大学物理第四章习题解
《大学物理教程》郭振平主编第四章光的衍射课后习题答案

第四章 光的衍射一、基本知识点光的衍射:当光遇到小孔、狭缝或其他的很小障碍物时,传播方向将发生偏转,而绕过障碍物继续前行,并在光屏上形成明暗相间的圆环或条纹。
光波的这种现象称为光的衍射。
菲涅耳衍射:光源、观察屏(或者是两者之一)到衍射屏的距离是有限的,这类衍射又称为近场衍射。
夫琅禾费衍射:光源、观察屏到衍射屏的距离均为无限远,这类衍射也称为远场衍射。
惠更斯-菲涅耳原理:光波在空间传播到的各点,都可以看作一个子波源,发出新的子波,在传播到空间某一点时,各个子波之间可以相互叠加。
这称为惠更斯-菲涅耳原理。
菲涅耳半波带法:将宽度为a 的缝AB 沿着与狭缝平行方向分成一系列宽度相等的窄条,1AA ,12A A ,…,k A B ,对于衍射角为θ的各条光线,相邻窄条对应点发出的光线到达观察屏的光程差为半个波长,这样等宽的窄条称为半波带。
这种分析方法称为菲涅耳半波带法。
单缝夫琅禾费衍射明纹条件:sin (21)(1,2,...)2a k k λθ=±+=单缝夫琅禾费衍射暗纹条件:sin (1,2,...)a k k θλ=±=在近轴条件下,θ很小,sin θθ≈, 则第一级暗纹的衍射角为 1aλθ±=±第一级暗纹离开中心轴的距离为 11x f faλθ±±==±, 式中f 为透镜的焦距。
中央明纹的角宽度为 112aλθθθ-∆=-=中央明纹的线宽度为 002tan 2l f f faλθθ=≈∆=衍射图样的特征:① 中央明纹的宽度是各级明纹的宽度的两倍,且绝大部分光能都落在中央明纹上。
② 暗条纹是等间隔的。
③ 当入射光为白光时,除中央明区为白色条纹外,两侧为由紫到红排列的彩色的衍射光谱。
④ 当波长一定时,狭缝的宽度愈小,衍射愈显著。
光栅: 具有周期性空间结构或光学性能(透射率,反射率和折射率等)的衍射屏,统称为光栅。
光栅常数: 每两条狭缝间距离d a b =+称为光栅常数。
大学物理第四章习题解

第四章 刚体的定轴转动4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 内被动轮的角速度达到π/s 8,则主动轮在这段时间内转过了 圈。
解:被动轮边缘上一点的线速度为πm/s 45.0π8222=⨯==r ωv在4s 内主动轮的角速度为πrad/s 202.0π412111====r r v v ω主动轮的角速度为2011πrad/s 540π2==∆-=tωωα在4s 内主动轮转过圈数为20π520ππ2(π212π212121=⨯==αωN (圈)4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为08.0ωω=,则飞轮的角加速度α= ,t =0到t =100s 时间内飞轮所转过的角度θ= 。
解:由于飞轮作匀变速转动,故飞轮的角加速度为20s /rad 05.020558.0-=-⨯=-=tωωα t =0到t =100s 时间内飞轮所转过的角度为rad 250100)05.0(21100521220=⨯-⨯+⨯=+=t t αωθ4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。
解:转动惯性大小,刚体的形状、质量分布及转轴的位置。
4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。
解:由分离质点的转动惯量的定义得221i i i r m J ∆=∑=22)3(2b m mb +=211mb =4–5 一飞轮以600r/min 的转速旋转,转动惯量为·m 2,现加一恒定的制动力矩使飞轮在1s 内停止转动,则该恒定制动力矩的大小M =_________。
解:飞轮的角加速度为20s /rad 20160/π26000-=⨯-=-=tωωα制动力矩的大小为m N π50π)20(5.2⋅-=-⨯==αJ M负号表示力矩为阻力矩。
大学物理第4章 狭义相对论时空观习题解答改

习 题4-1 一辆高速车以0.8c 的速率运动。
地上有一系列的同步钟,当经过地面上的一台钟时,驾驶员注意到它的指针在0=t ,她即刻把自己的钟拨到0'=t 。
行驶了一段距离后,她自己的钟指到6 us 时,驾驶员瞧地面上另一台钟。
问这个钟的读数就是多少? 【解】s)(10)/8.0(16/12220μ=-μ=-∆=∆c c s cu t t所以地面上第二个钟的读数为)(10's t t t μ=∆+=4-2 在某惯性参考系S 中,两事件发生在同一地点而时间间隔为4 s,另一惯性参考系S′ 以速度c u 6.0=相对于S 系运动,问在S′ 系中测得的两个事件的时间间隔与空间间隔各就是多少?【解】已知原时(s)4=∆t ,则测时(s)56.014/1'222=-=-∆=∆s cu t t由洛伦兹坐标变换22/1'c u ut x x --=,得:)(100.9/1/1/1'''8222220221012m c u t u c u ut x c u ut x x x x ⨯=-∆=-----=-=∆4-3 S 系中测得两个事件的时空坐标就是x 1=6×104 m,y 1=z 1=0,t 1=2×10-4 s 与x 2=12×104 m,y 2=z 2=0,t 2=1×10-4 s 。
如果S′ 系测得这两个事件同时发生,则S′ 系相对于S 系的速度u 就是多少?S′ 系测得这两个事件的空间间隔就是多少? 【解】(m)1064⨯=∆x ,0=∆=∆z y ,(s)1014-⨯-=∆t ,0'=∆t0)('2=∆-∆γ=∆cxu t t 2cxu t ∆=∆⇒ (m/s)105.182⨯-=∆∆=⇒x t c u (m )102.5)('4⨯=∆-∆γ=∆t u x x4-4 一列车与山底隧道静止时等长。
大学物理课后习题答案第四章

第四章机械振动4.1一物体沿x 轴做简谐振动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x = 0.06m ,且向x 轴正向运动.求:(1)此简谐振动的表达式;(2)t = T /4时物体的位置、速度和加速度;(3)物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间. [解答](1)设物体的简谐振动方程为x = A cos(ωt + φ),其中A = 0.12m ,角频率ω = 2π/T = π.当t = 0时,x = 0.06m ,所以cos φ = 0.5,因此φ = ±π/3. 物体的速度为v = d x /d t = -ωA sin(ωt + φ).当t = 0时,v = -ωA sin φ,由于v > 0,所以sin φ< 0,因此:φ = -π/3.简谐振动的表达式为:x = 0.12cos(πt – π/3).(2)当t = T /4时物体的位置为;x = 0.12cos(π/2 – π/3) = 0.12cosπ/6 = 0.104(m). 速度为;v = -πA sin(π/2 – π/3) = -0.12πsinπ/6 = -0.188(m·s -1).加速度为:a = d v /d t = -ω2A cos(ωt + φ)= -π2A cos(πt - π/3)= -0.12π2cosπ/6 = -1.03(m·s -2). (3)方法一:求时间差.当x = -0.06m 时,可得cos(πt 1 - π/3) = -0.5, 因此πt 1 - π/3 = ±2π/3.由于物体向x 轴负方向运动,即v < 0,所以sin(πt 1 - π/3) > 0,因此πt 1 - π/3 = 2π/3,得t 1 = 1s .当物体从x = -0.06m 处第一次回到平衡位置时,x = 0,v > 0,因此cos(πt 2 - π/3) = 0, 可得 πt 2 - π/3 = -π/2或3π/2等.由于t 2> 0,所以πt 2 - π/3 = 3π/2, 可得t 2 = 11/6 = 1.83(s).所需要的时间为:Δt = t 2 - t 1 = 0.83(s).方法二:反向运动.物体从x = -0.06m ,向x 轴负方向运动第一次回到平衡位置所需的时间就是它从x = 0.06m ,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此cos(πt - π/3) = 0,可得 πt - π/3 = π/2,解得t = 5/6 = 0.83(s).[注意]根据振动方程x = A cos(ωt + φ),当t = 0时,可得φ = ±arccos(x 0/A ),(-π<φ<= π), 初位相的取值由速度决定.由于v = d x /d t = -ωA sin(ωt + φ),当t = 0时,v = -ωA sin φ,当v > 0时,sin φ< 0,因此 φ = -arccos(x 0/A );当v < 0时,sin φ> 0,因此φ = arccos(x 0/A )π/3.可见:当速度大于零时,初位相取负值;当速度小于零时,初位相取正值.如果速度等于零,当初位置x 0 = A 时,φ = 0;当初位置x 0 = -A 时,φ = π.4.2已知一简谐振子的振动曲线如图所示,试由图求:(1)a ,b ,c ,d ,e 各点的位相,及到达这些状态的时刻t 各是多少?已知周期为T ; (2)振动表达式; (3)画出旋转矢量图. [解答]方法一:由位相求时间.(1)设曲线方程为x = A cos Φ,其中A 表示振幅,Φ = ωt + φ表示相位. 由于x a = A ,所以cos Φa = 1,因此Φa = 0.由于x b = A /2,所以cos Φb = 0.5,因此Φb = ±π/3;由于位相Φ随时间t 增加,b 点位相就应该大于a 点的位相,因此Φb = π/3.由于x c = 0,所以cos Φc = 0,又由于c 点位相大于b 位相,因此Φc = π/2.同理可得其他两点位相为:Φd = 2π/3,Φe = π.c 点和a 点的相位之差为π/2,时间之差为T /4,而b 点和a 点的相位之差为π/3,时间之差应该为T /6.因为b 点的位移值与O 时刻的位移值相同,所以到达a 点的时刻为t a = T /6. 到达b 点的时刻为t b = 2t a = T /3.图4.2到达c 点的时刻为t c = t a + T /4 = 5T /12. 到达d 点的时刻为t d = t c + T /12 = T /2. 到达e 点的时刻为t e = t a + T /2 = 2T /3.(2)设振动表达式为:x = A cos(ωt + φ),当t = 0时,x = A /2时,所以cos φ = 0.5,因此φ =±π/3; 由于零时刻的位相小于a 点的位相,所以φ = -π/3, 因此振动表达式为. 另外,在O 时刻的曲线上作一切线,由于速度是位置对时间的变化率,所以切线代表速度的方向;由于其斜率大于零,所以速度大于零,因此初位相取负值,从而可得运动方程.(3)如图旋转矢量图所示.方法二:由时间求位相.将曲线反方向延长与t 轴 相交于f 点,由于x f = 0,根据运动方程,可得所以:.显然f 点的速度大于零,所以取负值,解得t f = -T /12.从f 点到达a 点经过的时间为T /4,所以到达a 点的时刻为:t a = T /4 + t f = T /6, 其位相为:. 由图可以确定其他点的时刻,同理可得各点的位相.4.3 有一弹簧,当其下端挂一质量为M 的物体时,伸长量为9.8×10-2m .若使物体上下振动,且规定向下为正方向.(1)t = 0时,物体在平衡位置上方8.0×10-2m 处,由静止开始向下运动,求运动方程;(2)t = 0时,物体在平衡位置并以0.60m·s -1速度向上运动,求运动方程. [解答]当物体平衡时,有:Mg – kx 0 = 0, 所以弹簧的倔强系数为:k = Mg/x 0, 物体振动的圆频率为:s -1). 设物体的运动方程为:x = A cos(ωt + φ).(1)当t = 0时,x 0 = -8.0×10-2m ,v 0 = 0,因此振幅为:=8.0×10-2(m);由于初位移为x 0 = -A ,所以cos φ = -1,初位相为:φ = π. 运动方程为:x = 8.0×10-2cos(10t + π).(2)当t = 0时,x 0 = 0,v 0 = -0.60(m·s -1),因此振幅为:v 0/ω|=6.0×10-2(m);由于cos φ = 0,所以φ = π/2;运动方程为:x = 6.0×10-2cos(10t +π/2).4.4 质量为10×10-3kg 的小球与轻弹簧组成的系统,按的规律作振动,式中t 以秒(s)计,x 以米(m)计.求: (1)振动的圆频率、周期、振幅、初位相; (2)振动的速度、加速度的最大值;(3)最大回复力、振动能量、平均动能和平均势能;cos(2)3t x A T ππ=-cos(2)03t T ππ-=232f t Tπππ-=±203a a t T πΦπ=-=ω==0||A x ==A =20.1cos(8)3x t ππ=+(4)画出这振动的旋转矢量图,并在图上指明t 为1,2,10s 等各时刻的矢量位置. [解答](1)比较简谐振动的标准方程:x = A cos(ωt + φ),可知圆频率为:ω =8π,周期T = 2π/ω = 1/4 = 0.25(s),振幅A = 0.1(m),初位相φ = 2π/3.(2)速度的最大值为:v m = ωA = 0.8π = 2.51(m·s -1); 加速度的最大值为:a m = ω2A = 6.4π2 = 63.2(m·s -2). (3)弹簧的倔强系数为:k = mω2,最大回复力为:f = kA = mω2A = 0.632(N); 振动能量为:E = kA 2/2 = mω2A 2/2 = 3.16×10-2(J), 平均动能和平均势能为:= kA 2/4 = mω2A 2/4 = 1.58×10-2(J). (4)如图所示,当t 为1,2,10s 等时刻时,旋转矢量的位置是相同的.4.5 两个质点平行于同一直线并排作同频率、同振幅的简谐振动.在振动过程中,每当它们经过振幅一半的地方时相遇,而运动方向相反.求它们的位相差,并作旋转矢量图表示.[解答]设它们的振动方程为:x = A cos(ωt + φ), 当x = A /2时,可得位相为:ωt + φ = ±π/3.由于它们在相遇时反相,可取Φ1 = (ωt + φ)1 = -π/3,Φ2 = (ωt + φ)2 = π/3,它们的相差为:ΔΦ = Φ2 – Φ1 = 2π/3,或者:ΔΦ` = 2π –ΔΦ = 4π/3.矢量图如图所示.4.6一氢原子在分子中的振动可视为简谐振动.已知氢原子质量m = 1.68×10-27kg ,振动频率v = 1.0×1014Hz ,振幅A = 1.0×10-11m .试计算:(1)此氢原子的最大速度; (2)与此振动相联系的能量.[解答](1)氢原子的圆频率为:ω = 2πv = 6.28×1014(rad·s -1), 最大速度为:v m = ωA = 6.28×103(m·s -1).(2)氢原子的能量为:= 3.32×10-20(J).4.7 如图所示,在一平板下装有弹簧,平板上放一质量为1.0kg 的重物,若使平板在竖直方向上作上下简谐振动,周期为0.50s ,振幅为2.0×10-2m ,求:(1)平板到最低点时,重物对平板的作用力;(2)若频率不变,则平板以多大的振幅振动时,重物跳离平板? (3)若振幅不变,则平板以多大的频率振动时,重物跳离平板? [解答](1)重物的圆频率为:ω = 2π/T = 4π,其最大加速度为:a m = ω2A ,合力为:F = ma m ,方向向上.重物受到板的向上支持力N 和向下的重力G ,所以F = N – G . 重物对平板的作用力方向向下,大小等于板的支持力: N = G + F = m (g +a m ) = m (g +ω2A ) = 12.96(N).(2)当物体的最大加速度向下时,板的支持为:N = m (g - ω2A ). 当重物跳离平板时,N = 0,频率不变时,振幅为:A = g/ω2 = 3.2×10-2(m).(3)振幅不变时,频率为:3.52(Hz).4.8 两轻弹簧与小球串连在一直线上,将两弹簧拉长后系在固定点A 和B 之间,整个系统放在光滑水平面上.设两弹簧的原长分别为l 1和l 2,倔强系统分别为k 1和k 2,A和B 间距为L ,小球的质量为m .(1)试确定小球的平衡位置;k pE E =212m E mv=2ωνπ==(2)使小球沿弹簧长度方向作一微小位移后放手,小球将作振动,这一振动是否为简谐振动?振动周期为多少?[解答](1)这里不计小球的大小,不妨设L > l 1 + l 2,当小球平衡时,两弹簧分别拉长x 1和x 2,因此得方程:L = l 1 + x 1 + l 2 + x 2;小球受左右两边的弹簧的弹力分别向左和向右,大小相等,即k 1x 1 = k 2x 2. 将x 2 = x 1k 1/k 2代入第一个公式解得:.小球离A 点的距离为:.(2)以平衡位置为原点,取向右的方向为x 轴正方向,当小球向右移动一个微小距离x 时,左边弹簧拉长为x 1 + x ,弹力大小为:f 1 = k 1(x 1 + x ), 方向向左;右边弹簧拉长为x 1 - x ,弹力大小为:f 2 = k 2(x 2 - x ), 方向向右.根据牛顿第二定律得:k 2(x 2 - x ) - k 1(x 1 + x ) = ma ,利用平衡条件得:,即小球做简谐振动.小球振动的圆频率为:.4.9如图所示,质量为10g 的子弹以速度v = 103m·s -1水平射入木块,并陷入木块中,使弹簧压缩而作简谐振动.设弹簧的倔强系数k = 8×103N·m -1,木块的质量为4.99kg ,不计桌面摩擦,试求:(1)振动的振幅;(2)振动方程.[解答](1)子弹射入木块时,由于时间很短,木块还来不及运动,弹簧没有被压缩,它们的动量守恒,即:mv = (m + M)v 0.解得子弹射入后的速度为:v 0 = mv/(m + M) = 2(m·s -1),这也是它们振动的初速度.子弹和木块压缩弹簧的过程机械能守恒,可得:(m + M ) v02/2 = kA 2/2, 所以振幅为:10-2(m). (2)振动的圆频率为:= 40(rad·s -1).取木块静止的位置为原点、向右的方向为位移x 的正方向,振动方程可设为:x = A cos(ωt + φ).当t = 0时,x = 0,可得:φ = ±π/2;由于速度为正,所以取负的初位相,因此振动方程为:x = 5×10-2cos(40t - π/2).4.10如图所示,在倔强系数为k 的弹簧下,挂一质量为M 的托盘.质量为m 的物体由距盘底高h 处自由下落与盘发生完全非弹性碰撞,而使其作简谐振动,设两物体碰后瞬时为t = 0时刻,求振动方程.[解答]物体落下后、碰撞前的速度为:物体与托盘做完全非弹簧碰撞后,根据动量守恒定律可得它们的共同速度为,这也是它们振动的初速度.设振动方程为:x = A cos(ωt + φ),211212()k x L l l k k =--+211111212()k L l x l L l l k k =+=+--+2122d ()0d xm kk x t++=ω=22T πω==A v =ω=v =0m v v m M ==+图4.9 图4.10其中圆频率为:物体没有落下之前,托盘平衡时弹簧伸长为x 1,则:x 1 = Mg/k .物体与托盘磁盘之后,在新的平衡位置,弹簧伸长为x 2,则:x 2= (M + m )g/k . 取新的平衡位置为原点,取向下的方向为正,则它们振动的初位移为x 0 = x 1 - x 2 = -mg/k .因此振幅为:初位相为:4.11 装置如图所示,轻弹簧一端固定,另一端与物体m 间用细绳相连,细绳跨于桌边定滑轮M 上,m 悬于细绳下端.已知弹簧的倔强系数为k = 50N·m -1,滑轮的转动惯量J = 0.02kg·m 2,半径R = 0.2m ,物体质量为m = 1.5kg ,取g = 10m·s -2.(1)试求这一系统静止时弹簧的伸长量和绳的张力;(2)将物体m 用手托起0.15m ,再突然放手,任物体m 下落而整个系统进入振动状态.设绳子长度一定,绳子与滑轮间不打滑,滑轮轴承无摩擦,试证物体m 是做简谐振动; (3)确定物体m 的振动周期;(4)取物体m 的平衡位置为原点,OX 轴竖直向下,设振物体m 相对于平衡位置的位移为x ,写出振动方程.[解答](1)在平衡时,绳子的张力等于物体的重力T = G = mg = 15(N).这也是对弹簧的拉力,所以弹簧的伸长为:x 0 = mg/k = 0.3(m).(2)以物体平衡位置为原点,取向下的方向为正,当物体下落x 时,弹簧拉长为x 0 + x ,因此水平绳子的张力为:T 1 = k (x 0+ x ).设竖直绳子的张力为T 2,对定滑轮可列转动方程:T 2R – T 1R = Jβ, 其中β是角加速度,与线加速度的关系是:β = a/R .对于物体也可列方程:mg - T 2 = ma . 转动方程化为:T 2 – k (x 0 + x ) = aJ/R 2,与物体平动方程相加并利用平衡条件得:a (m + J/R 2) = –kx ,可得微分方程:,故物体做简谐振动. (3)简谐振动的圆频率为:s -1). 周期为:T 2 = 2π/ω = 1.26(s).(4)设物体振动方程为:x = A cos(ωt + φ),其中振幅为:A = 0.15(m). 当t = 0时,x = -0.15m ,v 0 = 0,可得:cos φ = -1,因此φ = π或-π, 所以振动方程为:x = 0.15cos(5t + π),或x = 0.15cos(5t - π).4.12一匀质细圆环质量为m ,半径为R ,绕通过环上一点而与环平面垂直的水平光滑轴在铅垂面内作小幅度摆动,求摆动的周期.[解答]通过质心垂直环面有一个轴,环绕此轴的转动惯量为:I c = mR 2.根据平行轴定理,环绕过O 点的平行轴的转动惯量为I = I c + mR 2 = 2mR 2.当环偏离平衡位置时,重力的力矩为:M = mgR sin θ, 方向与角度θ增加的方向相反.ω=A ==00arctan v x ϕω-==222d 0d /x kx t m J R +=+ω=根据转动定理得:Iβ = -M ,即,由于环做小幅度摆动,所以sin θ≈θ,可得微分方程:. 摆动的圆频率为:周期为:4.13 重量为P 的物体用两根弹簧竖直悬挂,如图所示,各弹簧的倔强系数标明在图上.试求在图示两种情况下,系统沿竖直方向振动的固有频率.[解答](1)前面已经证明:当两根弹簧串联时,总倔强系数为k = k1k 2/(k 1 + k 2),因此固有频率为(2)前面还证明:当两根弹簧并联时,总倔强系数等于两个弹簧的倔强系数之和,因此固有频率为.4.14质量为0.25kg 的物体,在弹性力作用下作简谐振动,倔强系数k = 25N·m -1,如果开始振动时具有势能0.6J ,和动能0.2J ,求:(1)振幅;(2)位移多大时,动能恰等于势能?(3)经过平衡位置时的速度.[解答]物体的总能量为:E = E k + E p = 0.8(J).(1)根据能量公式E = kA2/2,得振幅为:.(2)当动能等于势能时,即E k = E p ,由于E = E k + E p ,可得:E = 2E p ,即,解得:= ±0.179(m). (3)再根据能量公式E = mv m2/2,得物体经过平衡位置的速度为: 2.53(m·s -1).4.15 两个频率和振幅都相同的简谐振动的x-t 曲线如图所示,求: (1)两个简谐振动的位相差;(2)两个简谐振动的合成振动的振动方程. [解答](1)两个简谐振动的振幅为:A = 5(cm), 周期为:T = 4(s),圆频率为:ω =2π/T = π/2,它们的振动方程分别为:x 1 = A cos ωt =5cosπt /2, x 2 = A sin ωt =5sinπt /2 =5cos(π/2 - πt /2)即x 2=5cos(πt /2 - π/2).位相差为:Δφ = φ2 - φ1 = -π/2. (2)由于x = x 1 + x 2 = 5cosπt /2 +5sinπt /2 = 5(cosπt /2·cosπ/4 +5sinπt /2·sinπ/4)/sinπ/4 合振动方程为:(cm).22d sin 0d I mgR tθθ+=22d 0d mgRt Iθθ+=ω=222T πω===2ωνπ===2ωνπ===A =2211222kA kx =⨯/2x =m v =cos()24x t ππ=- (b)图4.134.16 已知两个同方向简谐振动如下:,.(1)求它们的合成振动的振幅和初位相; (2)另有一同方向简谐振动x 3 = 0.07cos(10t +φ),问φ为何值时,x 1 + x 3的振幅为最大?φ为何值时,x 2 + x 3的振幅为最小?(3)用旋转矢量图示法表示(1)和(2)两种情况下的结果.x 以米计,t 以秒计.[解答](1)根据公式,合振动的振幅为:=8.92×10-2(m). 初位相为:= 68.22°.(2)要使x 1 + x 3的振幅最大,则:cos(φ– φ1) = 1,因此φ– φ1 = 0,所以:φ = φ1 = 0.6π. 要使x 2 + x 3的振幅最小,则 cos(φ– φ2) = -1,因此φ– φ2 = π,所以φ = π + φ2 = 1.2π.(3)如图所示.4.17质量为0.4kg 的质点同时参与互相垂直的两个振动:, .式中x 和y 以米(m)计,t 以秒(s)计.(1)求运动的轨道方程;(2)画出合成振动的轨迹;(3)求质点在任一位置所受的力.[解答](1)根据公式:,其中位相差为:Δφ = φ2 – φ1 = -π/2,130.05cos(10)5x t π=+210.06cos(10)5x t π=+A =11221122sin sin arctancos cos A A A A ϕϕϕϕϕ+=+0.08cos()36x t ππ=+0.06cos()33y t ππ=-2222212122cos sin x y xyA A A A ϕϕ+-∆=∆所以质点运动的轨道方程为:. (2)合振动的轨迹是椭圆.(3)两个振动的圆频率是相同的ω = π/3,质点在x 方向所受的力为,即F x = 0.035cos(πt /3 + π/6)(N).在y 方向所受的力为,即F y = 0.026cos(πt /3 - π/3)(N).用矢量表示就是,其大小为,与x 轴的夹角为θ = arctan(F y /F x ).4.18 将频率为384Hz 的标准音叉振动和一待测频率的音叉振动合成,测得拍频为3.0Hz ,在待测音叉的一端加上一小块物体,则拍频将减小,求待测音叉的固有频率.[解答]标准音叉的频率为v 0 = 384(Hz), 拍频为Δv = 3.0(Hz), 待测音叉的固有频率可能是v 1 = v 0 - Δv = 381(Hz), 也可能是v 2 = v 0 + Δv = 387(Hz).在待测音叉上加一小块物体时,相当于弹簧振子增加了质量,由于ω2 = k/m ,可知其频率将减小.如果待测音叉的固有频率v 1,加一小块物体后,其频率v`1将更低,与标准音叉的拍频将增加;实际上拍频是减小的,所以待测音叉的固有频率v 2,即387Hz .4.19示波器的电子束受到两个互相垂直的电场作用.电子在两个方向上的位移分别为x = A cos ωt 和y = A cos(ωt +φ).求在φ = 0,φ = 30º,及φ = 90º这三种情况下,电子在荧光屏上的轨迹方程.[解答]根据公式,其中Δφ = φ2 – φ1 = -π/2,而φ1 = 0,φ2 = φ.(1)当Δφ = φ = 0时,可得,质点运动的轨道方程为y = x ,轨迹是一条直线.(2)当Δφ = φ = 30º时,可得质点的轨道方程, 即,轨迹是倾斜的椭圆.(3)当Δφ = φ = 90º时,可得, 即x 2 + y 2 = A 2,质点运动的轨迹为圆.4.20三个同方向、同频率的简谐振动为,,.222210.080.06x y +=22d d x x x F ma m t==20.08cos()6m t πωω=-+22d d y y y F ma m t==20.06cos()3m t ωω=--πi+j x y F F F =F =2222212122cos sin x y xyA A A A ϕϕ+-∆=∆2222220x y xyA A A+-=222214x y A+=222/4x y A +=22221x y A A +=10.08cos(314)6x t π=+20.08cos(314)2x t π=+350.08cos(314)6x t π=+求:(1)合振动的圆频率、振幅、初相及振动表达式; (2)合振动由初始位置运动到所需最短时间(A 为合振动振幅). [解答]合振动的圆频率为:ω = 314 = 100π(rad·s -1). 设A 0 = 0.08,根据公式得:A x = A 1cos φ1 + A 2cos φ2 + A 3cos φ3 = 0,A y = A 1sin φ1 + A 2sin φ2 + A 3sin φ3 = 2A 0 = 0.16(m), 振幅为:,初位相为:φ = arctan(A y /A x ) = π/2.合振动的方程为:x = 0.16cos(100πt + π/2).(2)当时,可得:,解得:100πt + π/2 = π/4或7π/4.由于t > 0,所以只能取第二个解,可得所需最短时间为t = 0.0125s .x A =A =/2x =cos(100/2)2t ππ+。
大学物理第四章习题解答PPT演示课件

16
解: 冲击:子弹和摆锤角动量守恒
mlvm2 vl(J1J2)0
J1
1 3
ml 2
J2 ml2
v 0
摆动:摆锤和地球机械能守恒
Ek Ep
1 2(J1J2)0 2mg2lmgl
4m vmin m
2gl
17
解:子弹+杆系统: M外 0
m 22 lv(1 JJ2) J2)(1JJ2)
J1
1 12
m1l
2
J2
m1(
l )2 2
v v r l/2
J2 6m 2v 2.1 9r3a/sd
J1J2 m 1l3m 2l
11
426:一质量 m/、 为半径 R的 为转台,以a角 转速 动度 ,转轴的
不计, 1)( 有一质 m的 量蜘 为蛛垂直地边 落缘 在上 转, 台此时角 ,
解: JJ盘2J柱
J盘 12m盘R盘 2
R盘
3
01 2
02
m
J柱 12m柱R柱 2
10102 R柱 2 m
m盘 V盘
m柱 V柱
J0.13k6gm2
7
413:如图所示m1, 1质 6kg的 量实心圆 A,柱 其体 半r径 15c为 m ,可 绕其固定水平 阻轴 力转 忽动 略, 不计 的。 柔一 绳条 绕轻 在圆 其柱 一
(A) 角速度从小到大,角加速度不变 O
A
(B) 角速度从小到大,角加速度从小 到大
(C) 角速度从小到大,角加速度从 大到小
(D) 角速度不变,角加速度为零
2
绕过O点的轴做定轴转动。求:运动过程中角速度和角 加速度的变化情况
(完整版)大学物理学(课后答案)第4章

第4章 刚体的定轴转动习 题一 选择题4-1 有两个力作用在一个有固定转轴的刚体下,对此有以下几种说法:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.对L 述说法下述判断正确的是[ ](A )只有(l )是正确的 (B )(1)、(2)正确,(3)、(4)错误 (C )(1)、(2)、(3)都正确 (D )(1)、(2)、(3)、(4)都正确 解析:力矩是描述力对刚体转动的作用,=⨯M r F 。
因此合力为零时,合力矩不一定为零;合力矩为零时,合力也不一定为零。
两者并没有一一对应的关系。
答案选B 。
4-2 有A 、B 两半径相同,质量相同的细圆环。
A 环的质量均匀分布,B 环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为A I 和B I ,则有[ ](A )A B I I > (B )A B I I < (C )无法确定哪个大 (D )A B I I = 解析:转动惯量2i i iI m r =∆∑,由于A 、B 两细圆环半径相同,质量相同,所以转动惯量相同2A B I I mR ==,而与质量分布均匀与否无关。
选D 。
4-3 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图4-3所示.今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是[ ](A )角速度从小到大,角加速度不变 (B )角速度从小到大,角加速度从小到大(C )角速度从小到大,角加速度从大到小 (D )角速度不变,角加速度为零解析:在棒摆到竖直位置的过程中,重力势能和转动动能相互转化,因此转速越来越大,即角速度从小到大。
整个过程中棒只受到重力矩的作用,211cos 23M mg l J ml θαα===,所以3cos 2gl αθ=,随着转角θ逐渐增大,角加速度α由大变小。
大学物理习题答案解答第四章动量

第四章 动量一、填空题1、设坐标轴为x 轴,则小球与墙壁碰前的速度1v vi =,因小球与竖直墙壁作完全弹性碰撞,则小球与墙壁碰后的速度为2v vi =-。
则碰撞过程中,小球的动量增量为21()2p mv mv m v i mvi mvi ∆=-=--=-。
2、设子弹初速度的方向为x 轴,且受到木块的冲力为F ',对子弹射入木块并随木块一起运动的过程,使用动量定理,有()()212212121210505009()t t I F dt p p mv mv m v v i i i N s -''==-=-=-=⨯⨯-=-⋅⎰又设木块受到子弹的冲力为F ,则木块受到子弹的冲量为2221119()t t t t t t I Fdt F dt F dt I i N s '''==-=-=-=⋅⎰⎰⎰3、设棒球未被击打前的速度为x 轴,棒击打棒球前后,棒球受到棒的冲量为2121t t I Fdt mv mv ==-⎰则棒施于球的平均冲力为()()21212110.33020300()0.05tt m F Fdt v v i i i N t t t ==-=⨯--=--∆⎰4、设子弹出射的方向为x 轴,则每分钟900个子弹受到的机枪的冲量为()212121t t I F dt Mv Mv Nm v v ''==-=-⎰则机枪受到子弹的平均反冲力为()()22211121212211111900210800060240()t t tt t t F Fdt F dt F dt I t t t t t t Nm v v i t i N ---'''==-==--∆∆⨯⨯=--=-⨯-∆=-⎰⎰⎰5、设A 粒子对B 粒子的作用力为AB F ,而B 粒子对A 粒子的作用力为BA F ,则A ,B 两粒子发生作用的过程中,A 粒子受到B 粒子的冲量为()212121t BA A A A A A A t I F dt m v m v m v v '==-=-⎰而B 粒子受到A 粒子的冲量为()2121214t AB B B B B B B t I F dt m v m v m v v ==-=-⎰注意到AB BA F F =-,有I I '=-由以上三式,可解出B 粒子在作用后的速度为()()()()212111127743444(5)()B B A A v v v v i j i j i j i j m s -⎡⎤=--=----+⎣⎦=-⋅6、小球受到三个力的作用,分别为重力mg ,桌面对它的支持力N 和绳子的拉力T 。
大学物理课后习题答案(第四章) 北京邮电大学出版社

又
k 0.2 2 5,即T 1.26s 3 m 8 10
2 A x0 (
v0
)2
2 2
5.0 10 2 2 (1.0 10 ) ( ) 5 2 10 2 m v 5.0 10 2 5 tan 0 0 1, 即 0 2 x 0 1.0 10 5 4 5 x 2 10 2 cos(5t )m 4 ∴
A 3.2 10 3 rad l
∴ 故其角振幅
2 A x0 (
小球的振动方程为
4-11 有两个同方向、同频率的简谐振动,其合成振动的振幅为 0.20m ,位相与第一振动的
给小球一水平向右的冲量 Ft 1.0 10 kg m s ,取打击时刻为计时起点 (t 0) ,求 振动的初位相和角振幅,并写出小球的振动方程. 解:由动量定理,有
4 1
v0 x 0
F t mv 0
∴
v
F t 1.0 10 0.01 m 1.0 10 3
A mg 2 m 2 2 gh 2 x ( ) ( ) ( ) k (m M )
2 0 2
v0
mg 2kh 1 k (m M ) g
2kh ( M m) g (第三象限),所以振动方程为 (3) mg 2kh k 2kh x 1 cos t arctan k (m M ) g ( M m) g mM 3 4-10 有一单摆,摆长 l 1.0m ,摆球质量 m 10 10 kg ,当摆球处在平衡位置时,若 tan 0
(2)
当
Ek E p
时,有
E 2E p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 刚体的定轴转动4–1 半径为20cm 的主动轮,通过皮带拖动半径为50cm 的被动轮转动,皮带与轮之间无相对滑动,主动轮从静止开始作匀角加速度转动,在4s 被动轮的角速度达到π/s 8,则主动轮在这段时间转过了 圈。
解:被动轮边缘上一点的线速度为πm/s 45.0π8222=⨯==r ωv在4s 主动轮的角速度为πrad/s 202.0π412111====r r v v ω 主动轮的角速度为2011πrad/s 540π2==∆-=t ωωα 在4s 主动轮转过圈数为20π520ππ2(π212π212121=⨯==αωN (圈) 4–2绕定轴转动的飞轮均匀地减速,t =0时角速度为0ω=5rad/s ,t =20s 时角速度为08.0ωω=,则飞轮的角加速度α= ,t =0到t =100s 时间飞轮所转过的角度θ= 。
解:由于飞轮作匀变速转动,故飞轮的角加速度为 20s /rad 05.020558.0-=-⨯=-=t ωωα t =0到t =100s 时间飞轮所转过的角度为rad 250100)05.0(21100521220=⨯-⨯+⨯=+=t t αωθ 4–3 转动惯量是物体 量度,决定刚体的转动惯量的因素有 。
解:转动惯性大小,刚体的形状、质量分布及转轴的位置。
4–4 如图4-1,在轻杆的b 处与3b 处各系质量为2m 和m 的质点,可绕O 轴转动,则质点系的转动惯量为 。
解:由分离质点的转动惯量的定义得 221i i i r m J ∆=∑=22)3(2b m mb +=211mb = 4–5 一飞轮以600r/min 的转速旋转,转动惯量为2.5kg·m 2,现加一恒定的制动力矩使飞轮在1s 停止转动,则该恒定制动力矩的大小M =_________。
解:飞轮的角加速度为20s /rad 20160/π26000-=⨯-=-=t ωωα 制动力矩的大小为 m N π50π)20(5.2⋅-=-⨯==αJ M负号表示力矩为阻力矩。
图4-1 m 2mb3bO4–6 半径为0.2m ,质量为1kg 的匀质圆盘,可绕过圆心且垂直于盘的轴转动。
现有一变力F =5t (SI )沿切线方向作用在圆盘边缘上,如果圆盘最初处于静止状态,那么它在3秒末的角加速度为 ,角速度为 。
解:圆盘的转动惯量为222m kg 02.0)2.0(12121⋅=⨯⨯==mR J 。
3秒末的角加速度为 s rad 303101002.052.0/t t J M =⨯==⨯==α 由 t t d d 10ωα== 即t t d 10d =ω对上式积分,并利用初始条件:0=t 时,00=ω,得⎰⎰=300d 10d t t ωωs /rad 45=ω4–7 角动量守恒定律成立的条件是 。
解:刚体(质点)不受外力矩的作用或所受的合外力矩为零。
4–8 以下运动形态不是平动的是[ ]。
A .火车在平直的斜坡上运动B .火车在拐弯时的运动C .活塞在气缸的运动D .空中缆车的运动解:火车在拐弯时,车厢实际是平动和转动的合成,故不是平动,应选(B )。
4–9 以下说法错误的是[ ]。
A .角速度大的物体,受的合外力矩不一定大B .有角加速度的物体,所受合外力矩不可能为零C .有角加速度的物体,所受合外力一定不为零D .作定轴(轴过质心)转动的物体,不论角加速度多大,所受合外力一定为零解:角速度大的物体,角加速度不一定大,由于αJ M =,所以它所受的合力矩不一定大;如果一个物体有角加速度,则它一定受到了合外力矩的作用;合外力矩不等于零,不等于所受的合力一定不为零,如物体受到了一个大小相等,方向相反而不在一条直线上的力的作用;当物体作定轴(轴过质心)转动时,质心此时的加速度为零,根据质心运动定律,它所受的合外力一定零。
综上,只有(C )是错误的,故应选(C )。
4–10 有两个力作用在一个有固定转轴的刚体上:[ ](1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零。
在上述说法中A .只有(1)是正确的B .(1)、(2)正确,(3)、(4)错误C .(1)、(2)、(3)都正确,(4)错误D .(1)、(2)、(3)、(4)都正确解:这两个力都平行于轴作用时,它们对轴的矩都为零,自然合力矩为零,故(1)正确;当两个力都垂直于轴作用时,如果两个力大小相等、方向相反,作用在物体的同一点,则它们的合力矩为零,或两个力都通过转轴,两力的力矩都等于零,合力矩也等于零,但如两力大小不等,方向相反,也可通过改变力臂,使两力的合力矩为零,如此时力臂相同,则合力矩不等于零,因此(2)也时正确的;当这两个力的合力为零时,还要考虑力臂的大小,所以合力矩不一定为零,故(3)是错误的;两个力对轴的合力矩为零时,因F r M ⨯=,所以它们的合力不一定为零,故(4)也是错误的。
故答案应选(B )。
4–11 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动。
如图4-2所示,射来两个质量相同、速度的大小相同而方向相反,并在同一条直线上的子弹。
子弹射入并且停留在圆盘,则子弹射入的瞬间,圆盘的角速度ω与射入前角速度0ω相比[ ]。
A .增大B .不变C .减小D .不能确定解:设射来的两子弹的速度为v ,对于圆盘和子弹组成的系统来说,无外力矩作用,故系统对轴O的角动量守恒,即ωωJ J d m d m =+-00v v 式中d m v 这子弹对点O 的角动量,0J 为子弹射入前盘对轴O 的转动惯量,J 为子弹射入后系统对轴O的转动惯量。
由于J J <0,则0ωω<。
故选(C )。
4–12 如图4-3所示,有一个小块物体,置于一个光滑水平桌面上。
有一绳其一端连接此物体,另一端穿过中心的小孔。
该物体原以角速度ω在距孔为r 的圆周上转动,今将绳从小孔缓慢往下拉,则物体[ ]。
A .角速度减小,角动量增大,动量改变B .角速度不变,动能不变,动量不变C .角速度增大,角动量增大,动量不变D .角速度增大,动能增加,角动量不变解:在拉力绳子的过程中,力对小球的力矩为零,故小球的角动量在转动过程中不变,有2211ωωJ J =。
当小球的半径减小时,小球对O 点的转动惯量减小,即21J J >,故22ωω>,角速度增大,小球转得更快。
又由2211ωωJ J =可得2211r m r m v v =,因21r r >,所以12v v >,故小球的动能增加,小球的动量也要发生变化。
故选(D )4–13 有一半径为R 的水平圆转台,可绕过其中心的竖直固定光滑轴转动,转动惯量为J 。
开始时,转台以角速度0ω转动,此时有一质量为M 的人站在转台中心,随后人沿半径向外跑去。
当人到达转台边缘时,转台的角速度为[ ]。
A .20MR J J +ω B .20)(R M J J +ω C .20MR J ω D .0ω解:人站在转台中心时,他相对于转台中心的角动量为零。
当人沿半径向外跑去,到达O图4-2图4-3 F r O转台边缘的过程中,不受外力矩作用,人和转台组成的系统角动量守恒,由于人是沿半径方向走,故人和转台的角速度相同,相对于转台中心有角动量2R M R M ω=v 。
根据角动量守恒,可列方程得20R M J J ωωω+=故20MR J J +=ωω所以应选(A )。
4–14 一力学系统由两个质点组成,它们之间只有引力作用,若两质点所受外力矢量和为零,则此系统[ ]。
A .动量、机械能、角动量均守恒B .动量、机械能守恒,角动量不守恒C .动量守恒,但机械能和角动量是否守恒不能断定D .动量、角动量守恒,但机械能是否守恒不能断定解:由于两质点系所受的合外力为零,故系统的动量守恒。
当质点所受的合外力不是共点力时,尽管两质点所受的合外力矢量和为零,但力矩不为零,则物体将转动,从而改变系统的机械能和角动量,而当质点所受的合外力为共点力,且外力矢量和为零时,质点所受的力矩将为零。
则系统的机械能和角动量将守恒,所以,应选(C )。
4–20 两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个组合轮。
小圆盘的半径为r ,质量为m ;大圆盘的半径r '=2r ,质量m '=2m 。
组合轮可绕通过其中心且垂直于盘面的光滑水平固定轴O 转动,对O 轴的转动惯量J =9mr 2/2。
两圆盘边缘上分别绕有轻质细绳,细绳下端各悬挂质量为m 的物体A 和B ,如图4-7所示。
这一系统从静止开始运动,绳与盘无相对滑动,绳的长度不变。
已知r =10cm 。
求:(1)组合轮的角加速度;(2)当物体A 上升h =40cm 时,组合轮的角速度。
解:(1)各物体受力情况如图4–8。
A 、B 看成质点,应用牛顿第二定律。
滑轮是刚体,应用刚体转动定律,得α 图4-8图4-7ma mg T =-a m T mg '='-αJ Tr r T =-''222292121mr mr r m J =+''=又因绳与盘无相对滑动,故有αr a = αr a '='由上述方程组,代入题给已知条件可得2s /rad 3.10192==rg α (2)设θ为组合轮转过的角度,则 rad 41.04.0===r h θ 所以组合轮的角速度为s /rad 08.943.1022=⨯⨯==αθω4–24 如图4-14所示,A 和B 两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为2m kg 10⋅=A J 和2m kg 20⋅=B J ,开始时,A 轮转速为600转/分,B 轮静止,C 为摩擦啮合器,其转动惯量可忽略不计,A 、B 分别与C 的左、右两个组件相连,当C 的左右组件啮合时,B 轮加速而A 轮减速,直到两轮的转速相等为止。
设轴光滑,求:(1)两轮啮合后的转速n ;(2)两轮各自所受的冲量矩。
解:选A 、B 两轮为系统,合外力矩为零,系统角动量守恒,有()ωωB A A A J J J +=s rad 9.20/J J J B A A A =+=ωω 200π2==ωn r/minA 轮所受的冲量矩为()s m N 1019.4d 2⋅⋅⨯-=-=⎰A A A J t M ωω负号表示冲量矩与A ω方向相反。
B 轮所受的冲量矩: ()s m N 1019.4d 2⋅⋅⨯=-=⎰B B B J t M ωω正号表示冲量矩与A ω方向相同。
4–26 如图4-15所示,一质量M ,半径为R 的圆柱,可绕固定的水平轴O 自由转动。