云南省宣威市2015-2016学年八年级数学上册期中试题
2015—2016学年第一学期期中考试初二数学

2015—2016学年一学期期中考试初二数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题、填空题,48分;第Ⅱ卷为解答题,52分;共100分.考试时间为100分钟.2.第Ⅰ卷所有答案需填入第Ⅱ卷答题栏中,答第Ⅱ卷时,将密封线内的项目填写清楚,用钢笔或签字笔直接答在试卷上.考试结束只交第Ⅱ卷.第I卷(选择题 填空题 共48分)一、选择题(下列各题的四个选项中,只有一顶符合题意,每小题3分,共30分)1.木匠师傅在做完门框后,为防止门框变形,常象如图的方式斜拉两个木条,这 样做的数学道理( ) A .两点之间线段最短B .三角形的稳定性C .矩形的四个角时直角D .长方形的对称性2.三角形按角分类可以分为( ) A .锐角三角形、直角三角形、钝角三角形 B .等腰三角形、等边三角形、不等边三角形 C .直角三角形、等边直角三角形 D .以上答案都不正确3.如果一个三角形的两边长分别为2和5,则第三边长可能是( ) A .2B .3C .5D .84.小明用同种材料制成的金属框架如图所示,已知∠B=∠E ,AB=DE ,BF=EC ,其中框架△ABC 的质量为840克,CF 的质量为106克,则整个金属框架的质量为( ) A .734克B .946克C .1052克D .1574克5.如图,小敏做了一个角平分仪ABCD ,其中AB=AD ,BC=DC .将仪器上的点A 与∠PRQ 的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是∠PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE .则说明这两个三角形全等的依据是( )A .SASB .ASAC .AASD .SSS6.如图,已知△ABC (AC <BC ),用尺规在BC 上确定一点P ,使PA +PC =BC , 则符合要求的作图痕迹是( )A B C D7.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A. 10B. 7C. 5D. 48.如图,以三角形三边为直径向外作三个半圆,若较小的两个半圆面积之和等于较 大的半圆面积,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形9.如图,AD ⊥BC ,GC ⊥BC ,CF ⊥AB ,垂足分别是D 、C 、F ,下列说法中,错误的是( ) A.△ABC 中,AD 是边BC 上的高 B .△ABC 中,GC 是边BC 上的高 C .△GBC 中,GC 是边BC 上的高D .△GBC 中,CF 是边BG 上的高10.在一平直河岸L 同侧有A 、B 两村庄,A 、B 到L 的距离AM 、BN 分别是5km ,3km ,且MN 为6km ,现计划在河岸上建一抽水站P ,用输水管向两个村庄A 、B 供水,则水管长度最少为( )kmA .8B .6C .12D .10班级 姓名 考场 座号…………………………………………………………密……………………封………………线……………………………………………………………………L二、填空题(每小题3分,共18分;只要求填写最后结果)11.下面有五个图形,与其它图形众不同的是第_________个.12.如图,在△ABC 中,AB=AC ,∠BAC=50°,D 是BC 边的中点,连接AD , 则∠BAD=______________.13.在△ABC 中,∠A=100°,当∠B=__________°时,△ABC 是等腰三角形.14.如图,点P 是△ABC 内一点,∠BPC =100°,∠1=∠2,则∠ABC =_______度.15.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角 形,四边形ABCD 和EFGH 都是正方形,如果AB =10,EF =2,那么AH 等于__________第15题图C D16.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S △,则图中阴影部分 面积是___________.…………………………………………………………密……………………封………………线……………………………………………………………………2015—2016学年第一学期期中考试初二数学试题第Ⅱ卷(解答题 共52分)二、填空题答题栏(每小题3分,共18分)11. _________________ 12. _________________ 13. _________________. 14. _________________ 15. _________________ 16. _________________.三、解答题(共52分,解答应写出文字说明、证明过程或推演步骤)17.(6分)在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,请你 在图1,图2,图3中再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形.图1 图2 图3 18. (8分)如图,在△ABC 中,延长BA 到D ,∠DAC=2∠C. 实践与操作:根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法). (1)作∠DAC 的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与直线BC 交于点E ,与AC 交于点G. 猜想并证明:判断EG 与FG 的大小关系并加以证明.19.(7分)在寻找马航MH370航班过程中,两艘搜救舰艇接到消息,在海面上有疑似漂浮目标A 、B .接到消息后,一艘舰艇以16海里/时的速度离开港口O (如图所示)向北偏东40°方向航行,另一艘舰艇在同时以12海里/时的速度向北偏西一定角度的航向行驶,已知它们离港口1.5小时后分别到达A 、B ,此时相距30海里,问另一艘舰艇的航行方向是北偏西多少度?20.(7分)阅读下题及证明过程:已知:如图,D 是△ABC 中BC 边上一点,E 是AD 上一点,EB=EC ,∠ABE=∠ACE ,求证:∠BAE=∠CAE . 证明:在△AEB 和△AEC 中, ∵EB=EC ,∠ABE=∠ACE ,AE=AE , ∴△AEB ≌△AEC …第一步 ∴∠BAE=∠CAE …第二步问上面证明过程是否正确?若正确,请写出每一步推理的依据;若不正确,请指出错在哪一步,并写出你认为正确的证明过程.班级 姓名 考场 座号…………………………………………………………密……………………封………………线……………………………………………………………………D C B A21.(7分)如图,AD 是一段斜坡,AB 是水平线,现为了测斜坡上一点D 的铅直高(即垂线段DB 的长度),小亮在D 处立上一竹竿CD ,并保证CD=AB ,CD ⊥AD ,然后在竿顶C 处垂下一根细绳.(细绳末端挂一重锤,以使细绳与水平线垂直).细绳与斜坡AD 交于点E ,此时他测得DE=2米,求DB 的长度.22.(10分)如图,MN 表示一段笔直的高架道路,线段AB 表示高架道路旁的一排居 民楼.已知点A 到MN 的距离为15米,BA 的延长线与MN 相交于点D ,且∠BDN =30°,假设汽车在高速道路上行驶时,周围39米以内会受到噪音的影响.(1)过点A 作MN 的垂线,垂足为点H .如果汽车沿着从M 到N 的方向在MN 上行驶,当汽车到达点P 处时,噪音开始影响这一排的居民楼,那么此时汽车与点H 的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q 时,它与这一排居民楼的距离QC 为39米,路口D 到H 的距离DH 为25.5米,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?23.(7分)数学课上,李老师出示了如下框中的题目.小明与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结 论:AE DB (填“>”,“<”或“=”).(2)一般情况,证明结论:如图2,过点E 作EF ∥BC ,交AC 于点F .(请你继续完成对以上问题(1)中所填 写结论的证明)2015-2016年第一学期初二数学期中考试答案二、 填空题11. ③ 12. 25° 13. 40° 14. 80°F E…………………………………………………………密……………………封………………线……………………………………………………………………15. 616. 6三、解答题17.略18. 略19.北偏西50°20.第一步。
2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510

12015—2016学年度第一学期期中检测八 年 级 数 学 试 题(友情提醒:全卷满分100分,考试时间90分钟,请你掌握好时间.)一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)1. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ☆ )A .B .C .D .2. 以下列各组线段为边,能组成三角形的是( ☆ )A . 2cm ,3cm ,5cmB . 5cm ,6cm ,10cmC . 1cm ,1cm ,3cmD . 3cm ,4cm ,9cm3. 已知点M (a ,3),点N (2,b )关于y 轴对称,则(a+b )2015的值( ☆ )A .-3B . -1C .1D . 34. 如图1,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( ☆ )A . 30°B . 40°C . 50°D . 60°5. 十二边形的外角和是( ☆ )A. 180°B. 360°C.1800 ° D2160°6. 已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( ☆)A .14 B . 16 C . 10 D . 14或16 7. 如图2,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线.其中正确的有( ☆ ) A . 1个 B . 2个 C . 3个 D . 4个8. 已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ☆ )A . 9.5cmB . 9.5cm 或9cmC . 4cm 或9.5cmD . 9cm 9. 下列条件中,能判定△ABC ≌△DEF 的是( ☆ ) AC=,∠10. 如图3,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( ☆ )(图1)(图2)(图3)2A 、110°B 、70°C 、80°D 、75°二、填空题(每小题3分,共30分)11. 三角形的三边长分别为5,x ,8,则x 的取值范围是 .12. 已知如图4,△ABC ≌△FED ,且BC=DE ,∠A=30°,∠B=80°,则∠FDE= . 13. 如图5,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .(图6)(图5)(图4)14. 如图6,已知AD 平分∠BAC ,要使△ABD ≌△ACD ,根据“AAS ”需要添加条件 _________ . 15. 如图7,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的 .16. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角 度. 17. 在直角坐标系中,如果点A 沿x 轴翻折后能够与点B (-1,4)重合,那么A ,B 两点之间的距离等于 .18. 如图8,在△ABC 中,AB =AC ,AF 是BC 边上的高,点E 、D 是AF 的三等分点,若△ABC 的面积为12cm 2,则图中全部阴影部分的面积是 ___cm 2.19. 如图9,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC= .20. 如图10,△ABC 和△FED 中,BD=EC ,∠B=∠E .当添加条件 时,就可得到△ABC ≌△FED ,依据是 (只需填写一个你认为正确的条件).三、解答题(共40分)21. (7分) 完成下列证明过程.如图11,已知AB ∥DE ,AB=DE ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .证明: ∵ AB ∥DE∴∠_________=∠_________( )∵ AD=CF ∴AD+DC=CF+DC 即_____________ 在△ABC 和△DEF 中AB DCEF( 图11 )( 图10 )( 图9 )A( 图8 )E3AB=DE__________________________∴△ABC ≌△DEF ()22.(8分)如图12,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°, 且BC =CE .请完整说明为何△ABC 与△DEC 全等的理由.23.(5分)如图13,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。
2015-2016学年八年级上学期期中考试数学试卷

2015.11
7 D 8 C
三.解答题(共 56 分) 1 3 19. (共 8 分) (1)原式=4+ + ……(3 分) 2 2 =6 ……(4 分) (2)原式=3+ 2-1-1……(3 分) = 2+1……………(4 分) 27 (2) (x+1)3= ……………(1 分) 64 3 x+1= …………………(2 分) 4 1 x=- ………………(4 分) 4
B.
C.
D.
5.等腰三角形的两边长分别为 3cm 和 7cm,则周长为………………………………………… B.17 cm C.13 cm 或 17 cm D.11 cm 或 17 cm
6. 如图, 已知 AB=AD, 那么添加下列一个条件后, 仍无法判定△ABC ≌ △ADC 的是……… ) B.∠BAC=∠DAC A
C
A.CB=CD
D
C.∠BCA=∠DCA
பைடு நூலகம்
D.∠B=∠D=
F B C
G E H D
(第 8 题)
(第 7 题)
7.如图,已知△ABC 与△CDE 都是等边三角形,点 B、C、D 在同一条直线上,AD 与 BE 相交于点 G, BE 与 AC 相交于点 F, AD 与 CE 相交于点 H, 则下列结论①△ACD≌△BCE ② ∠AGB=60° ③BF=AH ④△CFH 是等边三角形 ⑤连 CG,则∠BGC=∠DGC.其中正 确的个数是…( A.2 上; △A1B1A2、 △A2B2A3、 △A3B3A4…均为等边三角形. 若 OA1=1, 则△A2015B2015A2016 的边长为… ) B.3 C.4 D.5
2.平方根等于它本身的数是………………………………………………………………………
2015-2016学年度上学期八年级期中考试数学试题

2015-2016学年度上学期八年级期中考试数学试题(满分:120分;考试时间:120分钟)一、选择题(每小题3分,共30分)1. 下列图形中具有稳定性的是()A.正三角形B.正方形C.正五边形D.正六边形2. 下列长度的三条线段能组成三角形的是()A.1,2,3 B.20,15,8 C.4,5,9 D.5,15,83. 下列大学的校徽图案是轴对称图形的是()A.清华大学B.北京大学C.中国人民大学D.浙江大学4. AD是△ABC的中线,设△ABD的面积为S1,△ACD的面积为S2,那么()A.S1>S2B.S1=S2C.S1<S2D. S1≠S25. 到三角形三边距离相等的点是三角形的()交点.A.三边中垂线B.三条中线C.三条高线D.三条角平分线6.△ABC≌△DEF,且△ABC的周长为100cm,A、B分别与D、E对应,且AB=35cm,DF=30cm,则EF的长为()A.35cm B.30cm C.45cm D.55cm7. 若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.98. 如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确...的是()A.△ABD≌△CBDB.△ABC≌△ADCC.△AOB≌△COBD.△AOD≌△COD9. 如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中一定不相等的线段是()A.AC=AE=BE B.AD=BD C.CD=DE D.AC=BD第8题图第9题图第10题图10. 如图,∠AOB=30°,点P是∠AOB内的一个定点,OP=20cm,点C、D分别是OA、OB上的动点,连结CP、DP、CD,则△CPD周长的最小值为()A.10cm B.15cm C.20cm D.40cm二、填空题(每小题3分,共30分)11. 在△ABC中,若∠B+∠C=3∠A,则∠A=__________°.12. 如图,PD⊥OA,PE⊥OB,点D、E为垂足,PD=7cm,当PE=______ cm时,点P在∠AOB的平分线上.13. 如图所示,∠A、∠1、∠2的大小关系是.第12题图第13题图第14题图14. 如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).你添加的条件是.15. 如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP 相交于点P,且∠BEP=50°,则∠EPF=_________度.16.如图所示,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE= °.第15题图第16题图第17题图17. 如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是__ ___.18.如图,AD是△ABC的对称轴,点E,F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是cm2.19. 如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为cm.第18题图第19题图第20题图20.如图,△ABC是边长6cm的等边三角形,动点P、Q同时从A、B两点出发,分别在AB、BC边上均速移动,它们的速度分别为V p=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点停止运动,设点P的运动时间为ts,则当t=___ s时,△PBQ为直角三角形.三、解答题(共60分)21.(6分)已知a,b,c为三角形的三边长,化简|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|.2B C122.(6分)如图,已知∠A=∠D ,CO=BO ,求证:△AOC ≌△DOB.第22题图23.(8分)如图:在△ABC 中,AB=AC >BC ,DE 是AB 的垂直平分线,垂足为D ,交AC 于E.(1)若∠ABE=50°,求∠EBC 的度数;(2)若△ABC 的周长为41cm ,一边长为15cm ,求△BCE 的周长.第23题图24.(9分)如图,已知网格上最小的正方形的边长为1.(1)分别写出点A 、B 、C 三点的坐标;(2)作△ABC 关于y 轴的对称图形△A′B′C′(不写作法);(3)写出△ABC 关于x 轴对称的三角形的各顶点坐标.25.(9分)把两个含有45°角的大小不同的直角三角板如图放置,点D 在BC 上,连接BE ,AD ,AD 的延长线交BE 于点F .求证:AF ⊥BE .第25题图第24题图26. (10分) 如图所示,某船上午11时30分在A处观测海岛B在北偏东60°方向,该船以每小时10海里的速度航行到C处,再观测海岛B在北偏东30°方向,又以同样的速度继续航行到D处,再观测海岛在北偏西30°方向,当轮船到达C处时恰好与海岛B相距20海里,请你确定轮船到达C处和D处的时间.第26题图27. (12分) 如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)求证:△OCD是等边三角形;(2)当α=150°时,试判断△AOD 的形状,并说明理由;(3)△AOD能否为等边三角形?为什么?(4)探究:当α为多少度时,△AOD是等腰三角形.第27题图参考答案一、1~5 A C B B D ; 6~10 A CB D C.二、11.45; 12.7; 13. ∠2>∠1>∠A ; 14.BE=DC(答案不唯一); 15. 70; 16.90; 17.①; 18. 6; 19. 9; 20. t=23或512. 三、21.∵b+c-a>0, b-c-a<0. c-a-b<0, a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|= (b+c-a)-(b-c-a)-(c-a-b)-(a-b+c)=(b+c-a-b+c+a-c+a+b-a+b-c=2b.22. 在△AOC 和△DOB 中,,,.A D AOC DOB CO BO ì??ïï??íï=ïî∴△AOC ≌△DOB (AAS ). 23. (1)20°; (2)分两种情况讨论,△BCE 的周长=26cm.24. (1) A (-3,3),B (-5,1),C (-1,0)(2)如图所示: (3)△ABC 关于x 轴对称的三角形的各顶点坐标(﹣3,﹣3)、B (﹣5,-1)、C (﹣1,0).25.证明:AF ⊥BE ,理由如下:由题意可知∠DEC=∠EDC=45°,∠CBA=∠CAB=45°,∴EC=DC ,BC=AC ,又∠DCE=∠DCA=90°,∴△ECD 和△BCA 都是等腰直角三角形,∴EC=DC ,BC=AC ,∠ECD=∠ACB=90°.在△BEC 和△ADC 中,EC=DC ,∠ECB=∠DCA ,BC=AC ,∴△BEC ≌△ADC (SAS ).∴∠EBC=∠DAC .∵∠DAC+∠CDA=90°,∠FDB=∠CDA ,∴∠EBC+∠FDB=90°. ∴∠BFD=90°,即AF ⊥BE .26.∵在A 处观测海岛B 在北偏东60°方向,∴∠BAC=30°,∵C 点观测海岛B 在北偏东30°方向,∴∠BCD=60°,∴∠BAC=∠CBA=30°,∴AC=BC.∵D 点观测海岛在北偏西30°方向,∴∠BDC=60°,∴∠BCD=60°,∴∠CBD=60°,∴△BCD 为等边三角形, ∴BC=BD ,∵BC=20,∴BC=AC=CD=20,∵船以每小时10海里的速度从A 点航行到C 处,又以同样的速度继续航行到D 处, ∴船从A 点到达C 点所用的时间为:20÷10=2(小时),船从C 点到达D 点所用的时间为:20÷10=2(小时),∵船上午11时30分在A 处出发,D 点观测海岛B 在北偏西30°方向, ∴到达D 点的时间为13时30分+2小时=15时30分.答:轮船到达C 处的时间为13时30分,到达D 处的时间15时30分.27.(1)∵△BOC ≌△ADC ,∴OC=DC .∵∠OCD=60°,∴△OCD 是等边三角形.(2)△AOD 是Rt △.理由如下:∵△OCD 是等边三角形,∴∠ODC=60°,∵△BOC ≌△ADC ,∠α=150°,∴∠ADC=∠BOC=∠α=150°,∴∠ADO=∠ADC-∠ODC=150°-60°=90°,∴△AOD是Rt△.(3)不能.理由:由△BOC≌△ADC,得∠ADC=∠BOC=∠α.若△AOD为等边三角形,则∠ADO=60°,又∠ODC=60°,∴∠ADC=∠α=120°.又∠AOD=∠DOC=60°,∴∠AOC=120°,又∵∠AOB=110°,∴∠AOC+∠AOB+∠BOC=120°+120°+110°=350°<360°.所以△AOD不可能为等边三角形.(4)∵△OCD是等边三角形,∴∠COD=∠ODC=60°.∵∠AOB=110°,∠ADC=∠BOC=α,∴∠AOD=360°-∠AOB-∠BOC-∠COD=360°-110°-α-60°=190°-α,∠ADO=∠ADC-∠ODC=α-60°,∴∠OAD=180°-∠AOD-∠ADO=180°-(190°-α)-(α-60°)=50°.①当∠AOD=∠ADO时,190°-α=α-60°,∴α=125°.②当∠AOD=∠OAD时,190°-α=50°,∴α=140°.③当∠ADO=∠OAD时,α-60°=50°,∴α=110°.综上所述:当α=110°或125°或140°时,△AOD是等腰三角形.。
2015-2016学年八年级上学期期中考试数学试卷

2015—2016学年度第一学期期中考试试卷初二数学(试题卷)(考试时间100分钟,满分100分)一.选择题(本大题共10小题,每题3分,共30分.)1.下列美丽的车标中是轴对称图形的个数有……………………………………………………………( ▲ )A .1个B .2个C .3个D .4个2.如图,在边长为1个单位长度的小正方形组成的网格中, A 、B 都是格点,则线段AB 的长度为………………………………………………………………………………………………( ▲ ) A. 5 B. 6 C.7 D. 83.一个等腰三角形的两边长分别是4和9,则它的周长是……………………………………( ▲ ) A .13 B .17 C .22 D .17或224. 下列结论错误的是…………………………………………………………………………………………………( ▲ )A .全等三角形对应边上的中线相等B .两个直角三角形中,两个锐角相等,则这两个三角形全等C .全等三角形对应边上的高相等D .两个直角三角形中,若有两组边对应相等,则这两个直角三角形全等5.如图,请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的 知识,说明画出∠A'O'B'=∠AOB的依据是…………………………………………………………( ▲ ) A .SAS B .ASA C .AAS D .SSS6.已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是 直角三角形的是………………………………………………………………………………………………………( ▲ )(第2题图)A .∠A :∠B :∠C=3:4:5 B . a :b :c =5:12:13C . a 2=b 2-c 2D .∠A =∠C -∠B 7.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置 是在△ABC的 ………………………………………………………………………………………………………( ▲ )A. 三边中线的交点 B .三边中垂线的交点 C .三条角平分线的交点 D .三边上高的交点8.如图,BD 是∠ABC 平分线,DE AB 于E ,AB =36cm,BC =24cm,S △ABC =144cm 2,则DE 的长是………( ▲ )A .4.8cmB .4.5cmC .4 cmD .2.4cm9.在如图的正方形网格上画有两条线段.现在要再画一条,使图中的三条线段组成一个轴对称图形, 能满足条件的线段有……………………………………………………………………………………………………………………( ▲ )A .2条B .3条C .4条D .5条10.如下图,已知∠AOB =α,在射线OA 、OB 上分别取点OA 1=OB 1,连结A 1B 1,在B 1A 1、(第8题图)B(第5题图)(第9题图)(第14题图)(第10题图)B 1B 上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2 B 2……按此规律下去,记∠A 2B 1 B 2=θ1,∠A 3B 2B 3=θ2,…, ∠A n +1B n B n +1=θn,则θ2016-θ2015的值为………………………………………………………………………………………………( ▲ )A .20151802α+ B . 20151802α- C .20161802α+ D .20161802α-二.填空题(本大题共8小题,每空3分,共24分.) 11.正方形是一个轴对称图形,它有 ▲ 条对称轴. 12.△ABC 是等腰三角形,若∠A =80°,则∠B = ▲.13.某直角三角形的两直角边长分别为6cm ,8 cm ,则此三角形斜边上的高的长是 ▲ cm .14.如图,∠1=∠2,要使△ABE ≌ △ACE ,则还需添加一个条件是 ▲ .15. 如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 ▲ cm . 16.如图,△OAD ≌△OBC ,且∠O =70°,∠AEB =100°,则∠C = ▲ °.17.如图,AE ⊥AB ,且AE =AB ,BC ⊥CD ,且BC =CD ,请按照图中所标注的数据计算图中实线所围成的图形的面积S = ▲ .18.已知:如图,AD 、BE 分别是△ABC 的中线和角平分线, AD ⊥BE ,AD =8,BF =5,则AC 的长等于 ▲ .(第15题图)FBACDE (第18题图)CABED(第16题图) O(第17题图)(图1)(图2)三.解答题(本大题共6小题,共46分. 解答需写出必要的文字说明或演算步骤) 19.作图题:(6分)(1)如图,在图1所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图2中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(分割线画成实线.) (2)如图3,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.①在图中画出与△ABC 关于直线L 成轴对称的△A′B′C′; ②请直线L 上找到一点P ,使得PC + PB 的距离之和最小..20.(6分)如图,四边形ABCD 中,AB ∥CD ,AB =CD ,A ∠ABE =∠CDF .(1)试说明:△ABE ≌△CDF ;(2)试说明:AF =CE .21.(6分)中菲黄岩岛争端持续,我海监船加大黄岩岛附近海域的巡航维权力度.如图,OA ⊥OB ,OA =36海里,OB =12海里,黄岩岛位于O 点,我国海监船在点B 处发现有一不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向黄岩岛所在地点O ,我国海监船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船. (1)请用直尺和圆规作出C 处的位置; (2)求我国海监船行驶的航程BC 的长.22.(7分)如图,△ACB 与△ECD 都是等腰直角三角形,∠ACB =∠ECD =90º,点D 为AB 边上的一点,(1)试说明:∠EAC =∠B ;(2)若AD =10,BD =24,求DE 的长.O(图3)23.(6分)如图,△ABC中,AD是边BC上的高,CF是边AB上的中线,且DC=BF,DE⊥CF于E,问E是CF的中点吗?试说明理由24.(6分)探索研究.请解决下列问题:(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,并把所有不同的分割方法都画出来,图不够可以自己画.只需画图,不必说明理由,但要在图中标出相等两角的度数).(2)已知等腰△ABC中,AB=AC,D为BC上一点,连接AD,若△ABD和△ACD都是等腰三角形,则∠B的度数为(请画出示意图,并标明必要的角度).25.(9分)如图,在四边形ABCD中,AD=BC=12,AB=CD,BD=15,点E从D点出发,以每秒4个单位的速度沿D→A→D匀速移动,点F从点C出发,以每秒1个单位的速度沿CB向点B作匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试说明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和G点的移动距离.2015—2016学年第一学期期中考试试卷初二数学参考答案 2015.11一、选择题(每题3分,共30分)二、填空题(每题3分,共24分)11.__ 4 ____; 12. 80°或50°或20°; 13.__ 4.8_ ;14.∠B =∠C 等; 15.__ 10 ; 16. 15° _; 17._ 50 _;18._ 13 ___.三、解答题: (第12题有一个答案给1分,多答,答错不得分) 19.(1) 图略---------2分 (2)① 图略--------2分 ②图略--------2分 20.(1)解:∵AB ∥CD∴∠BAE =∠DAF ---------1分又∵AB =CD ,∠ABE =∠CDF ---------2分∴△ABC ≌△DEF ---------3分 (2) ∵ △ABC ≌△DEF∴ AE=CF ---------4分 ∴ AE —EF=CF —EF ---------5分 ∴ AF=CE ---------6分21.(1)∴点C 就是所求点 ---------2分(2)解:连接BC ,由作图可得:CD 为AB 的中垂线∴CB =CA ---------3分 由题意可得:OC=36—CA=36—CB ---------4分 ∵OA ⊥OB∴在Rt △BOC 中,222BO CO BC +=∴22212(36)BC BC +-= ---------5分 ∴BC =20 ---------6分22.(1)∵∠ACB=∠E CD=90°∴∠ACB—∠ACD =∠E CD—∠ACD∴∠ECA=∠DCB ------------1分∵△ACB和△ECD都是等腰三角形∴EC=DC,AC=BC ------------2分∴△ACE≌△BCD ------------ 3分∴∠EAC=∠B ---------- 4分(2)∵△ACE≌△BCD∴AE=BD=24 -----------5分∵∠EAC=∠B=45 °∴∠EAD=∠EAC+∠CAD=90°------------6分∴在Rt△ADE中,222DE EA AD=+∴2221024DE=+∴DE=26 ------------7分23.解:E是CF的中点------------1分连结DF ------------2分∵AD⊥BC,F是AB边上的中点,∴DF就是Rt△ADB斜边AB上的中线------------3分∴DF =FB= 12AB------------4分∵DC=BF∴DC = DF ------------5分∵DE⊥CF∴DE平分CF,即E是CF的中点------------6分24.(1)------------2分(2)45°或36°------------4分------------6分25(1)证明:在△ABD和△CDB中AD=BCAB=CDBD=DB∴△ABD≌△CDB--------------1分∴∠ADB=∠CBD----------------2分∴AD∥BC----------------3分(2)解:设G点的移动距离为y,由(1)得∠EDG=∠FBG若△DEG与△BFG全等则有△DEG≌△BFG或△DGE≌△BFG可得:DE=BF,DG=BG;或DE=BG,DG=BF,----------------4分①当E由D到A,即0<t≤3时,有4t=12-t,解得t=2.4y=15-y y=7.5 ---------5分或4t = y,解得t= 112-t =15-y= 4 ----------------6分②当F由A返回到D,即3<t≤6时,有24-4t=12-t,解得t=4y=15-y y=7.5 ----7分或24-4t=y,解得t=4.212-t=15-y y=7.2 ----------------8分综上可知共有三次,移动的时间分别为1秒、2.4秒、4秒、4.2秒,移动的距离分别为4、7.5、7.5、7.2.----------------9分1、本试卷学生预计均分72分2、考点分布情况(按知识点)(1)全等三角形36分(2)轴对称图形38分(3)勾股定理26分。
2015—2016学年八年级上学期数学期中试卷(5套)

2015—2016学年八年级上学期数学期中试
卷(5套)
2015年八年级上册数学期中考试题整理
八年级上册数学期中考试试卷:附答案
最新:初中二年级上册数学期中考试模拟试卷
2015—2016学年初二上学期数学期中试卷
八年级数学期中卷2015
一个学期一次的期中考试马上就要开始了,同学们正在进行紧张的复习。
这就是我们为大家准备的八年级上学期数学期中试卷,希望能够及时的帮助到大家。
为大家策划了八年级上册期中复习专题,为大家提供了八年级期中考试复习知识点、八年级期中考试复习要点、八年级期中考试模拟题、八年级期中考试试卷、八年级语文期中复习要点、八年级数学期中模拟题、八年级英语期中模拟题等相关内容,供大家复习参考。
2015-2016学年第一学期期中考试初二数学试卷附答案

2015-2016学年第一学期期中考试初二数学试卷(满分:100分,考试时间:120分钟)一、选择题:(本大题共10小题,每题3分,共30分)1.下列图案中是轴对称图形的有( )A.1个B.2个C.3个D.4个2.16的平方根是()A.4 B.±4 C.4D.±43.下列式子中,属于最简二次根式的是()A.9.0B.13C.20D.74.下列运算中错误的是()A.2×3= 6 B.12=22C.22+33=5 5 D.(-4)2=45.下列说法正确的是()A.平方根等于本身的数是0;B.36表示6的算术平方根;C.无限小数都是无理数;D.数轴上的每一个点都表示一个有理数.6.一个正方形的面积是20,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间 D.5与6之间7. 在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是()A.c2-a2=b2B.a2+b2=c2C.b2+c2=a2D.a2+c2=b28.已知等腰三角形的两边长分别是3与6,那么它的周长等于()A.12 B.12或15 C.15 D.15或189. 如图,点D在AB上,点E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AE B.∠AEB=∠ADC C.BE=CD D.AB=AC10.如图是一张足够长的矩形纸条ABCD,以点A所在直线为折痕,折叠纸条,使点B(第17题图)(第18题图)(第9题图)(第10题图)落在边AD 上,折痕与边BC 交于点E ;然后将其展平,再以点E 所在直线为折痕, 使点A 落在边BC 上,折痕EF 交边AD 于点F .则∠AFE 的大小是 ( ) A .67.5° B . 60° C .45° D .22.5°二、填空题(本大题共8小题,每空2分,共16分) 11. 21-的相反数是 .12. 若2)3(-x =3﹣x ,则x 的取值范围是 .13. 2015年我市参加中考的学生人数大约为6.60×104人,对于这个用科学记数法表示的近似数,它精确到了 位.14. 已知实数错误!未找到引用源。
2015-2016学年新人教版八年级上期中数学试卷5套(含答案)

2015-2016学年八年级(上)期中数学试卷一一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A.1,2,4 B.4,9,6 C.5,5,11 D.3,5,82.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A.50° B.60° C.70° D.80°4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AE B.AB=AD,BC=DE C.AB=DE,BC=AE D.AC=AE,BC=DE6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A.22.5cm2 B.19cm2 C.21cm2 D.23.5cm27.下列“表情图”中,属于轴对称图形的是()A.B.C.D.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A.36° B.36°或90° C.90° D.60°二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是.11.若一个多边形的每一个外角都等于20°,则它的内角和等于.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有对.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.21.(10分)(2014秋•禹州市期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B 处测得灯塔C在北偏西56°,求B处到灯塔C的距离.22.(10分)(2014秋•禹州市期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC 外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.23.(11分)(2014秋•禹州市期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB 的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A.1,2,4 B.4,9,6 C.5,5,11 D.3,5,8考点:三角形三边关系.分析:根据三角形的三边关系进行分析判断.解答:解:根据三角形任意两边的和大于第三边,得A中,1+2=3<4,不能组成三角形;B中,4+6>9,能组成三角形;C中,5+5=11,不能够组成三角形;D中,5+3=8,不能组成三角形.故选B.点评:本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.2.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.考点:三角形的稳定性.分析:根据三角形具有稳定性进行解答.解答:解:根据三角形具有稳定性可得A、B、D都具有稳定性,C未曾构成三角形,因此不稳定,故选:C.点评:此题主要考查了三角形的稳定性,是需要识记的内容.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A.50° B.60° C.70° D.80°考点:三角形的外角性质;直角三角形的性质.分析:首先根据三角形内角和定理可得∠FDE=30°,根据对顶角相等可得∠BDC=30°,再根据三角形外角的性质可得∠ABF=30°+20°=50°.解答:解:∵CE⊥AF,∴∠FED=90°,∵∠F=60°,∴∠FDE=30°,∴∠BDC=30°,∴∠C=20°,∴∠ABF=30°+20°=50°,故选:A.点评:此题主要考查了三角形外角的性质,以及三角形内角和,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个考点:全等图形.分析:直接利用全等图形的性质分别分析得出即可.解答:解:①用同一张底片冲洗出来的8张1存相片是全等形,正确;②我国国旗上的四颗小五角星是全等形,正确;③所有的等边三角形是全等形,错误;④全等形的面积一定相等,正确.故选:C.点评:此题主要考查了全等图形,正确利用全等图形的性质分析得出是解题关键.5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AE B.AB=AD,BC=DE C.AB=DE,BC=AE D.AC=AE,BC=DE考点:全等三角形的判定.分析:根据三角形内角和定理,由∠1=∠2,然后根据“SAS”对各选项进行判断.解答:解:∵∠1=∠2,∴∠C=∠E,∴当AE=AC,DE=BC时,可根据“SAS”判断△ABC≌△ADE.故选D.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A.22.5cm2 B.19cm2 C.21cm2 D.23.5cm2考点:角平分线的性质.分析:根据角平分线的性质得到OD=OE=OF=2.5,根据三角形面积公式得到答案.解答:解:∵点O是角平分线的交点,OD⊥AB,OF⊥AC,OE⊥BC,∴OD=OE=OF=2.5,△ABC的面积为:×AB×OD+×AC×OF+×BC×OE=×18×2.5=22.5,故选:A.点评:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形直接回答即可.解答:解:A、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;B、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;C、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;D、是轴对称图形;故选D.点评:本题考查了轴对称图形的定义,牢记轴对称图形的定义是解答本题的关键,属于基础题,比较简单.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A.36° B.36°或90° C.90° D.60°考点:等腰三角形的性质.分析:根据已知条件,根据一个等腰三角形两内角的度数之比先设出三角形的两个角,然后进行讨论,即可得出顶角的度数.解答:解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°.故这个等腰三角形的顶角度数为90°或36°.故选B.点评:本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线y=4.考点:坐标与图形变化-对称.专题:数形结合.分析:利用两已知点的坐标特征得这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),则过点(﹣1,4)且与y轴垂直的直线是它们的对称轴.解答:解:∵(﹣1,2)和(﹣1,6)的横坐标相同,∴这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),∴点(﹣1,2)与(﹣1,6)关于直线y=4对称.故答案为y=4.点评:本题考查了坐标与图形变化﹣对称:记住关于x轴对称和关于y轴对称的点的坐标特征.通常利用数形结合的思想解决此类问题.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是45°.考点:三角形内角和定理.分析:根据三角形内角和等于180°和∠A=75°求得∠B+∠C=105°,由于∠B﹣∠C=15°,解方程组即可得到结果.解答:解:在△ABC中,∠A=75°,根据三角形的内角和定理和已知条件得到∠C+∠B=180°﹣∠A=180°﹣105°=105°,∵∠B﹣∠C=15°,∴∠C=45°.则∠C的度数为45°.故答案为:45°.点评:本题考查三角形的内角和定理,进行角的等量代换是解答本题的关键.11.若一个多边形的每一个外角都等于20°,则它的内角和等于2880°.考点:多边形内角与外角.分析:首先根据外角和与外角的度数可得多边形的边数,再根据多边形内角和公式180(n ﹣2)计算出答案.解答:解:∵多边形的每一个外角都等于20°,∴它的边数为:360°÷20°=18,∴它的内角和:180°(18﹣2)=2880°,故答案为:2880°.点评:此题主要考查了多边形的内角与外角,关键是正确计算出多边形的边数.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有6对.考点:全等三角形的判定.分析:先根据“SSS”可证明△ABC≌△ABD,△AEC≌△AED,利用全等三角形的性质得∠ABC=∠ABD,则利用”SAS”可判断△BCF≌△BDF,然后再利用“SSS”可分别判断△AFC≌△AFD,△CEF≌△DEF,△BCE≌△BDE.解答:解:在△ABC和△ABD中,,∴△ABC≌△ABD(SSS);同理可得△AEC≌△AED(SSS),由△ABC≌△ABC得∠ABC=∠ABD,在△BCF和△BDF中,,∴△BCF≌△BDF(SAS),∴CF=DF,同理可得△AFC≌△AFD(SSS),△CEF≌△DEF(SSS),△BCE≌△BDE(SSS).故答案为6.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是5.考点:全等三角形的性质.分析:先求出AB的长度,再根据全等三角形对应边相等解答即可.解答:解:∵BE=4,AE=1,∴AB=BE+AE=4+1=5,∵△ABC≌△DEF,∴DE=AB=5.故答案为:5.点评:本题考查了全等三角形对应边相等的性质,先求出DE的对应边AB的长度是解题的关键.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=6cm.考点:线段垂直平分线的性质.分析:根据直角三角形的性质得到DE=BD,根据线段垂直平分线的性质得到DA=DB,证明∠CAD=∠DAB,根据角平分线的性质得到答案.解答:解:∵DE⊥AB,∠B=30°,∴DE=BD=6,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=30°,又∠C=90°,∴∠CAD=∠DAB,又∠C=90°,DE⊥AB,∴DC=DE=6.故答案为:6cm.点评:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于120°.考点:等边三角形的性质.分析:根据等边三角形性质得出∠ABC=∠ACB=60°,根据角平分线性质求出∠IBC和∠ICB,根据三角形的内角和定理求出即可.解答:解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC=30°,∠ICB=∠ACB=30°,∴∠BIC=180°﹣30°﹣30°=120°,故答案为:120°.点评:本题考查了等边三角形的性质,三角形的内角和定理,角平分线定义等知识点的应用,关键是求出∠IBC和∠ICB的度数.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?考点:多边形的对角线.分析:根据n边形从一个顶点出发可引出(n﹣3)条对角线.从n个顶点出发引出(n﹣3)条,而每条重复一次,所以n边形对角线的总条数为:(n≥3,且n为整数)可得到m、k、n的值,进而可得答案解答:解:解:由题意得:m﹣3=7,n=3解得m=10,n=3,由题意得:=k,解得k=5,=200.点评:此题主要考查了多边形的对角线,关键是掌握对角线条数的计算公式.17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.专题:作图题.分析:由所求的点P满足PC=PD,利用线段垂直平分线定理得到P点在线段CD的垂直平分线上,再由点P到∠AOB的两边的距离相等,利用角平分线定理得到P在∠AOB的角平分线上,故作出线段CD的垂直平分线,作出∠AOB的角平分线,两线交点即为所求的P 点.解答:解:如图所示:作法:(1)以O为圆心,任意长为半径画弧,与OA、OB分别交于两点;(2)分别以这两交点为圆心,大于两交点距离的一半长为半径,在角内部画弧,两弧交于一点;(3)以O为端点,过角内部的交点画一条射线;(4)连接CD,分别为C、D为圆心,大于CD长为半径画弧,分别交于两点;(5)过两交点画一条直线;(6)此直线与前面画的射线交于点P,∴点P为所求的点.点评:此题考查了作图﹣复杂作图,涉及的知识有:角平分线性质,以及线段垂直平分线性质,熟练掌握性质是解本题的关键.19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.考点:作图-轴对称变换.分析:(1)根据轴对称的性质作出△ABC关于直线MN对称的△A′B′C′即可;(2)根据梯形的面积公式求出梯形AA′C′C的面积即可.解答:解:(1)如图所示;(2)∵由图得四边形AA′C′C的面积是等腰梯形,CC′=2,AA′=4,高是3,∴S四边形AA′C′C=(AA′+CC′)×3=(4+2)×3=9.点评:本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法是解答此题的关键.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.考点:关于x轴、y轴对称的点的坐标.分析:(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求解即可;(2)根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求解即可.解答:解:(1)∵M、N关于x轴对称,∴,解得;(2)∵M、N关于y轴对称,∴,解得.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.21.(10分)(2014秋•禹州市期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B 处测得灯塔C在北偏西56°,求B处到灯塔C的距离.考点:等腰三角形的判定与性质;方向角.分析:根据所给的角的度数,容易证得△BCA是等腰三角形,而AB的长易求,所以根据等腰三角形的性质,BC的值也可以求出.解答:解:据题意得,∠A=28°,∠DBC=56°,∵∠DBC=∠A+∠C,∴∠A=∠C=28°,∴AB=BC,∵AB=18×2=36,∴BC=36(海里).∴B处到灯塔C的距离36(海里).点评:本题考查了等腰三角形的性质及方向角的问题;由已知得到三角形是等腰三角形是正确解答本题的关键.要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.22.(10分)(2014秋•禹州市期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC 外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:先证△ABP≌△ACD得AP=AD,再证∠PAD=60°,从而得出△APD是等边三角形.解答:解:△APQ是等边三角形.理由如下:∵AB=AC,∠1=∠2,∠BPA=∠CQA,∴△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∴∠PAQ=∠CAQ+∠PAC=∠BAP+∠PAC=∠BAC=60°,∴△APQ是等边三角形.点评:本题考查了等边三角形的判定与性质及全等三角形的判定方法,注意条件与问题之间的联系.23.(11分)(2014秋•禹州市期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB 的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AP,BP,易证PM=PN和AP=BP,即可证明RT△APM≌RT△BPN和RT△CPM≌RT△CPN,可得AM=BN和CM=CN,即可解题.解答:证明:连接AP,BP,∵CP是∠ACB平分线,∴PM=PN,∵PD⊥AB,D是AB中点,∴AP=BP,在RT△APM和RT△BPN中,,∴RT△APM≌RT△BPN(HL),∴AM=BN,在RT△CPM和RT△CPN中,,∴RT△CPM≌RT△CPN(HL),∴CM=CN,∵CN=BC+BN,CM=AC﹣AM∴CM=CN=(BC+BN+AC﹣AM)=(BC+AC).点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证RT△APM≌RT△BPN和RT△CPM≌RT△CPN是解题的关键.2015-2016学年八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列说法①任意一个数都有两个平方根;②任意一个数都有立方根;③﹣125的立方根是±5;④是一个分数;⑤两个无理数的积是一个有理数;⑥但0<a<1时,,其中正确的有()A.0个B.1个C.2个D.3个2.如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与最接近的是()A.A B.B C.C D.D3.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2+4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)24.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a76.下列语句好可以称为命题的是()A.延长线段AB到C B.垂线段最短C.过点P作线段AB的垂线D.锐角都相等吗7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF二、填空题(每小题3分,共21分)9.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).10.已知x2=16,那么x=;如果(﹣a)2=(﹣5)2,那么a=.11.利用分解因式计算:(1)16.8×+7.6×=;(2)1.222×9﹣1.332×4=.12.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式,若=12,则x=.14.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是.15.如图,已知∠1=∠2=90°,AD=AE,那么图中有对全等三角形.三、计算题(本大题共8小题,满分65分)16.(1)÷(π﹣2014)0+|﹣4|(2)|3﹣π|﹣+(π﹣4)0.17.先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.18.化简(1)(2x4﹣x3)÷(﹣x)﹣(x﹣x2)•2x(2)[(ab﹣1)(ab+2)﹣2a2b2+2]÷(﹣ab)19.因式分解(1)m2﹣n2+2m﹣2n(2)x2(y2﹣1)+2x(y2﹣1)+(y2﹣1)20.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.21.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.22.(10分)(2014秋•太康县期中)已知:a=2012x+2013,b=2012x+2014,c=2012x+2015,求多项式a2+b2+c2﹣ab﹣bc﹣ac的值.23.(10分)(2007•常州)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.2015-2016学年八年级(上)期中数学试卷二参考答案与试题解析一、选择题(每小题3分,共24分)1.下列说法①任意一个数都有两个平方根;②任意一个数都有立方根;③﹣125的立方根是±5;④是一个分数;⑤两个无理数的积是一个有理数;⑥但0<a<1时,,其中正确的有()A.0个B.1个C.2个D.3个考点:实数.分析:根据实数、立方根、平方根,即可解答.解答:解:①任意一个数都有两个平方根,错误,因为负数没有平方根;②任意一个数都有立方根,正确;③﹣125的立方根是﹣5,故错误;④是一个无理数,故错误;⑤两个无理数的积是一个有理数,错误,例如:;⑥当0<a<1时,,正确;其中正确的有2个.故选:C.点评:本题考查了实数,解决本题的关键是熟记平方根、立方根的定义.2.如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与最接近的是()A.A B.B C.C D.D考点:实数与数轴.分析:先估算出的取值范围,再找出与之接近的点即可.解答:解:∵≈1.4,∴≈0.7,∴点D与之接近.故选D.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.3.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2+4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)2考点:提公因式法与公式法的综合运用.专题:计算题.分析:A、原式提取x,再利用完全平方公式分解得到结果,即可做出判断;B、原式提取xy得到结果,即可做出判断;C、原式利用平方差公式分解得到结果,即可做出判断;D、原式利用完全平方公式分解得到结果,即可做出判断.解答:解:x3﹣4x2+4x=x(x2+4x+4)=x(x+2)2,过程不够完整,故选A.点评:此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,考点:完全平方公式.专题:计算题.分析:运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.解答:解:∵ax2+2x+=4x2+2x++m,∴,解得.故选D.点评:本题考查了完全平方公式,利用公式展开,根据对应项系数相等列式是求解的关键.5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:解:A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.6.下列语句好可以称为命题的是()A.延长线段AB到C B.垂线段最短C.过点P作线段AB的垂线D.锐角都相等吗考点:命题与定理.分析:根据命题的定义解答即可.解答:解:A、延长线段AB到C,不是命题;B、垂线段最短,是命题;C、过点P作线段AB的垂线,不是命题;D、锐角都相等吗,不是命题;故选:B.点评:此题考查了命题与定理,判断一件事情的语句是命题,一般有“是”,“不是”等判断词.7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°考点:全等三角形的判定与性质.分析:易证△ACD≌△BCE,由全等三角形的性质可知:∠A=∠B,再根据已知条件和四边形的内角和为360°,即可求出∠BPD的度数.解答:解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.点评:本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF考点:全等三角形的判定.分析:根据所给三角形结合三角形全等的判定定理可得△EHD与△ABC全等,△EGF与△ABC全等,因此A、B错误;△EFH与△ABC不全等,但是面积也不相等,故C错误;△HDF与△ABC不全等,面积相等,故此选项正确.解答:解:A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选:D.点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.二、填空题(每小题3分,共21分)9.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1)n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.10.已知x2=16,那么x=±4;如果(﹣a)2=(﹣5)2,那么a=±5.考点:平方根.分析:根据平方根的定义,即可解答.解答:解:∵x2=16,∴x=±4,∵(﹣a)2=(﹣5)2,∴a2=25,∴a=±5,故答案为:±4,±5.点评:本题考查了平方根的定义,解决本题的关键是熟记平方根的定义.11.利用分解因式计算:(1)16.8×+7.6×=7;(2)1.222×9﹣1.332×4= 6.32.考点:因式分解的应用.分析:(1)利用提取公因式法分解因式计算即可;(2)利用平方差公式分解因式计算即可.解答:解:(1)原式=(8.4+7.6)×=16×=7;(2)1.222×9﹣1.332×4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年秋季学期期中测试卷
八年级数学
(时间120分钟,满分120分)
一.选择题。
(每小题3分,共24分)
1.以下列各组线段长为边,能组成三角形的是( )
A .1cm ,2cm ,4cm
B .8cm ,6cm ,4cm
C .12cm ,5cm ,6cm
D .2cm ,3cm ,6cm
2. 下列图形是轴对称图形的有 ( )
A . 2个
B . 3个
C . 4个
D . 5个
3. 若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角为
( )
A. 75°或15°
B. 75°
C.15°
D. 75°或30°
4.如图,已知MB=ND ,∠MBA=∠NDC ,下列条件中不能判定
△ABM ≌△CDN 的是( )
A .∠M=∠N
B .AM=CN
C .AB=CD
D .AM∥CN
5.已知点M (a ,3),B (2,b )关于x 轴对称,则(a+b)2014的值( )
A .﹣3
B .﹣1
C .1
D .3
6.画∠AOB 的角平分线的方法步骤是:①以O 为圆心,适当长为半径作
弧,交OA 于M 点,交OB 于N 点:②分别以M 、N 为圆心,大于2
1MN
的长为半径作弧,两弧在∠AOB的内部相交于点C:③过点C作射线OC。
射线OC就是∠AOB的角平分线。
请你说明这样作角平分线的根据是( )
A.SSS B.SAS C.ASA D.AAS
第6题图第7题图
7.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()
A.5 B.4 C.3 D.2
8.如图在△ABC中,∠ABC和∠ACB的外角平分线交于点D,设∠
BDC=m,则∠A= ( )
m
A.90°-m B.90°-
2
m
180°-2m D.180°-
2
二.填空题。
(每小题3分,共24分)
9.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.
10.若等腰三角形的周长为26cm,一边为11cm,则腰长为. 11.若点P(m,m-1)在x轴上,则点P关于x轴对称的点为. 12.三角形一边长为40,一边长为50,求第三边a的取值范围. 13.如图,点D、E、F、B在同一直线上,AB∥CD、AE∥CF,且AE=CF,若BD=10,BF=2,则EF= .
14.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.
第13题图第14题图
15.如右图,△ABC中,∠C=90°,AC=BC,AD是∠CAB的平分线,DE⊥AB 于E.已知AB=10cm,则△DEB的周长为.
第15题图第16题图
16.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;...∠A2014BC 和∠A2014CD的平分线交于点A2015,则∠A2015= 度.
三、解答题。
(72分)
17.(6分)已知一个多形边的内角和为1260°,求这个多边形的对角线条数.
18.(8分)如图,在⊿ABC中,∠B = 50º,∠C = 70º,AD是高,AE是角平分线,求∠EAD的度数。
19.(8分)如图,点E在CD上,BC与AE交于点F,AB=CB,BE=BD,∠1=∠2.求证:∠2=∠3.
20.(9分)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).
(1)你添加的条件是.
(2)添加条件后,请说明△ABC≌△ADE的理由.
21.(9分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF.(1)求证:△ADE≌△BFE.
(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.
22.(10分)如图△ADF和△BCE中,∠A=∠B,点D、E、F、C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.(1)请用其中两个关系式作为条件,另一个作为结论,写出所有你认为正确的命题.(用序号写出命题书写形式,如:如果①、②,那么③)
选择(1)中你写出的一个命题,说明它正确的理由.
23.(12分)如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;
(2)写出点△A1,B1,C1的坐标(直接写答案):A1;
B1;C1;
(3)求△A1B1C1的面积;
(4)在y轴上画出点P,使PB+PC最小.
24.(10分)如图:在△ABC中,∠ACB=90°,AC=BC,过点C在△ABC 外作直线MN,AM⊥MN于M,BN⊥MN于N.
(1)求证:MN=AM+BN.
(2)若过点C在△ABC内作直线MN,AM⊥MN于M,BN⊥MN于N,则AM、BN与MN之间有什么关系?请说明理由.
田坝一中2015年秋季学期期中测试卷 八年级数学答题卷 一.选择题。
(每小题3分共24分)
二.填空题:(每小题3分,共24分) 9. . 10. . 11. . 12. . 13. . 14. . 15. . 16. . 三、解答题。
(72分) 17.(6分) 18.(8分)
学校
:
班
级
:
姓
名
:
考
场
:
考
号:
19.(8分)
20.(9分)
(1).
21.(9分)
22.(10分)
23.(12分)
(2)A1;B1;C1;
24.(10分)。