基于PLC的动态定量包装控制系统设计
基于PLC包装机系统设计

湘潭职业技术学院2015届毕业设计班级:姓名:指导教师:年月日摘要对某型枕式糖果包装机进行自动化改造。
按照生产工艺要求, 选用可编程逻辑控制器( PLC) 作为控制核心,结合变频技术、人机界面技术对糖果包装机控制系统进行了重新设计;控制系统工作正常,包装速度大幅提升, 满足生产工艺要求。
PLC 以及变频技术的应用,提高了系统自动化程度,成功完成了对原机器的改造。
关键词:PLC、糖果包装机、目录目录 0第一章绪论 0第一节课题设计的目的及意义 0第二节全自动包装机系统国内外形势 (1)第三节采用PLC控制的优点 (2)第二章系统控制方案的确定 (3)第一节本文主要介绍的方向 (3)第二节糖果包装机生产工艺分析 (3)第三章控制系统硬件设计 (5)第一节糖果包装机的开关控制量 (5)第二节糖果包装机对电机的选择 (5)第四章控制系统软件设计 (7)第一节控制系统的选用 (7)第二节 PLC程序设计 (7)第三节人机界面设计 (8)结束语 (18)谢辞 (19)参考文献 (20)第一章绪论第一节课题设计的目的及意义通过本次毕业设计,使得对全自动包装机控制系统现状及发展有进一步了解。
了解它们的工程应用熟悉全自动包装机控制系统配置、工艺流程及控制方案。
掌握如何进行现场调试及投运.自动化是现代科技进步的一特征,现代生产和科学技术的发展,对自动化技术提出越来越高的要求,同时也为自动化技术的革新提供了必要条件。
基于PLC 的全自动包装机系统改变着了包装过程的动作方式。
实现自动控制的包装系统能够极大地提高生产效率和产品质量,显著消除包装工序及印刷贴标等造成的误差,有效减轻职工的劳动强度并降低能源和资源的消耗.要想在规定的时间内,为自己创造出最大的利益,就要确保自己的食品包装生产线运行良好,在生产过程中不会出现错误,这样在尽量避免错误出现和故障的影响,才会为企业获得最大的利益.自动化水平在制造工业中不断提高,应用范围正在拓展。
基于信捷PLC的定量称重包装控制系统设计

基于信捷PLC的定量称重包装控制系统设计在化工吸附分离过程中,需要将原料进行在线称重并包装,利用信捷XD系列PLC实现定量算法,采用最新高速处理称重模块采集数据,极大降低称重中产生的延时性、测量误差,利用人机界面HMI进行人机交互,操作简单,并给出了具体的实现。
标签:定量称重;信捷PLC;HMI引言称重是将物料进行在线等重量称量。
在化工吸附分离过程中,需要将原料进行在线称重并包装,针对这一要求,本控制系统采用信捷的工控产品,开发出一套控制设备,利用HMI作为现场工人的操作界面,PLC作为上料下料,数据采集的控制部件,称重模块进行在线称重[1]。
在技术性能方面做到速度高、准确度高、稳定性高、可靠性高,在应用性方面做到综合性、组织性。
1 定量称重包装机组成定量称重包装机由定量称重包装控制器和备料斗、计量斗、夹袋机构、截料装置、下料阀、放料阀、称重传感器等部分组成,定量称重包装示意图如图1所示。
备料斗为缓冲式料仓,用于物料存储并提供一个接近均匀的物料流;阀门位于备料斗底部,当设备检修或出现故障时,用于将物料封阻在备料斗内;截料装置在称重过程中提供快、中、慢三级给料;秤体主要有计量斗、称重支架和称重传感器组成,完成重量到电信号的转变并传输到控制单元;夹袋机构的作用是夹紧包装袋,让称重完成的物料全部落入包装袋。
2 硬件设计称重控制器包括信捷XD系列PLC,信捷HMI[2],称重模块,称重传感器等部分组成,硬件组成如图2所示。
2.1 PLCPLC采用信捷电气的XD3-24R-E,基本处理指令0.02~0.05us,扫描时间10000步1ms,程序容量高达128K。
具有两个通信口,支持RS232和RS485可连接多种外围设备。
采用AC220V交流供电,具有8个继电器输入和8个继电器输出。
2.2 HMIHMI采用信捷电气的TH765-N触摸屏,7英寸触摸屏,耐油耐脏,6万色真彩,支持BMP、JPG格式图片显示。
基于PLC的自动化包装生产线集成控制系统设计

基于PLC的自动化包装生产线集成控制系统设计摘要:商品包装应包含诸如商标、品牌、形状、颜色、图案及材料等元素。
为实现包装过程的自动化,形成了包装自动化生产线,自动化包装生产线可以将自动包装机、辅助设备及输送装置按照产品的包装工艺顺序组合在一起,再配以相应的检测、控制、自动调节补偿装置等装置而成,不需人工直接参与操作。
关键词:基于PLC的自动化包装生产线集成控制系统设计引言生产线机器人集成控制是工业自动化实现的必要环节,在“智能制造”领域采用 PLC 集中控制生产线机器人是最为高效的自动化控制方法,利用通信技术、自动化技术和计算机技术组合开发,达到对生产线机器人动作、速率、位姿的准确控制,完成自动化生产任务。
1 PLC控制技术科技的迅速发展为人们带来了便利,人们也对产品质量要求与日俱增。
许多企业需要在材料分拣方面进行加工作业,传统生产模式的人工作业局限性制约了企业经济发展,对传统行业发展模式改造非常迫切门。
随着自动化水平的提高,企业开始使用自动化设备代替人力。
现代科技的更新推动了PLC技术的发展,PLC在复杂作业中占据核心地位,目前,PLC运用于运动控制等方向。
1969年,美国首次研发用于汽车自动化加工生产线的PLC.最初PLC为小规模集成电路,仅能在生产线部分系统代替继电器。
目前,PLC的CPU多采用32位微型计算机处理器,PLC中具有不同编程语言包括语句高级语言,PLC可完成复杂的系统控制功能2,其发展方向是进行多种处理器系统者使用PLC,用于单机控制小型PLC,充分发挥质优价廉等优点,方便在电器柜中安装,为后期维护工作提供方便。
大型PPLC具有很好的存储处理能力,可完成复杂的控制系统控制要求。
PLC控制系统设计包括软硬件部分,需要分析生产机械工艺流程,了解生产机械生产工艺,对各工位动作分析,作为PLC控制系统设计的首要步骤。
PLC在当前科技中非常成熟,主要组成基本组件包括电源模块、数据存储区等,根据不同型号可自由搭配不同扩展模块实现功能。
基于PLC的包装机控制系统

摘要包装是产品进入流通领域的必要条件,而实现包装的主要手段是使用包装机械。
近年来,随着全球经济的快速发展,各国人民的生活水平不断提高,食品、建材等工业发展越来越快,各个行业对自动包装设备的需求越来越大。
但是,我国包装行业起步较晚,与国外的包装行业存在着很大距离,包装设备结构简单,技术落后,因而造成生产效率低下,物料严重浪费,能源耗费大。
本此设计主要介绍了一种以PLC(可编程控制器)为控制核心的自动包装控制系统。
在包装过程中,通过称重传感器测量物料重量信号并利用PLC的PID功能对进料门(电动阀)开度进行控制,控制原则是设定重量与过程变量的偏差越大则电动阀开度越大,反之偏差越小电动阀开度越小。
这样一来就使得物料称重更加精确,大大地提高了物料的利用率,更重要的是提高了生产效率,也就为企业创造了更多的价值。
另外,本系统的自动化程度较高,节省了劳动力的投入,并且精度较高,可靠性良好,相信会有良好的发展前景。
关键词:PLC(可编程控制器);PID;自动包装ABSTRACTThe packing is the essential condition that the product enters the current distribution realm, but realizes the packing principal means uses the packaging machinery. In recent years, along with global economics' fast development, various countries' people's living standard enhanced unceasingly, industrial developments such as food,building materials industry are getting quicker and quicker, each profession is getting bigger and bigger to the automatic packaging equipment's demand. But, our country start to be late in the profession of packing, and has the very great distance with the overseas packing profession, the equipment of packing to be simple, the technology is backward, thus causes the production efficiency to be low, the material wastes seriously, the energy consumes in a big way.This design mainly introduces an automatic packaging control system that take the PLC (programmable logic controller)as the core of control. During the packing process,to measure the material weight signal through the Weighing Sensor and use the PID of PLC to control the opening of gate (Electrically operated valve),The control principle is the set point and the process variable deviation is bigger, then the opening of Electrically operated valve is bigger, Otherwise the deviation smaller Electrically operated valve's opening is smaller. Thus the material weighing is more precise, on the other hand, it will raise the utility rate of material up greatly, and the most important point is that it will raise the production efficiency, also has created more values for the enterprise.Moreover, this system's automaticity is high, it save the investment of labors, and it has the high precision and the good reliability, believed that can have the good prospects for development.Key Words: PLC (Programmable Logic Controller):PID:Automatic Packaging目录第一章绪论 (5)1.1选题背景及意义 (5)1.2 包装机械行业的现状及发展趋势 (5)1.2.1 我国包装机械行业现状 (5)1.2.2 目前我国包装机械行业发展的共性问题 (5)1.2.3 我国包装行业未来的发展趋势 (3)1.3 自动包装设备的市场分析 (3)1.4可编程控制技术的现状 (4)1.5可编程控制技术的发展趋势 (5)1.6 PLC与其它工业控制系统的比较 (7)1.6.1 PLC与继电器控制系统的比较 (7)1.6.2 PLC与单片机控制系统比较 (8)1.6.3 PLC与计算机控制系统的比较 (8)1.6.4 PLC与集散型控制系统的比较 (9)1.7 PLC在包装机械上应用的可能性和前景 (9)第二章系统方案设计 (11)2.1系统方案选择 (11)2.1.1 系统组成 (11)2.1.2 系统工作原理 (12)第三章PLC(可编程控制器)的选择 (14)3.1 PLC的选择 (14)3.1.1 S7-200系列PLC的主要特点及功能 (14)3.1.2 S7-200系列PLC的结构组成 (16)3.1.3 S7-200系列PLC的数据 (17)3.1.4 S7-200系列PLC的寻址方式 (17)3.1.5 程序中几个关键存储器的功能 (17)3.2 S7-200系列PLC CPU型号选择 (18)3.2.1 CPU 226型的技术指标 (18)3.2.2 S7-200 CPU 226型PLC的外型 (18)第四章其它元器件选择 (20)4.1 模拟量扩展单元模板的选择 (20)4.1.1 EM235模块的技术指标 (20)4.1.2 EM235模块的接线端子说明及接线方法 (20)4.1.3 EM235模块的数据字格式 (21)4.1.4 EM235模块的校准 (22)4.1.5 EM235模块的输入设置 (22)4.1.6 EM235模块的寻址 (23)4.2 称重传感器的选择 (24)4.2.1 称重传感器选型 (24)4.2.2 PS-W5悬臂梁式称重传感器的技术特点及技术指标 (24)4.2.3 PS-W5悬臂梁式称重传感器的外形及尺寸 (25)4.3 称重变送器的选择 (25)4.3.1 称重变送器选型 (25)4.3.2 PT350C型称重变送器的技术指标 (26)4.3.3 PT350C型称重变送器的外形及尺寸 (26)4.4 电动调节阀的选择 (27)4.4.1 电动调节阀选型 (27)4.4.2 西门子SKC62型电动调节阀的主要技术指标 (27)4.4.3 西门子SKC62型电动调节阀的外形 (27)4.4.4 西门子SKC62型电动调节阀的接线说明 (28)第五章本课题系统软件设计 (29)5.1 PID指令概述 (29)5.1.1 PID算法 (29)5.1.2 输入模拟量的转换及标准化 (30)5.1.3 输出模拟量转换为工程实际值 (30)5.1.4 PID指令的控制方式 (31)5.1.5 PID参数表及初始化 (31)5.2 PLC程序设计 (32)5.2.1 程序地址分配 (32)5.2.2 PLC外部接线 (32)5.2.3 自动包装系统程序流程图 (33)5.2.4 自动包装系统程序梯形图及注释 (34)5.3 本次自动包装系统的具体描述 (38)结论 (39)致谢 (40)参考文献 (41)附录原理图 (43)第一章绪论1.1选题背景及意义包装是产品进入流通领域的必要条件,而实现包装的主要手段是使用包装机械。
基于PLC的高速全自动包装机控制系统的设计毕业设计(论文)

毕业设计论文基于PLC的高速全自动包装机控制系统的设计摘要可编程控制器(PLC)作为控制系统的核心装置,功能强大、性能稳定可靠。
在现代工业自动化生产中得到了广泛的应用。
取得了理想的控制效果。
本论文以长春佳鸣机械制造有限公司与我们合作开发的高速全自动卷纸包装机控制系统为背景,理论与实践相结合,详细阐述了集PLC技术,变频器技术,光电感应技术,通信技术于一体的先进控制技术在该包装机控制系统中的应用。
论文主要内容如下:1.概述了可编程控制器PLC的现状及其在包装机械上应用的可能性和前景。
2.通过对卷纸包装机生产工艺流程的了解,统计其输入输出1/O点,然后进行PLC选型,硬件组态的设计。
3.详细分析了包装纸放卷过程中的受力(尤其是张力)情况,并建立了数学模型,利用自适应控制原理实现了送料过程中的张力控制。
4.在卷纸包装机中,卷纸和包装纸要求能同时到达工位1,这就产生了送料过程中的同步控制问题,在同步控制中,我们在卷纸供送系统的驱动轴上安装一个半圆形金属片,在侧面装上接近开关探头,通过判断每次光电传感器检测到色标时接近开关的输出状态,就能知道包装纸供送系统是滞后还是超前于卷纸供送系统,从而使伺服电机正、反转或不动,实现了送料过程中的同步控制。
5.卷纸的包装是一个典型的顺序控制,因此我们利用一个移位寄存器,使工艺盘的每一个V形槽对应一个二进制位,通过移位寄存器的移动,实现了包装过程的程序控制。
6.利用Siemens公司的编程软件Step7、监控组态软件WinCC及其通信功能设计了包装过程梯形图、STL语句及PLC通信网络,以完成数据的采集并控制输出设备安全、高速、高效地运行,实现了该包装过程的监视功能。
经过我们的努力,卷纸包装机控制系统的设计已经完成。
并且经过了严格的测试,在实验室的模拟运行中,取得了良好的控制效果。
使该机无论从功能上还是效率上都获得了质的提高,基本达到了九十年代末期国际先进水平,较好地实现了厂方提出的控制要求。
基于PLC的全自动包装机系统设计设计

基于PLC的全自动包装机系统设计设计全自动包装机系统是一种能够自动完成包装过程的设备,它能够将产品包装成符合要求的包装形式,并且能够在高速、高效的情况下进行工作。
PLC(可编程逻辑控制器)是一种常用于自动化控制系统的控制设备,它能够根据预设的程序准确地控制和监控设备的运行。
本文将基于PLC的全自动包装机系统进行设计,具体包括系统的硬件设计和软件设计两个方面。
硬件设计:1.传感器选择:包装机系统通常需要使用不同类型的传感器来检测物料的位置、重量、形状等信息。
根据具体的包装要求,选择合适的传感器,如光电传感器、压力传感器和温度传感器等。
2.执行器选择:包装机系统需要使用不同类型的执行器来完成各种工作,如电动机控制输送带运行,气缸控制夹紧装置等。
根据具体的工作要求,选择合适的执行器,并考虑到其控制方式与PLC的兼容性。
3.通信接口设计:考虑到实时监控和数据采集的需要,包装机系统需要与上位机或其他设备进行通信。
选择合适的通信接口,如以太网接口或串口接口等,确保系统能够实现与其他设备的数据交换。
4.安全设计:在设计过程中,必须考虑到系统的安全性,采取相应的安全措施,如急停按钮、安全门、光幕等,以保障人员和设备的安全。
软件设计:1.确定控制逻辑:在软件设计过程中,首先需要根据包装过程的要求,确定控制逻辑。
根据工作流程,将整个包装过程分解为不同的步骤,考虑到步骤之间的先后关系和依赖关系,逐步建立控制逻辑。
2.编写程序:根据确定的控制逻辑,使用PLC编程软件,编写程序来实现对各个执行器的控制和监控功能。
程序需要包括逻辑控制语句、运算和判断语句等,以确保系统能够按照要求进行工作。
3.监控界面设计:为了方便操作和监控系统的运行状态,可以设计一个监控界面。
通过该界面,操作人员可以实时监控运行状态、设备参数和报警信息等,并进行必要的调整和干预。
4.故障排除和调试:在软件设计完成后,需要对系统进行测试、排除故障和调试。
确保系统能够正常运行,并对程序的性能进行优化和改进。
基于信捷PLC的定量称重包装控制系统设计

基于信捷PLC的定量称重包装控制系统设计作者:吕洁苏卫峰文武来源:《科技创新与应用》2016年第06期摘要:在化工吸附分离过程中,需要将原料进行在线称重并包装,利用信捷XD系列PLC实现定量算法,采用最新高速处理称重模块采集数据,极大降低称重中产生的延时性、测量误差,利用人机界面HMI进行人机交互,操作简单,并给出了具体的实现。
关键词:定量称重;信捷PLC;HMI引言称重是将物料进行在线等重量称量。
在化工吸附分离过程中,需要将原料进行在线称重并包装,针对这一要求,本控制系统采用信捷的工控产品,开发出一套控制设备,利用HMI作为现场工人的操作界面,PLC作为上料下料,数据采集的控制部件,称重模块进行在线称重[1]。
在技术性能方面做到速度高、准确度高、稳定性高、可靠性高,在应用性方面做到综合性、组织性。
1 定量称重包装机组成定量称重包装机由定量称重包装控制器和备料斗、计量斗、夹袋机构、截料装置、下料阀、放料阀、称重传感器等部分组成,定量称重包装示意图如图1所示。
备料斗为缓冲式料仓,用于物料存储并提供一个接近均匀的物料流;阀门位于备料斗底部,当设备检修或出现故障时,用于将物料封阻在备料斗内;截料装置在称重过程中提供快、中、慢三级给料;秤体主要有计量斗、称重支架和称重传感器组成,完成重量到电信号的转变并传输到控制单元;夹袋机构的作用是夹紧包装袋,让称重完成的物料全部落入包装袋。
2 硬件设计称重控制器包括信捷XD系列PLC,信捷HMI[2],称重模块,称重传感器等部分组成,硬件组成如图2所示。
2.1 PLCPLC采用信捷电气的XD3-24R-E,基本处理指令0.02~0.05us,扫描时间10000步1ms,程序容量高达128K。
具有两个通信口,支持RS232和RS485可连接多种外围设备。
采用AC220V交流供电,具有8个继电器输入和8个继电器输出。
2.2 HMIHMI采用信捷电气的TH765-N触摸屏,7英寸触摸屏,耐油耐脏,6万色真彩,支持BMP、JPG格式图片显示。
基于PLC的自动包装机控制系统设计说明

基于PLC的自动包装机控制系统设计说明1. 简介本文档旨在提供基于可编程逻辑控制器(PLC)的自动包装机控制系统设计说明。
自动包装机控制系统是通过PLC对包装机进行控制和监控的自动化系统。
2. 系统设计2.1 系统架构自动包装机控制系统采用分布式控制架构,包括PLC控制器、传感器、执行器和人机界面等主要组成部分。
2.2 控制策略控制策略采用闭环控制,通过传感器获取包装机运行状态和产品信息,并根据预设的参数及逻辑进行控制操作。
2.3 PLC程序设计PLC程序设计是系统设计的核心,程序通过编程实现对包装机的控制逻辑,包括启动停止控制、速度调节、位置控制等功能。
3. 功能需求3.1 包装操作系统需要实现自动包装机各项包装操作,如装卸产品、包装袋封口、标签打印等功能。
3.2 故障检测与处理系统需要能够检测包装机故障,例如传感器故障、执行器故障等,并及时采取措施进行处理或报警提示。
3.3 数据记录与报表系统需要记录包装机运行数据,并生成相应的报表,方便生产管理和质量控制。
4. 界面设计系统的人机界面需要直观易用,对操作人员提供友好的操作界面和实时监控信息。
5. 性能要求自动包装机控制系统需要具备良好的稳定性、可靠性和可扩展性,以满足生产线的高效运行需求。
6. 安全要求系统设计应考虑安全因素,包括防止意外伤害、保护设备和产品安全等方面的要求。
7. 操作与维护要求系统操作和维护要求简单明确,操作人员需经过培训,能够熟悉系统操作和排除常见故障。
8. 总结本文档概述了基于PLC的自动包装机控制系统设计说明,包括系统架构、控制策略、功能需求、界面设计、性能要求、安全要求以及操作与维护要求。
通过合理的设计和实施,该系统能够实现自动包装机的高效运行和监控。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论1.1课题研究的背景化工生产过程中涉及化工原料及产品量的计量控制,针对氯碱生产过程的要求,生产工艺所生产的液氯作为一种产品需进行外供或买卖贸易结算。
在液氯外供计量中需用专用液氯灌装瓶,根据液氯钢瓶的皮重、需灌装实际重量通过一套自动计量及控制装置来实现。
随着科技的不断发展和社会的不断进步,人们对定量包装控制系统的精度和稳定性,可靠性的要求越越来越高。
在投入大量的资金进行研究后,定量包装控制系统的精度和可靠性都取得了很大的进步,能更加适应各种复杂的工业生产环境。
定量包装技术主要需要解决的两个问题:测重计量和定量控制。
测重计量分为静态测量和动态测量,在工业流水线生产中物料都是动态变化的,因此采用实时测量,这样快速而准确的进行测量。
在定量控制方面,目前采用PLC控制系统,相对单片机控制系统而言更加稳定可靠,且能更加的适合各种复杂的工业生产环境。
为了设计出适合的,可靠的,经济的定量包装控制系统,既要保障系统在各种恶劣的环境下长时间正常工作,又能适应快速的流水线生产且能保证能达到性对较高的包装精度定量包装控制系统,本文构建一个基于PLC的动态定量包装控制系统。
系统采用触摸屏作上位机,用于远程监控,并设计了良好的操作界面以供用户使用。
同时,系统还具备现场控制柜操作模式,以进行现场调试运行。
这样,系统的操作方式更为灵活方便,具有更好的扩展性能以及应用范围。
1.2国内外发展现状1.2.1国内发展状况我国的定量包装控制技术研究起步较晚,经过几十年的发展我国的小称量定量包装技术取得了很大的进步,但由于我国中小型企业装备差,技术落后,缺少资金和专业的技术人才,所以在准确度和控制精度方面距离西方发达国家还有很大的距离,并且相对发达国家而言我们缺少自己的核心技术且技术落后缺少竞争力。
并且我国的定量包装设备单一,生产定量包装设备的厂家技术薄弱,无法满足日益进步的工业生产要求。
目前国内主要还是使用以单片机为核心的控制系统,称重测量和定量控制技术逐渐完善,单手硬件条件的限制,扩展性能普遍较低且操作界面不容乐观,功能过于单一。
1.2.2国外发展状况国外定量包装技术研究较早,发展较快。
现代电子测量和可编程控制技术的小型定量包装技术发展很快,技术水平很高。
突出表现在称重计量精度很高,定量控制技术性能优越,且工作那速度很快,有很强的模块化,功能化区分严格。
国外有针对特殊的产品专用的定量包装控制机械,且品种很多,相关配套设备齐全。
拥有自己的核心技术,且多采用可编程控制器作为核心控制器。
1.2.3发展趋势总体而言我国的定量包转控制系统无论测量精度还是控制技术离国外还有相当大一段距离,但随着科技的不断进步以及资金的不断投入,以及国内庞大的市场需求的推动,我国的定量包装控制系统有着广阔的空间和前景。
定量包装技术的发展大致经历了手工称量、继电器控制、称重仪表控制、PLC 控制等几个阶段,未来的定量包装控制系统测量精度将不断提高,控制技术那将更加简便更加人性化的操作界面,并延续可持续发展的科学发展观朝着绿色方向发展。
发展趋势有如下特点:机电一体化机电一体化是未来定量包装控制技术发展的必然趋势。
一个完整的机电一体化系统,一般包括微机、传感器、动力源、执行机构等部分,它摒弃了包装机器中的繁琐和不合理的部分,而将机械、微电子、传感器等多种学科的先进技术融为一体。
功能多元化工业产品已趋向精致化及多样化,在大环境下,多元化具有弹性切换功能的定量包装控制系统更能适应市场的需求。
控制智能化目前的定量包装控制系统多采用PLC作为控制器,虽然PLC弹性强大但仍不具有电脑所具有的功能,未来基于电脑的智能仪器将成为定量包装控制系统的控制器。
结起来它们具有以下特点:1.高速、高精度。
2.人机对话操作界面调试简洁、可靠。
3.自动校准4.故常排查功能5.低噪音、易于维护1.3论文的主要内容。
全面熟悉液氯钢瓶灌装的工艺过程,掌握自动计量及控制中指标要求,通过设计所配置的硬件组成,编制符合自动计量及控制要求的软件程序。
本文所研究的定量包装控制系统是基于西门子PLC200系列为核心的控制系统,通过托利多电子称进行物料的重量的实时测量,在进行数据的采集的和处理,以触摸屏为上位机,构造出人性化的操作界面。
最终设计出一套能对八条灌装线实现的自动计量、自动控制PLC组成的硬件系统,并实现人机界面的显示、报警、数据处理等功能。
第二章系统设计2.1系统管道示意图系统硬件由8个液氯灌装载容器,这些装置实现了自动灌装的功能,在液氯的重量判断上本系统在Z轴上安装有称重传感器以判断液氯是否满装。
XYZ轴机械臂由三个伺服电动机驱动,伺服电机有精度高以及扭矩大和抗干扰性高等优点以取代步进电动机。
伺服电机的控制由西门子公司的200系列PLC的伺服定位模块EM253驱动,本系统主机由S7-226CN作为主处理单元,液体灌装的工作过程,先通过上位系统HMI设置好每个装载容器的装载质量,按下启动按钮后机械臂按照上位系统指令移动XYZ轴按顺序到达指定的容器,打开出液阀门,通过PLC对高精度称重传感器流程液体的计算到达设定值后关闭放液阀门,机械臂移动到下一个容器,直至到每个容器灌装完后,整个工作流程结束。
2.2系统组成(1)八套托利多称重传感器(0-2000Kg)、相应八只托利多称重变送器;(2)八台电控气动球阀(220VAC供电、二位五通电磁阀、气动球阀);(3)西门子200PLC硬件系统一套,包括CPU、A/D模块(八路入)、I/O模块;(4)彩色10”触摸屏一只;(5)中间继电器、开关电源(24VDC,5A)、附件等。
2.2.1.托利多电子秤梅特勒-托利多称重设备系统有限公司制造的“pp"型化工钢瓶电子平台称采用全新设计的钢机构称台,配用四只高精度剪贴梁式称重传感器和智能化称重显示仪表,组成称重系统。
该系统准确度高,称重速度快,工作稳定可靠。
被广泛应用于各类化工用钢瓶灌装的物料计量场合。
平台秤简易结实、清洁方便。
秤台上的专用支架可以放置直径400到800的多种规格嘚钢瓶。
平台秤可按用户需要选配多种型号的称重显示仪表,以实现不同的称重管理和计量功能。
防腐涂料及特殊防腐工艺使其可用于防腐和防水环境中,选配打印机、大屏幕显示器,还可扩展功能。
2.2.1.1产品标准GB7723-87 固定式电子衡JJG539-97 数字指示称计量检定规程GB/T14249.1-93 电子衡器安全要求GB/T14249.2-93 电子衡器通用技术条件2.2.1.2工作与原理称重物体放在称台上,在重力的作用下,称重传感器弹性体发生形变,是粘贴于弹性体应变梁上的电阻应变桥路失去平衡,从而输出与重量信号成正比的mV级电信号,该电信号进入称重显示仪表后,经过放大,滤波,A/D转换,在京微处理器对信号处理后直接在仪表上显示称重数据。
2.2.1.3配用传感器性能推荐激励电压:6~15V(DC/AC)最大激励电压:20V(DC/AC)额定输出:2±0.002mV/V非线性:±0.02%F.S滞后:±0.02%F.S重复性:±0.01%F.S蠕变:±0.02%F.S/30min输出阻抗:350±1Ω输入阻抗:382±4Ω安全过载:150%F.S极限过载:250%F.S2.2.1.4平台的安装顺序:2.2.1.5主要功能以Hawk型仪表为例可显示毛重、净重、可自动去皮或手动去皮;有零位、超载和欠载指示;自动零位保持;面板键盘设定/校正和功能参数设定;仪表具有自检功能;系统具有防作弊功能;仪表输出接口:RS-232;交直流两用电源;可配置大屏幕显示器,用来显示称重数据;可配置打印机;可配置计算机组成称重管理系统;2.2.2A/D转换器的工作过程和工作原理2.2.1.6 工作过程在以计算机技术为中心的各个领域中,从测量到控制几乎到处都使用到数字技术,而从自然界获取的大都是模拟量,作为控制信号也多是模拟量。
数字处理技术对信号进行处理的过程一般是:模拟量转化为数字量→智能数字处理→数字量转化为模拟量。
其中起桥梁作用的模数转换和数模转换。
模数转换是把输入的模拟信号转换成数字信号输出的电路,常写成A/D转换,或写成ADC(Analog Digital Converter )。
数模转换是把输入的数字信号转换成模拟信号输出的电路,常写成D/A转换,或写成 DAC(Digital Analog Converter )。
D/A输出的模拟信号并不真正是能连续变化的模拟信号,而是以所用DAC的绝对分辨率为单位增减的有“台阶”模拟量,所以实际上DAC是准模拟量输出。
A/D是用最低有效位(LSB)的BIT数表示,一般满足LSB的一半就可以了。
精度包括失调误差和比例系数(即增益或称跨度)误差等,因此精度一般总是比线性度差。
一般分辨率越高精度越高,在应用中也用数字的二进制位数代表转换精度。
在A/D转换器中,因为输入的模拟信号在时间上是连续的而输出地数字信号是离散的,所以转换只能在一系列选定的瞬时对输入的模拟信号取样,然后再将这些取样值转换成输出地数字量。
因此,A/D转换的过程是首先对输入的模拟电压信号取样,取样结束后进入保持时间,在这段时间内将取样的3.3.2 转换原理A/D、D/A大量用于数字电压计以及数据采集、处理系统中。
用途不同则对性能要求亦有区别。
数字电压计等要求使平方便、高精度且抗干扰性好,而对速度则要求不高。
然而在数据采集处理、设备中,则要求处理高频高速信号或多通道同时处理或者在线高速处理,这首先就要有高速处理性能。
使用或者设计DAC、ADC时,对其有关性能必须了解清楚,才能做到合理应用。
1、变换速度时间把输入的模拟(数字)信号变换成相对应的数字(模拟)量输出所需要的时间称为A/D转换(D/A转换)的时间或“变换速度”。
D/A变换速度是指从数字输入建立开始,直到使输出模拟电压(或电流)达到在规定误差范围内的目标值时所需要的时间,例如达到误差为0.01%时需要10μS,就表示其变换速度为10μS。
A/D变换速度是指变换启动开始直至变换结束送出数字量所需要的时间,也可以用单位时间的转换次数(转换频率)描述。
根据转换时间把A/D分为超高速(>100M/S)、高速(100M/S 10M/S)、中速(10M/S 10K/S)、低速(<10K/S)几档。
在D/A中从输入的数字信号发生变化开始,到输出值稳定在额定值的LSB/2以内所需的时间,称为建立时间。
根据D/A建立时间,可将D/A分为超高速(≤0.l S)、极高速(0.l l S)高速(1 ~10 S)、中速(10 ~100 S)和低速(≥100 S)几档。
2、分辨率和转换精度分辨率就是分辨能力,也就是能够分辨出即检测出信号变化的最小(量化)单位。