4
C.﹣1<m<4
D.﹣10<m<4
【解答】解:令﹣5x+m=2x+4,
解得 x= ,
则 y=
.
又交点在第二象限,
第 4 页(共 29 页)
cot68°≈0.40)
21.(7 分)随着“西成高铁”的开通,对于加强关中﹣天水经济区与成渝经济区的交流合 作,促进区域经济发展和提高人民出行质量,具有十分重要的意义.成都某单位计划组
织优秀员工利用周末乘坐“西成高铁”到西安观光旅游,计划游览著名景点“大唐芙蓉
园”,该景区团体票价格设置如下:
∴MC=12﹣5=7.
∵ME⊥AM,
∴∠AME=90°,
∴∠AMB+∠CMG=90°.
第 10 页(共 29 页)
∵∠AMB+∠BAM=90°, ∴∠BAM=∠CMG,∠B=∠C=90°, ∴△ABM∽△MCG, ∴ = ,即 = ,解得 CG= , ∴DG=12﹣ = . ∵AE∥BC, ∴∠E=CMG,∠EDG=∠C, ∴△MCG∽△EDG,
B.
C.
D.
3.(3 分)
=( )
A.2
B.
C.
D.
4.(3 分)如图,a∥b,点 B 在直线 b 上,且 AB⊥BC,若∠1=34°,则∠2 的大小为( )
A.34°
B.54°
C.56°
D.66°
5.(3 分)正比例函数 y=3x 的图象如图所示,则∠α 的正弦值为( )
A.
B.
C.
D.3
6.(3 分)如图,AD、BE 分别是△ABC 的中线和角平分线,AD⊥BE,AD=BE=4,过点
第 1 页(共 29 页)
A.2
B.3
C.
D.
7.(3 分)直线 y=﹣5x+m 与直线 y=2x+4 的交点在第二象限,则 m 的取值范围是( )
A.m>4
B.3<m<4
C.﹣1<m<4
D.﹣10<m<4
8.(3 分)如图,正方形 ABCD 中,M 为 BC 上一点,ME⊥AM,ME 交 AD 的延长线于点 E.若
第 3 页(共 29 页)
18.为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞 蹈、绘画、书法.学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择 而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整的统计图,请结 合图中所给信息解答下列问题: