(完整版)等比数列求和典型例题(可编辑修改word版)

合集下载

等比数列求和例题

等比数列求和例题

等比数列求和例题
哎呀呀,同学们,今天咱们来聊聊等比数列求和的例题!
先给大家举个例子哈。

比如说有一个等比数列,首项是2,公比是3,那这数列就是2,6,18,54……一直这样下去。

那咱们怎么求它前n 项的和呢?
这就好像咱们去爬山,每走一段路,高度就增加好多,但是咱们得知道爬到山顶一共走了多高,对吧?
咱们设前n 项和是Sₙ,那Sₙ = 2 + 2×3 + 2×3² + 2×3³ +…… + 2×3ⁿ⁻¹ 。

这看起来是不是有点头疼?别慌!
咱们给这个式子乘以公比3 试试,那就变成3Sₙ = 2×3 + 2×3² + 2×3³ +…… + 2×3ⁿ。

这两个式子一相减,嘿!好多项都能消掉,就像咱们玩消消乐一样!
(2 - 3)Sₙ = 2 - 2×3ⁿ,那Sₙ 不就等于3ⁿ - 1 嘛!
大家想想,这是不是很神奇?就像变魔术一样!
再比如说,又有一个等比数列,首项是1,公比是2,那就是1,2,4,8……
咱们按照刚才的方法来算算它的前n 项和,是不是也能很快就求出来啦?
咱们学习等比数列求和,就像是在探索一个神秘的宝藏,每一步计算都是在解开谜题的钥匙,可有趣啦!难道你们不觉得吗?
所以说呀,等比数列求和其实并不难,只要咱们掌握了方法,就像有了超级武器,什么难题都能打败!同学们,加油呀,咱们一起在数学的世界里畅游,发现更多的奇妙!。

数学上册等比数列的求和练习题

数学上册等比数列的求和练习题

数学上册等比数列的求和练习题等比数列是数学中常见的数列类型,求和练习题是对等比数列求和的练习和应用。

本文将通过几个具体的求和练习题来介绍等比数列的求和方法和相关概念。

1. 求和练习题一:已知一个等比数列的首项为a,公比为r,前n项和为Sn,求Sn的表达式。

解析:对于等比数列,每一项与它的前一项的比值都相等。

设第k项为ak,则满足ak = ar^(k-1)。

前n项和Sn = a + ar + ar^2 + ... + ar^(n-1)。

将等比数列的首项a和公比r带入前n项和的表达式可得:Sn = a(1 - r^n) / (1 - r)。

2. 求和练习题二:一个等比数列的首项为2,公比为0.5,求前10项和的数值。

解析:根据等比数列的求和公式,将a = 2, r = 0.5, n = 10代入可得:S10 = 2(1 - 0.5^10) / (1 - 0.5)。

计算可得S10 = 3.9375。

3. 求和练习题三:已知一个等比数列的首项为3,公比为2,前n项和的数值为54,求n的取值范围。

解析:根据等比数列的求和公式,将a = 3, r = 2, Sn = 54代入:54 = 3(1 - 2^n) / (1 - 2)。

化简得3(2^n - 1) = 108,进一步得2^n - 1 = 36。

解这个方程可得n = 6。

综上所述,等比数列的求和练习题要通过等比数列求和公式来解决。

根据题目给出的具体条件,带入等比数列求和公式进行计算即可得到所求的结果。

此外,通过解题过程也可以发现,等比数列的前n项和与求和公式中的首项、公比和项数有着密切的联系。

因此,在解决等比数列的求和练习题时,要注意适当选择和运用数列的相关知识和公式,以便准确求解问题。

等比数列求和

等比数列求和

§2.5等比数列的前n 项和(2)探究任务:等比数列的前n 项和与通项关系 问题:等比数列的前n 项和n S =1231n n a a a a a -+++++,1n S -=1231n a a a a -++++ (n ≥2),∴ 1n n S S --= , 当n =1时,1S = .反思:等比数列前n 项和n S 与通项n a 的关系是什么?※ 典型例题例1 数列{}n a 的前n 项和1n n S a =-(a ≠0,a ≠1),试证明数列{}n a 是等比数列.变式:已知数列{}n a 的前n 项和n S ,且142n n S a +=+, 11a =,设12n n n b a a +=-,求证:数列{}n b 是等比数列.例2 等比数列前n 项,前2n 项,前3n 项的和分别是n S ,2n S ,3n S ,求证:n S ,2n n S S -,32n n S S -也成等比.变式:在等比数列中,已知248,60n n S S ==,求3n S .例3.等比数列的首项为a ,公比为q ,n S 为前n 项和,求12n S S S +++…例4. 已知等比数列{}a n 中a 1 = 1,公比为x (x > 0),其前n 项和为S n .(1)写出数列{}a n 的通项公式及前n 项和S n 的公式;(2)设b a S n nn=,写出b n 关于x 和n 的表达式.动手试试练1. 等比数列{}n a 中,301013S S =,1030140S S +=,求20S . 练2. 求数列1,1+2,1+2+22,1+2+22+23,…的前n 项和S n .知识拓展1. 等差数列中,m n m n S S S mnd +=++;2. 等比数列中,n m m n n m m n S S q S S q S +=+=+. 当堂检测1. 等比数列{}n a 中,33S =,69S =,则9S =( ). A. 21 B. 12 C. 18 D. 242. 在等比数列中,14a =,q =2,使4000n S >的最小n 值是( ). A. 11 B. 10 C. 12 D. 93. 计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”.如(1101)2表示二进制的数, 将它转换成十进制的形式是32101212021213⨯+⨯+⨯+⨯=,那么将二进制数(11111111)2转换成十进制的形式是( ). A. 922- B. 821- C. 822- D. 721-4.{a n }是实数构成的等比数列,n S 是其前n 项和,则数列{n S } 中( )A .任一项均不为0B .必有一项为0C .至多有一项为0D .或无一项为0,或无穷多项为0 5. 在等比数列中,若332422S a S a +=+,则公比q = .6. 在等比数列中,11a =,512n a =-,341n S =-,则q = ,n = . 课后作业1. 等比数列的前n 项和12nn s =-,求通项n a . 2. 设a 为常数,求数列a ,2a 2,3a 3,…,na n,…的前n 项和;3. 已知数列{}n a 是等差数列,且.12,23211=++=a a a a(1)求数列{}n a 的通项公式;(2)令).(R x x a b n n n ∈=求数列{}n b 前n 项和的公式.4. 已知数列{}a n 的通项a n 是关于x 的不等式n n x n x n N ()()->-∈2的解集中整数的个数. (1)求数列{}a n 的通项a n ; (2)设b a n n n =--2121,求数列{}b n 的前n 项和S n .。

完整版)数列典型例题(含答案)

完整版)数列典型例题(含答案)

完整版)数列典型例题(含答案)等差数列的前n项和公式为代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得。

因此,前项和为。

⑵由已知条件可得代入等差数列的前n项和公式,得到化简得因此,前项和为。

8.(2010山东理) 已知等差数列 $a_1,a_2,\ldots,a_n,\ldots$,其中 $a_1=1$,公差为 $d$。

1) 求 $a_5$ 和 $a_{10}$。

2) 满足 $a_1+a_2+\ldots+a_k=100$,$a_1+a_2+\ldots+a_{k+1}>100$,$k\in\mathbb{N}$,求该等差数列的前 $k$ XXX。

考查目的:考查等差数列的通项公式和前项和公式等基础知识,考查数列求和的基本方法以及运算求解能力。

答案:(1) $a_5=5d+1$,$a_{10}=10d+1$;(2) $k=13$,前$k$ 项和为 $819$。

解析:(1) 根据等差数列的通项公式 $a_n=a_1+(n-1)d$,可得 $a_5=1+4d$,$a_{10}=1+9d$。

2) 设该等差数列的前 $k$ 项和为 $S_k$,则由等差数列的前项和公式可得 $S_k=\dfrac{k}{2}[2a_1+(k-1)d]$。

根据已知条件可列出不等式组:begin{cases}S_k=100\\S_{k+1}>100end{cases}将 $S_k$ 代入得:frac{k}{2}[2+(k-1)d]=100整理得:$k^2+kd-400=0$。

等比数列求和例题

等比数列求和例题

等比数列及其前n 项和等比数列及其前n 项和1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即G 是a 与b 的等比中项∈a ,G ,b 成等比数列∈G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1. (2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1q =1,a 11-q n 1-q =a 1-a n q1-q q ≠1. 3.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k .(3)若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n bn (λ≠0)仍然是等比数列.(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .4.在等比数列{a n }中,若S n 为其前n 项和,则S n ,S 2n -S n ,S 3n -S 2n 也成等比数列(n 为偶数且q =-1除外). 概念方法微思考1.将一个等比数列的各项取倒数,所得的数列还是一个等比数列吗?若是,这两个等比数列的公比有何关系?提示 仍然是一个等比数列,这两个数列的公比互为倒数. 2.任意两个实数都有等比中项吗?提示 不是.只有同号的两个非零实数才有等比中项. 3.“b 2=ac ”是“a ,b ,c ”成等比数列的什么条件?提示 必要不充分条件.因为b 2=ac 时不一定有a ,b ,c 成等比数列,比如a =0,b =0,c =1.但a ,b ,c 成等比数列一定有b 2=ac .题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (2)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( ) (3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a1-a n1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 题组二 教材改编2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =______.3.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( ) A .8 B .9 C .10 D .11题组三 易错自纠4.(多选)已知数列{a n }是等比数列,那么下列数列一定是等比数列的是( )A.⎩⎨⎧⎭⎬⎫1a n B .log 2a 2nC .{a n +a n +1}D .{a n +a n +1+a n +2}5.若1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值为________.6.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.7.一种专门占据内存的计算机病毒开机时占据内存1 MB ,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机________秒,该病毒占据内存8 GB.(1 GB =210 MB)等比数列基本量的运算 等比数列基本量的运算1.(2020·晋城模拟)设正项等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则公比q 等于( )A .5B .4C .3D .22.(2019·全国∈)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3等于( )A .16B .8C .4D .23.(2019·全国∈)记S n 为等比数列{a n }的前n 项和,若a 1=1,S 3=34,则S 4=________.4.(2018·全国∈)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和,若S m =63,求m .等比数列的判定与证明 等比数列的判定与证明例1 (2019·四川省名校联盟模拟)已知数列{a n }的前n 项和为S n ,且满足2S n =-a n +n (n ∈N *). (1)求证:数列⎩⎨⎧⎭⎬⎫a n -12为等比数列;(2)求数列{a n -1}的前n 项和T n .跟踪训练1 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式.等比数列性质的应用例2 (1)(2019·黑龙江省大庆第一中学模拟)在各项不为零的等差数列{a n }中,2a 2 019-a 22 020+2a 2 021=0,数列{b n }是等比数列,且b 2 020=a 2 020,则log 2(b 2 019·b 2 021)的值为( ) A .1 B .2 C .4 D .8(2)(2020·长春质检)各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________.跟踪训练2 (1)(2019·安徽省江淮十校月考)已知等比数列{a n }的公比q =-12,该数列前9项的乘积为1,则a 1等于( ) A .8 B .16 C .32 D .64(2)已知等比数列{a n }的前n 项和为S n ,且S 3S 6=89,则a n +1a n -a n -1=________(n ≥2,且n ∈N *).对于数列通项公式的求解,除了我们已经学习的方法以外,根据所给递推公式的特点,还有以下几种构造方式.构造法1 形如a n +1=ca n +d (c ≠0,其中a 1=a )型 (1)若c =1,数列{a n }为等差数列; (2)若d =0,数列{a n }为等比数列;(3)若c ≠1且d ≠0,数列{a n }为线性递推数列,其通项可通过待定系数法构造等比数列来求. 方法如下:设a n +1+λ=c (a n +λ),得a n +1=ca n +(c -1)λ, 与题设a n +1=ca n +d 比较系数得λ=d c -1(c ≠1),所以a n +dc -1=c ⎝⎛⎭⎫a n -1+d c -1(n ≥2),即⎩⎨⎧⎭⎬⎫a n +d c -1构成以a 1+dc -1为首项,以c 为公比的等比数列.例1 在数列{a n }中,若a 1=1,a n +1=3a n +2,则通项a n =________.构造法2 形如 a n +1=pa n +q ·p n +1(p ≠0,1,q ≠0)型a n +1=pa n +q ·p n +1(p ≠0,1,q ≠0)的求解方法是两端同时除以p n +1,即得a n +1p n +1-a n p n =q ,则数列⎩⎨⎧⎭⎬⎫a n p n 为等差数列.例2 (1)已知正项数列{a n }满足a 1=4,a n +1=2a n +2n +1,则a n 等于( ) A .n ·2n -1 B .(n +1)·2n C .n ·2n +1 D .(n -1)·2n(2)(2019·武汉市二中月考)已知正项数列{a n }中,a 1=2,a n +1=2a n +3×5n ,则数列{a n }的通项a n 等于( ) A .-3×2n -1 B .3×2n -1 C .5n +3×2n -1 D .5n -3×2n -1构造法3 相邻项的差为特殊数列(形如a n +1=pa n +qa n -1,其中a 1=a ,a 2=b 型) 可化为a n +1-x 1a n =x 2(a n -x 1a n -1),其中x 1,x 2是方程x 2-px -q =0的两根. 例3 数列{a n }中,a 1=1,a 2=2,a n +2=23a n +1+13a n ,求数列{a n }的通项公式.构造法4 倒数为特殊数列(形如a n =pa n -1ra n -1+s 型)例4 已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.本次课课后练习1.(2020·韶关模拟)若等比数列{a n }的各项均为正数,a 2=3,4a 23=a 1a 7,则a 5等于( ) A.34 B.38 C .12 D .242.等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为( ) A.13 B .-13 C.19 D .-193.(2019·天津市河西区月考)设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知递增的等比数列{a n }中,a 2=6,a 1+1,a 2+2,a 3成等差数列,则该数列的前6项和S 6等于( )A .93B .189 C.18916 D .3785.(2020·永州模拟)设等比数列{a n }的公比为q ,则下列结论正确的是( ) A .数列{a n a n +1}是公比为q 的等比数列 B .数列{a n +a n +1}是公比为q 的等比数列 C .数列{a n -a n +1}是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列6.若正项等比数列{a n }满足a n a n +1=22n (n ∈N *),则a 6-a 5的值是( ) A. 2 B .-162 C .2 D .1627.(多选)在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( ) A .8 B .12 C .-8 D .-128.(多选)在等比数列{a n }中,公比为q ,其前n 项积为T n ,并且满足a 1>1,a 99·a 100-1>0,a 99-1a 100-1<0,下列选项中,结论正确的是( ) A .0<q <1 B .a 99·a 101-1<0C .T 100的值是T n 中最大的D .使T n >1成立的最大自然数n 等于1989.已知等比数列{a n }的前n 项和为S n ,且a 1=2 020,a 2+a 4=-2a 3,则S 2 021=________.10.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,…,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有1 023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.11.(2018·全国∈)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a nn .(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.12.(2019·淄博模拟)已知数列{a n }的前n 项和为S n ,a 1=34,S n =S n -1+a n -1+12(n ∈N *且n ≥2),数列{b n }满足:b 1=-374,且3b n -b n -1=n +1(n ∈N *且n ≥2).(1)求数列{a n }的通项公式; (2)求证:数列{b n -a n }为等比数列.13.各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1 成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.14.已知在等比数列{a n }中,a n >0,a 22+a 24=900-2a 1a 5,a 5=9a 3,则a 2 020的个位数字是____.15.在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫做该数列的一次“扩展”.将数列1,2进行“扩展”,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2,….设第n 次“扩展”后得到的数列为1,x 1,x 2,…,x t ,2,并记a n =log 2(1·x 1·x 2·…·x t ·2),其中t =2n -1,n ∈N *,求数列{a n }的通项公式.16.已知数列{a n }的前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是首项为3,公差为2的等差数列,若b n =2n a ,数列{b n }的前n 项和为T n ,求使得S n +T n ≥268成立的n 的最小值.。

等差数列与等比数列的类比练习题(带答案)(可编辑修改word版)

等差数列与等比数列的类比练习题(带答案)(可编辑修改word版)

(b 1b n)nn + 1 ,则有2n3等差数列与等比数列的类比一、选择题(本大题共 1 小题,共 5.0 分){a } S S =n (a 1 + a n ) 1. 记等差数列 n 的前 n 项和为 n ,利用倒序求和的方法得 n 2 ;类似地,记等比数列{b n }的前 n 项积为T n ,且b n> 0(n ∈ N *),类比等差数列求和的方法,可将T n 表示成关于首项b 1,末项b n 与项数 n 的关系式 为 ( )1. Anb 1b nA. B. 2 C. nb 1b nnb 1b nD. 2 二、填空题(本大题共 9 小题,共 45.0 分)2. 在公差为 d 的等差数列{a n }中有:a n = a m + (n - m )d (m 、n ∈ N + ),类比到公比为 q 的等比数列{b n }中有: .2.b n = b m ⋅ q n - m (m ,n ∈ N * ){a} b = a 1 + 2a 2 + 3a 3 + … + n a n{b }3. 数列 n 是正项等差数列,若 n 1 + 2 + 3 + … + n ,则数列 n 也 为等差数列,类比上述结论,写出正项等比数列{c n },若d n = 则数列{d n }也为等比数列.1(c c 2c 3…c n )1 + 2 + 3 + … + n 3. 1 2 3 n4. 等差数列{a n }中,有a 1 + a 2 + … + a 2n + 1 = (2n + 1)a n + 1,类比以上性质,在等比数列{b n }中,有等式 成立.4.b 1b 2…b 2n + 1 = b 2n + 1T5. 若等比数列{a n }的前 n 项之积为T n T 3n = ( T n ) ;类比可得到以下正确结论:若等差数列的前 n 项之和为S n ,则有 .5. S 3n = 3(S 2n - S n ){a}a 11 + a 12 + … + a 20 = a 1 + a 2 + …a 306. 已知在等差数列 n 中, 10 30 ,则在等比数列{b n }中,类似的结论为10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30q S nn7. 在等比数列{a n}中,若a9 = 1,则有a1⋅a2…a n = a1⋅a2…a17- n(n < 17,且n∈N* )成立,类比上述性质,在等差数列{b n}中,若b7 = 0,则有.b1 + b2 + … + b n= b1 + b2 + … + b13- n(n < 13,且n∈ N* )8.设S n是公差为d 的等差数列{a n}的前n 项和,则数列S6 - S3,S9 - S6,S12 - S9是等差数列,且其公差为9d.通过类比推理,可以得到结论:设T n是公比为2 的等比数列{b n}的前n 项积,则数列T6T9T12T3,T6,T9 是等比数列,且其公比的值是.5129.若等差数列{a n}的公差为d,前nS n{ }项的和为,则数列为等差数列,d. {b}公差为2 类似地,若各项均为正数的等比数列n的公比为q,前n 项的积为T n,则数列{nT n}为等比数列,公比为.10. 设等差数列{a n}的前n 项和为S n m,n(m < n),使得S m= S n,则S m + n= 0.类比上述结论,设正项等比数列{b n}的前n 项积为T n,若存在正整数m,n(m < n),使得T m= T n,则T m + n=.10. 1答案和解析【解析】{a} S= n(a1 + a n)1. 解:在等差数列n的前n 项和为n 2 ,因为等差数列中的求和类比等比数列中的乘积,所以各项均为正的等比数列{bn}的前n 项积T n= (b1b n)n,故选:A由等差和等比数列的通项和求和公式及类比推理思想可得结果,在运用类比推理时,通常等差数列中的求和类比等比数列中的乘积.本题考查类比推理、等差和等比数列的类比,搞清等差和等比数列的联系和区别是解决本题的关键.n + 1n + 12. 解:在等差数列{a n }中,我们有a n = a m + (n ‒ m )d ,类比等差数列,等比数列中也是如此,b n = b m ⋅ q n ‒ m(m ,n ∈ N ∗ ).故答案为b n = b m ⋅ q n ‒ m(m ,n ∈ N ∗ ).因为等差数列{a n }中,a n = a m + (n ‒ m )d (m ,n ∈ N + ),即等差数列中任意给出第 m项a m ,它的通项可以由该项与公差来表示,推测等比数列中也是如此,给出第 m 项 b m 和公比,求出首项,再把首项代入等比数列的通项公式中,即可得到结论.本题考查了类比推理,类比推理就是根据两个不同的对象在某些方面的相似之处,从而推出这两个对象在其他方面的也具有的相似之处,是基础题.3. 解: ∵ 根据等差数列构造的新的等差数列是由原来的等差数列的和下标一致的数字 倍的和,除以下标的和,∴ 根据新的等比数列构造新的等比数列, c c 2c 3…c n乘积变化为乘方 1 2 3 n ,1(c c 2c 3…c n ) 1 + 2 + 3 + … + n原来的除法变为开方 1 2 3 n1(c c 2c 3…c n ) 1 + 2 + 3 + … + n故答案为: 1 2 3 n根据等差数列构造的新的等差数列是由原来的等差数列的和下标一致的数字倍的和, 除以下标的和,等比数列要类比出一个结论,只有乘积变化为乘方,除法变为开方, 写出结论.本题考查类比推理,两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象的也具有这类特征,是一个有特殊到特殊的推理.4. 解:把等差数列的通项相加改成等比数列的通项相乘,把结论的相乘的系数改成等比数列的指数,∴ 在等比数列{b n }中有结论b 1b 2…b 2n + 1 = b 2n + 1(n ∈ N + ).故答案为:b 1b 2…b 2n + 1 = b 2n + 1(n ∈ N + ). 利用“类比推理”,把等差数列的通项相加改成等比数列的通项相乘,把结论的相乘的系数改成等比数列的指数,即可得出.本题考查了等比数列的通项公式、类比推理等基础知识与基本技能方法,属于中档题.5. 解:在等差数列中S 3n= S n + (S 2n ‒ S n ) + (S 3n ‒ S 2n ) = (a 1 + a 2 + … + a n ) ++ (S 2n ‒ S n ) + (a 2n + 1 + a 2n + … + a 3n )因为a 1 + a 3n = a 2 + a 3n ‒ 1 = … = a n + a 2n + 1 = a n + 1 + a 2n 所以S n + (S 3n ‒ S 2n ) = 2(S 2n ‒ S n ),所以S 3n = 3(S 2n ‒ S n ). 故答案为:S 3n = 3(S 2n ‒ S n ).本小题主要考查类比推理,由等差和等比数列的通项和求和公式及类比推理思想可得结果.本题考查类比推理、等差和等比数列的类比,搞清等差和等比数列的联系和区别是解决本题的关键.6. 解:等差数列与等比数列的对应关系有:等差数列中的加法对应等比数列中的乘法,等差数列中除法对应等比数列中的开方,故此我们可以类比得到结论:10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30. 故答案为:10b 11 ⋅ b 12 ⋅ … ⋅ b 20 = 30b 1 ⋅ b 2 ⋅ b 3 ⋅ … ⋅ b 30.在等差数列中,等差数列的性质m + n = p + q ,则a m + a n = a p + a q ,那么对应的在等比数列中对应的性质是若m + n = p + q ,则b m b n = b p b q .本题考查类比推理,掌握类比推理的规则及类比对象的特征是解本题的关键,本题中由等差结论类比等比结论,其运算关系由加类比乘,解题的难点是找出两个对象特征的对应,作出合乎情理的类比.7. 解:在等比数列中,若a 9 = 1,则a 18 ‒ n ⋅⋅⋅ a 9 ⋅⋅⋅ a n = 1即a 1 ⋅ a 2…a n = a 1 ⋅ a 2…a 17 ‒ n (n < 17,且n ∈ N ∗)成立,利用的是等比性质,若 m + n = 18,则a 18 ‒ n ⋅ a n = a 9 ⋅ a 9 = 1,∴ 在等差数列{b n }中,若b 7 = 0,利用等差数列的性质可知,若m + n = 14,b 14 ‒ n + b n = b 7 + b 7 = 0,∴ b 1 + b 2 + … + b n = b 1 + b 2 + … + b 13 ‒ n (n < 13,且n ∈ N ∗ )故答案为:b 1 + b 2 + … + b n = b 1 + b 2 + … + b 13 ‒ n (n < 13,且n ∈ N ∗).据等差数列与等比数列通项的性质,结合类比的规则,和类比积,加类比乘,由类比规律得出结论即可.本题的考点是类比推理,考查类比推理,解题的关键是掌握好类比推理的定义及等差等比数列之间的共性,由此得出类比的结论即可.T 6 T 9 T 12 T 3,T , T 929 = 5128. 解:由题意,类比可得数列6是等比数列,且其公比的值是 ,故答案为 512.由等差数列的性质可类比等比数列的性质,因此可根据等比数列的定义求出公比即可.本题主要考查等比数列的性质、类比推理,属于基础题目.{a } SS n= a + (n ‒ 1) ⋅ d 9. 解:因为在等差数列 n 中前 n 项的和为 n 的通项,且写成了n1 2. 所以在等比数列{b n }中应研究前 n 项的积为T n 的开 n 方的形式.类比可得nT n = b 1( q )n ‒ 1.其公比为 故答案为 q .S nS nd{ n } n= a 1 + (n ‒ 1) ⋅ 2仔细分析数列 为等差数列,且通项为 的特点,类比可写出对应数 列{nT n }为等比数列的公比.本小题主要考查等差数列、等比数列以及类比推理的思想等基础知识.在运用类比推理时,通常等差数列中的求和类比等比数列中的乘积.10. 解:在由等差数列的运算性质类比推理到等比数列的运算性质时:加减运算类比推理为乘除运算,累加类比为累乘,故由“已知数列{a n }为等差数列,它的前 n 项和为S n ,若存在正整数m ,n (m ≠ n ),使得S m = S n ,则S m + n = 0”.类比推理可得:“已知正项数列{b n }为等比数列,它的前n .项积为T n ,若存在正整数 m ,n .(m ≠ n ),使得T m = T n ,则T m + n = 1.故答案为 1.在类比推理中,等差数列到等比数列的类比推理方法一般为:加减运算类比推理为乘除运算,累加类比为累乘,由“已知数列{a n }为等差数列,它的前 n 项和为S n ,若存q在正整数m ,n (m ≠ n ),使得S m = S n ,则S m + n = 0”.类比推理可得:“已知正项数列 {b n }为等比数列,它的前n .项积为T n ,若存在正整数m ,n .(m ≠ n ),使得T m = T n ,则 T m + n = 1.类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).。

详解数列求和的方法+典型例题.docx

详解数列求和的方法+典型例题.docx

详解数列求和的常用方法数列求和是数列的重要内容之一, 除了等差数列和等比数列有求和公式外, 大部分数列的求和都需要一定的技巧。

第一类:公式法利用下列常用求和公式求和是数列求和的最基本最重要的方法。

1、等差数列的前 n 项和公式n( a 1 a n )na 1n(n1)d S n222、等比数列的前 n 项和公式na 1 (q 1)Sna 1 (1 q n ) a 1a n q (q 1)1 q1 q3、常用几个数列的求和公式n1n(n 1)( 1)、 S nk 1 2 3nk 12n222221 (1)(21)( 2)、 S nk 1 2 3 n nn nk 16nk 313 23 33n 3 [ 1n(n 1)] 2( 3)、 S nk 12第二类:乘公比错项相减(等差等比)这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{ a n b n } 的前 n 项和,其中 { a n } , { b n } 分别是等差数列和等比数列。

例 1:求数列 { nq n 1 } ( q 为常数 ) 的前 n 项和。

解:Ⅰ、若 q =0, 则 S n =0Ⅱ、若q =1 ,则1 ( 1)12 3nn nS nⅢ、若 q ≠ 0 且 q ≠ 1,2则 S n1 2q 3q 2nq n 1①qS n q2q 2 3q3nq n②①式—②式: (1q) S n1q q 2q3q n 1nq nS n1q (1 q q 2q 3q n 1nq n )1S n1q (1q n nq n )11qS n1q n nq n(1q) 21q0(q0)综上所述: S n 1n(n1)(q1)2q n nq n1(1q) 21(q 0且 q 1)q解析:数列 { nq n 1} 是由数列n与 q n 1对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n 项和公式就是用这种方法推导出来的),但要注意应按以上三种情况进行分类讨论,最后再综合成三种情况。

等比数列求和公式例题

等比数列求和公式例题

等比数列求和公式例题等比数列求和公式是求等比数列之和的公式。

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。

这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。

注:q=1 时,an为常数列。

利用等比数列求和公式可以快速的计算出该数列的和。

1、等比数列求和公式:Sn=a1(1-q^n)/(1-q)(q≠1)。

通项公式:an=a1×q^(n-1)2、等差数列求和公式:Sn=na1+n(n-1)d/2。

3、文字公式:末项=首项+(项数-1)×公差;项数=(末项-首项)÷公差+1;首项=末项-(项数-1)×公差;和=(首项+末项)×项数÷2;末项:最后一位数;首项:第一位数等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。

这个常数叫做等差数列的公差。

前n项和公式为: Sn=a1*n+ [n* (n-1)*d]/2或Sn= [n* (al+an)]/2。

等差数列:an=a1+(n-1)d;知道首尾==> Sn = (a1+an)n/2;知道首项==> Sn = [2na1+n(n-1)d]/2;等比数列:an = a1*q^(n-1)Sn = a1(1-q^n)/1-q当-1<q<1时,Sn非零当n趋于无穷,Sn = a1/1-q等差数列求和公式有①等差数列公式an=a1+(n-1)d、②前n项和公式为:Sn=na1 +n(n-1③若公差d= 1时:Sn=(a1+an④若m+n=p+q则:存在am+an=a⑤若m+n=2p则:am+an=2ap,以上n均等差数列是常见数列的一种可以用AP表示,如果一个数列从第二项起,每-项与它的前一项的差等于同一个常数这个数列就叫做等差数列,而这个常数叫做等差数列的公差公差常用字母d表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


n 1 2 3 30 3 6 9 30 等比数列性质与求和
1、已知数列- 1, a , a ,-4 成等差数列, - 1, b , b , b - 4 成等比数列,则
a 2 - a 1
的值为( )
1
2
1 1 1
1
2
3
2
1 1 A 、
B 、—
2
2
C 、 或—
D 、
2
2
4
2、等比数列{a n }中 a 1 = 1,公比 q ≠ 1,若 a m = a 1a 2a 3a 4a 5 ,则 m =(

A 、9
B 、10
C 、11
D 、12
3、已知{a n }是等比数列,且 a n > 0 , a 2a 4 + 2a 3a 5 + a 4a 6 = 25 ,那么 a 3 + a 5 = ( )
A . 10
B . 15
C . 5
D .6
4、设{a }是正数组成的等比数列,公比 q = 2 ,且 a a a a = 230 ,那么 a a a a = ( )
A . 210
B . 220
C . 216
D . 215
5、等比数列{a }中, a > 0, a , a 为方程 x 2 -10x +16 = 0 的两根,则 a ⋅ a ⋅ a 的值为( )
A .32
n
B .64 n
1
99
C .256
D . ± 64
20
50
80
6、等比数列{a n } 的各项均为正数,且 a 5a 6 + a 4a 7 =18,则log 3 a 1 + log 3 a 2 + + log 3 a 10 =(
)
A .12
B .10
C .8
D .2+ l og 3 5
7、 S n 是公差不为 0 的等差{a n }的前n 项和,且 S 1 , S 2 , S 4
成等比数列,则 a 2 + a 3
等于 ( ) a 1
A. 4
B. 6
C.8
D.10
1 1
8、等比数列{a n }的首项为 1,公比为 q ,前 n 项的和为 S ,由原数列各项的倒数组成一个新数列{ n
},由{ }
a n
的前 n 项的和是( )
1 1
S
q n
A .
B . 5
q n
S
C .
q n -1
D . S
9、公差不为零的等差数列{a n } 的前 n 项和为 S n ,若 a 4 是 a 3 与 a 7 的等比中项, S 10 = 60, 则 S 8 等于(

A 、28
B 、32
C 、36
D 、40
10、已知等比数列{an }的公比为 2,前 4 项的和是 1,则前 8 项的和为 ( )
A .15
B .17
C .19
D .21 11、设等比数列{ a n }的前 n 项和为 s n 。

若 a 1 = 1, s 6 = 4s 3 ,则 a 4 =
12、设等比数列{ a }的前 n 项和为 S , 8a + a = 0 ,则
S 5
=
n
n
2
5
2
a b S
n n n 5 S 13、设等比数列{ a }的前 n 项和为 S ,若
S 6
= 3 ,则 S
9 =
n
n
3 6
14、等比数列{ a n }的公比 q > 0 , 已知 a 2 =1, a n +2 + a n +1 = 6a n ,则{ a n }的前 4 项和S 4 =
15、等比数列{a }的前 n 项和 S = a ⋅ 2n + a - 2 ,则 a =
.
16、记等比数列{a n } 的前 n 项和为 S n ,已知 S 4=1,S 8=17,求{a n } 的通项公式。

17、在等比数列{a n }中, a 1 > 1, 公比 q > 0 ,设b n = log 2 a n ,且b 1 + b 3 + b 5 = 6, b 1b 3b 5 = 0.
(1) 求证:数列{b n }是等差数列;
(2) 求数列
{b n }的前 n 项和 S n 及数列{a n }的通项公式;
(3) 试比较 a n 与 S n 的大小.
18、设有数列{a }, a = ,若以 a , a , a , , a 为系数的二次方程 a x 2 - a x +1 = 0 都有根
,,且满足
n
1
6
3-+ 3= 1。

1 1
2
3 n n -1 n
(1) 求证:数列{a n - 2
} 是等比数列。

(2) 求数列{a n }的通项 a n 以及前 n 项和 S n 。

S。

相关文档
最新文档