2020_2021学年高中数学第2章解三角形章末综合提升学案北师大版必修5
高中数学 第二章 解三角形本章知识体系学案(含解析)北师大版必修5-北师大版高二必修5数学学案

第二章解三角形本章知识体系专题一正、余弦定理的应用1.正、余弦定理在解三角形中的应用应用正、余弦定理解题时,要熟练、准确地进行三角恒等变换,同时应注意三角形的一些隐含条件.【例1】设函数f(x)=cos(x+23π)+2cos2x2,x∈R.(1)求f (x )的值域;(2)记△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c ,若f (B )=1,b =1,c =3,求a 的值.【思路探究】 本题考查了三角函数的化简求值及解斜三角形的有关知识.对于(1)先把f (x )化简为A sin(ωx +φ)的形式,再进行求值,(2)问可先求出B 的值再利用余弦定理解决.【解答】 (1)f (x )=cos x cos 23π-sin x sin 23π+cos x +1 =-12cos x -32sin x +cos x +1 =12cos x -32sin x +1=sin(x +5π6)+1. 因此f (x )的值域为[0,2].(2)由f (B )=1得sin(B +5π6)+1=1,即sin(B +5π6)=0,又因0<B <π,故B =π6. 由余弦定理b 2=a 2+c 2-2ac cos B ,得a 2-3a +2=0,解得a =1或2.【例2】 在△ABC 中,a =3,b =26,B =2A .(1)求cos A 的值;(2)求c 的值.【思路探究】 (1)根据已知条件B =2A ,结合正弦定理求A 的余弦值;(2)由cos A 求得sin A ,及sin B ,cos B ,从而求出sin C =sin(A +B ).【解答】 (1)因为a =3,b =26,B =2A ,所以在△ABC 中,由正弦定理得3sin A =26sin2A, 所以2sin A cos A sin A =263,故cos A =63. (2)由(1)知cos A =63,所以sin A =1-cos 2A =33. 又因为B =2A ,所以cos B =2cos 2A -1=13. 所以sin B =1-cos 2B =223, 在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =539.所以c=a sin C=5.sin A规律方法本题考查解三角形、三角恒等变换等知识;对于求三角形的元素问题,一般是利用正弦定理、余弦定理.第(2)小题,也可利用余弦定理a2=b2+c2-2bc cos A,利用解方程求解.2.三角形中的几何计算三角形中的几何计算实际体现了三角形的几何性质的应用.我们在利用正、余弦定理求解三角形问题时,是通过代数运算去判断三角形的边角关系.数形结合思想是通常情况下解决数学问题的途径,如果我们能从图形中寻找其几何关系,并构造相应的三角形,则几何图形之间的关系就可以转化为解三角形的问题解决.【例3】如图所示,已知∠MON=60°,Q是∠MON内一点,它到两边的距离分别为2和11,求OQ的长.【思路探究】由Q点向∠MON的两边作垂线,则垂足与O,Q四点共圆,且OQ为圆的直径,由此可得OQ的长.【解答】作QA⊥OM于A,QB⊥ON于B,连接AB,则QA=2,QB=11,且O,A,Q,B都在以OQ为直径的圆上.∠AOB和∠AQB为同一弦AB所对的圆周角,且两角互补.∵∠AOB=60°,∴∠AQB=120°.在△AQB中,由余弦定理,得AB2=AQ2+BQ2-2·AQ·BQ·cos∠AQB=22+112-2×2×11×cos120°=147,∴AB=7 3.在Rt △OBQ 中,OQ =OB sin ∠OQB =OB sin ∠OAB. 又在△AOB 中,OB sin ∠OAB =AB sin60°,∴OQ =AB sin60°=14. 规律方法 与多边形问题一样,其他的几何问题也可以转化为三角形问题,关键在于构造三角形(一般可以构造直角三角形)求解.本题的关键是通过过一点作角两边的垂线所围成四边形的对角互补,可知此四边形内接于一圆,OQ 为圆的直径.3.判断三角形的形状判断三角形的形状通常有两种途径:一是通过正弦定理和余弦定理化边为角(如a =2R sin A ,a 2+b 2-c 2=2ab cos C 等),利用三角恒等变换得出三角形内角之间的关系进行判断.此时需注意一些常见的三角恒等式所体现的角之间的关系,如:sin A =sin B ⇔A =B ;sin(A -B )=0⇔A =B ;sin2A =sin2B ⇔A =B 或A +B =π2等;二是利用正、余弦定理化角为边(如sin A =a 2R,cos A =b 2+c 2-a 22bc等),通过代数恒等变换,求出三条边之间的关系进行判断. 【例4】 在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.【思路探究】 解决本题有两种方法:一是将角化成边,一是将边化成角.【解答】 解法一:由正弦定理,得2sin B =sin A +sin C .又∵B =60°,∴A +C =120°.即A =120°-C ,代入上式,得2sin60°=sin(120°-C )+sin C . 整理,得32sin C +12cos C =1. ∴sin(C +30°)=1,∴C +30°=90°,∴C =60°,∴A =60°.∴△ABC 为正三角形.解法二:由余弦定理,得b 2=a 2+c 2-2ac cos B .∵B =60°且b =a +c 2,∴⎝ ⎛⎭⎪⎫a +c 22=a 2+c 2-2ac cos60°. 整理,得(a -c )2=0,∴a =c ,∴a =b =c ,∴△ABC为正三角形.规律方法在边角混合条件下判断三角形的形状时,可考虑将边化角,从角的关系判断;也可考虑将角化边,从边的关系判断.4.解三角形中蕴涵的思想方法(1)函数与方程思想函数的思想就是运用变化的观点分析和研究具体问题中的数量关系,在具体问题中把变量之间的关系用函数表示出来,然后用函数的观点研究问题.方程的思想在解决问题时,可以用事先设定的未知数沟通问题中所涉及的各量间的关系,列出方程(组),从而求出未知数及各量的值.正弦定理、余弦定理在一定条件下都可以看作方程,从而可求出所需要的量.【例5】如图所示,一辆汽车从O点出发,沿海岸一条公路以100千米/小时的速度向东匀速行驶.汽车开动时,在O点南偏东方向距O点500千米且与公路距离为300千米的海上M处有一艘快艇,与汽车同时出发,要把一件重要物品送给这辆汽车的司机,问快艇必须至少以多大的速度行驶,才能把物品送到司机手中?并求快艇以最小速度行驶时的行驶方向与OM所成的角.【思路探究】此类题属于相遇问题,一般的解法是构造一个三角形,然后利用正、余弦定理解此三角形即可.【解答】如图所示,设快艇从M处出发,以v千米/小时的速度,沿MN方向行驶,t 小时后与汽车在N处相遇.在△MON中,MO=500,ON=100t,MN=v t,MQ是M到ON 的距离,即MQ=300.设∠MON =α,由题意知sin α=35, 则cos α=45, 由余弦定理知MN 2=OM 2+ON 2-2OM ·ON cos α,即v 2t 2=5002+1002t 2-2×500×100t ×45, v 2=5002×1t 2-2×500×80×1t +1002=(500×1t-80)2+3 600, 当1t =80500,即t =254时,v 2min =3 600,即v min =60,所以快艇必须至少以60千米/小时的速度行驶,才能把物品送到司机手中.此时MN =60×254=15×25. ∵MQ 是M 到ON 的距离,且MQ =300,设∠MNO =β,则sin β=30015×25=45,则α+β=90°, ∴MN 与OM 成90°角.(2)分类讨论思想当数学问题不能用统一形式解决时,可以把已知条件的范围划分为若干个子集,在各个子集内分别讨论问题的解,然后综合各类解得到原问题的答案,这种解决问题的思想方法叫分类讨论思想方法,如正弦定理的证明(对直角三角形、锐角三角形、钝角三角形逐一讨论,并将锐角三角形和钝角三角形转化为直角三角形),解三角形中解的个数等,通过讨论,将不可能的或与题设条件不相符的逐一排除,从而得出正确结论,讨论时要做到不重不漏.【例6】 甲船在A 处,乙船在甲船正南方向距甲船20海里的B 处,乙船以10海里/小时的速度向正北方向行驶,而甲船同时以8海里/小时的速度由A 处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?【解答】 设甲、乙两船经过t 小时后相距最近,且分别到达P ,Q 两处,因乙船到达A 处需2小时,(1)当0≤t ≤2时,如图(1).在△APQ 中,AP =8t ,AQ =20-10t ,∴PQ =AQ 2+AP 2-2AP ·AQ cos120° =(20-10t )2+(8t )2-2(20-10t )8t (-12) =84t 2-240t +400=221t 2-60t +100.(2)当t >2时,如图(2).在△APQ 中,AP =8t ,AQ =10t -20.∴PQ =AQ 2+AP 2-2AQ ·AP cos60° =221t 2-60t +100.综合(1)(2)可知PQ =221t 2-60t +100(t ≥0), ∴当t =3021=107时,PQ 最小. ∴甲、乙两船行驶107小时后,相距最近. (3)化归与转化的思想在有关三角形的边角关系式证明等问题中,经常要利用正弦定理或余弦定理进行“化边为角”或“化角为边”;在解决实际问题中的角度、高度问题时,也常建立数学模型,将实际问题转化为数学问题求解,故要掌握这两类问题中的转化思想.【例7】 △ABC 中,若b cos C c cos B =1+cos2C 1+cos2B,试判断△ABC 的形状. 【思路探究】 本题需先对已知条件进行三角恒等变换,然后选择定理进行边与角的互化,进而判断出三角形的形状.思维流程图:【解答】 由已知1+cos2C 1+cos2B =2cos 2C 2cos 2B =cos 2C cos 2B =b cos C c cos B, 知cos C cos B =b c. 以下有两种解法.解法一(利用正弦定理边化角):由正弦定理得b c =sin B sin C ,∴cos C cos B =sin B sin C, 即sin C cos C =sin B cos B ,即sin2C =sin2B .∵B ,C 均为△ABC 的内角,∴2C =2B ,或2C +2B =180°, ∴B =C ,或B +C =90°,∴△ABC 为等腰三角形或直角三角形.解法二(利用余弦定理角化边):∵b c =cos C cos B , 再由余弦定理,得a 2+b 2-c 22ab a 2+c 2-b 22ac=b c, 即(a 2+b 2-c 2)c 2=b 2(a 2+c 2-b 2),∴a2c2-c4=a2b2-b4,即a2b2-a2c2+c4-b4=0,∴a2(b2-c2)+(c2-b2)(c2+b2)=0,即(b2-c2)(a2-b2-c2)=0,∴b2=c2,或a2-b2-c2=0,即b=c,或a2=b2+c2,∴△ABC为等腰三角形或直角三角形.。
2021_2022学年高中数学阶段提升课第二课解三角形教师用书教案北师大版必修5

阶段提升课第二课解三角形思维导图·构建网络考点整合·素养提升题组训练一由正、余弦定理解三角形1.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsin A=acos(B-).(1)求角B的大小;(2)设a=2,c=3,求b和sin(2A-B)的值.【解析】(1)在△ABC中,由正弦定理=,可得bsin A=asin B.又由bsin A=acos(B-),得asin B=acos(B-),即sin B=cos(B-),sin B=cos Bcos +sin Bsin ,得sin B=cos B,tan B=,又因为B∈(0,π),可得B=.(亦可由sin B=cos(B-),得cos(-B)=cos(B-),可得-B=B-,解得B=.)(2)在△ABC中,由余弦定理及a=2,c=3,B=,有b2=a2+c2-2accos B=7,故b=.由bsin A=acos(B-),可得sin A=.因为a<c,故cos A=.因此sin 2A=2sin Acos A=,cos 2A=2cos2A-1=.所以,sin(2A-B)=sin 2Acos B-cos 2Asin B=×-×=.2.(2020·宜春高一检测)如图,在平面四边形ABCD中,∠ABC=,∠BAC= ∠DAC,CD=2AB=4.(1)若AC=2,求△ABC的面积;(2)若∠ADC=,求AC.【解析】(1)因为∠ABC=,AB=2,AC=2,由余弦定理可得AC2=AB2+BC2-2AB·BCcos∠ABC,所以20=4+BC2+4×BC×,所以BC2+2BC-16=0,所以BC=2或BC=-4(舍去),S△ABC=AB·BC·sin∠ABC=×2×2×=2.(2)设∠BAC=∠CAD=θ,则0<θ<,∠BCA=-θ,在△ABC中,=,即=,所以AC=.在△ACD中,=,即=,所以AC=.由=解得2sin θ=cos θ,又0<θ<,所以sin θ=,所以AC==2.解三角形常见类型及解法在三角形的六个元素中要知三个(除三角外)才能求解,常见类型及其解法见下表:已知条件应用定理一般解法一边和二角(如a,B,C) 正弦定理由A+B+C=180°,求A;由正弦定理求出b与c两边和夹角(如a,b,C) 余弦定理由余弦定理求第三边c;由正弦定理求出一边所对的角,再由A+B+C=180°求出另一角三边(a,b,c) 余弦定理由余弦定理求出A,B,再利用A+B+C=180°求出C两边和其中一边的对角(如a,b,A) 正弦定理由正弦定理求出B,由A+B+C=180°求出C;再利用正弦定理求出c边题组训练二三角形中的最值或取值范围1.△ABC的内角A,B,C的对边分别为a,b,c,已知a=bcos C+csin B.(1)求B;(2)若b=2,求△ABC的面积的最大值.【解析】(1)由正弦定理知,a=2Rsin A,b=2Rsin B,c=2Rsin C,得2Rsin A=2Rsin Bcos C+2Rsin Csin B,即sin A=sin Bcos C+sin Csin B.又A=π-(B+C),所以sin [π-(B+C)]=sin(B+C)=sin Bcos C+sin Ccos B,即sin Bcos C+cos Bsin C=sin Bcos C+sin Csin B,所以cos Bsin C=sin Csin B.因为sin C≠0,所以cos B=sin B,又B为三角形的内角,所以B=.(2)S△ABC=acsin B=ac,由正弦定理得a==·sin A=2sin A,同理得c=2sin C,所以S△ABC=×2sin A×2sin C=2sin Asin C=2sin Asin=2sin A=2(sin Acos A+sin2A)=sin 2A+1-cos 2A=sin +1,所以当2A-=,即A=时,S△ABC有最大值+1.2.(2020·开封高一检测)在锐角三角形ABC中,a,b,c分别是角A,B,C的对边,且a-2csin A=0.(1)求角C的大小;(2)若c=2,求a+b的取值范围.【解析】(1)由正弦定理得sin A-2sin Csin A=0,因为△ABC为锐角三角形,所以A∈,C∈,所以sin A≠0,所以-2sin C=0,即sin C=,所以C=.(2)由正弦定理得====,所以a+b=(sin A+sin B)=[sin A+sin(A+C)]=(sin A+sin Acos C+cos Asin C)==4sin.因为△ABC为锐角三角形,C=,所以A∈,所以A+∈,所以sin∈,所以4sin∈(2,4],即a+b∈(2,4].三角形中最值与取值范围的解题技巧(1)利用正弦定理或余弦定理实现边角的转化,将问题转化为三角函数问题.(2)结合角的值或范围,求三角函数的最大值、最小值或值域.(3)三角形中常用的等式或不等式:①A+B+C=π;0<A,B,C<π;②<a<b+c;③求三角形中最值和取值范围常用辅助角公式:asin θ+bcos θ=sin(θ+φ). 其中tan φ=(a≠0),且角φ的终边过点(a,b).题组训练三判断三角形的形状1.(2020·枣庄高一检测)在△ABC中,角A,B,C所对的边分别为a,b,c,cos2=,则△ABC的形状一定是( )A.直角三角形B.锐角三角形C.等腰三角形D.等腰直角三角形【解析】选A.因为cos2=,所以=,化简得sin Acos C=sin B.因为B=π-(A+C),所以sin Acos C=sin(A+C),即cos Asin C=0.因为sin C≠0,所以cos A=0,即A=90°,所以△ABC是直角三角形.2.(2020·南昌高一检测)在△ABC中,角A,B,C所对的边分别为a,b,c,且a+b=c·(cos A+cos B),则△ABC的形状是( )A.等腰三角形B.直角三角形C.锐角三角形D.不能判断【解析】选B.运用正弦定理,得到sin A+sin B=sin C·(cos A+cos B),因为sin A=sin(B+C),sin B=sin(A+C),所以sin(B+C)+sin(A+C)=sin C·(cos A+cos B),即sin Bcos C+cos Bsin C+sin Acos C+cos Asin C=sin C·(cos A+cos B),整理得cos C(sin A+sin B)=0,因为A,B为三角形内角,所以sin A>0,sin B>0,所以cos C=0,即C=,故该三角形为直角三角形.1.确定三角形的形状主要的途径及方法途径一:化边为角途径二:化角为边主要方法(1)通过正弦定理实现边角互化(2)通过余弦定理实现边角互化(3)通过三角变换找出角之间的关系(4)通过三角函数值的符号的判断以及正、余弦函数有界性的讨论2.解三角形时的常用结论(1)在△ABC中,A>B⇔a>b⇔sin A>sin B⇔cos A<cos B.(2)在△ABC中,A+B+C=π,A+B=π-C,=-,则cos(A+B)=-cos C,sin(A+B)=sin C,sin =cos .题组训练四解三角形的实际应用1.(2020·广州高一检测)如图,为了测量某湿地A,B两点之间的距离,观察者找到在同一条直线上的三点C,D,E.从D点测得∠ADC=67.5°,从C点测得∠ACD=45°,∠BCE=75°,从E点测得∠BEC=60°.若测得DC=2,CE=(单位:百米),则A,B两点之间的距离为 ( )A.百米B.2百米C.3百米D.2百米【解析】选C.在△ADC中,∠ACD=45°,∠ADC=67.5°,则∠DAC=180°-45°-67.5°=67.5°,所以AC=DC=2.在△BCE中,∠BCE=75°,∠BEC=60°,则∠EBC=180°-75°-60°=45°,由正弦定理=得BC===.在△ABC中,AC=2,BC=,∠ACB=180°-∠ACD-∠BCE=60°,由余弦定理得AB2=AC2+BC2-2AC·BCcos∠ACB=9,所以AB=3.2.如图所示,某动物园要为刚入园的小老虎建造一间两面靠墙的三角形露天活动室,已知已有的两面墙的夹角为60°(即C=60°且两面墙的长度足够大),现有可供建造第三面围墙的材料6米(即AB长为6米),记∠ABC=θ.当θ=105°时,求所建造的三角形露天活动室的面积.【解析】在△ABC中,==,化简得AC=4·sin θ(米),BC=4·sin(θ+60°)(米).当θ=105°时,AC=4·sin θ=4·sin 105°=4cos 15°(米),BC=4·sin(θ+60°)=4sin 165°=4sin 15°(米),所以S△ABC=AC·BC·sin 60°=3(平方米).应用正、余弦定理解三角形应用题的一般步骤(1)理解题意,分清已知与未知,画出示意图(一个或几个三角形).(2)构建三角形,把实际问题中的长度、角度看作三角形相应的边和角,把实际问题转化为数学问题.(3)应用正弦定理、余弦定理等数学知识解三角形.(4)对所解的数学问题得出结论,给出实际问题的答案.。
【创新设计】2022-2021学年高二数学北师大版必修5学案:第二章 解三角形 章末复习提升

1.三角形解的个数的确定已知两边和其中一边的对角不能唯一确定三角形,解这类三角形问题可能消灭一解、两解、无解的状况,这时应结合“三角形中大边对大角”,此时一般用正弦定理,但也可用余弦定理.(1)利用正弦定理争辩:若已知a 、b 、A ,由正弦定理a sin A =b sin B ,得sin B =b sin Aa .若sin B >1,无解;若sin B =1,一解;若sin B <1,假如a ≥b ,一解;假如b sin A <a <b ,两解.(2)利用余弦定理争辩:已知a 、b 、A .由余弦定理a 2=c 2+b 2-2cb cos A ,即c 2-(2b cos A )c +b 2-a 2=0,这是关于c 的一元二次方程.若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形一解;若方程有两不同正数解,则三角形有两解. 2.三角形外形的判定方法 判定三角形外形通常有两种途径:(1)利用正弦定理和余弦定理,化边为角(如:a =2R sin A ,a 2+b 2-c 2=2ab cos C 等),通过三角变换得出三角形内角之间的关系进行推断.此时留意一些常见的三角恒等式所体现的角之间的关系.如:sin A =sin B ⇔A =B ;sin(A -B )=0⇔A =B ;sin 2A =sin 2B ⇔A =B 或A +B =π2等;(2)利用正弦定理、余弦定理化角为边,如:sin A =a2R (R 为△ABC 外接圆半径),cos A =b 2+c 2-a 22bc 等,通过代数恒等变换求出三条边之间的关系进行推断.3.解三角形应用题的基本思路解三角形应用题的关键是将实际问题转化为解三角形问题来解决.其基本解题思路:首先分析此题属于哪种类型的问题(如:测量距离、高度、角度等),然后依题意画出示意图,把已知量和未知量标在示意图中(目的是发觉已知量与未知量之间的关系),最终确定用哪个定理转化,哪个定理求解,并进行作答.解题时还要留意近似计算的要求.题型一 利用正弦、余弦定理解三角形 解三角形的一般方法:(1)已知两角和一边,如已知A 、B 和c ,由A +B +C =π求C ,由正弦定理求a 、b .(2)已知两边和这两边的夹角,如已知a 、b 和C ,应先用余弦定理求c ,再应用正弦定理先求较短边所对的角,然后利用A +B +C =π,求另一角.(3)已知两边和其中一边的对角,如已知a 、b 和A ,应先用正弦定理求B ,由A +B +C =π求C ,再由正弦定理或余弦定理求c ,要留意解可能有多种状况.(4)已知三边a 、b 、c ,可应用余弦定理求A 、B 、C .例1 在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,设a ,b ,c 满足条件b 2+c 2-bc =a 2和c b =12+3,求A 和tan B 的值.解 由余弦定理cos A =b 2+c 2-a 22bc =12,因此A =60°.在△ABC 中,C =180°-A -B =120°-B . 由已知条件,应用正弦定理 12+3=c b =sin C sin B =sin (120°-B )sin B =sin 120°cos B -cos 120°sin Bsin B=32tan B +12, 从而tan B=12.跟踪演练1如图,在△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,求AD 的长度.解 在△ABC 中,∵AB =AC =2,BC =23,由余弦定理, 得cos C =AC 2+BC 2-AB 22×AC ×BC =32,∴sin C =12;在△ADC 中,由正弦定理得,AD sin C =ACsin ∠ADC, ∴AD =222×12= 2. 题型二 与解三角形有关的综合问题该类问题以三角形为载体,在已知条件中设计了三角形的一些边角关系,由于正弦定理和余弦定理都是关于三角形的边角关系的等式,通过定理的运用能够实现边角互化,在边角互化时,经常用到三角函数中两角和与差的公式及倍角公式等.例2 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -b )cos C =c ·cos B ,△ABC 的面积S =103,c =7. (1)求角C ; (2)求a ,b 的值.解 (1)∵(2a -b )cos C =c cos B , ∴(2sin A -sin B )cos C =sin C cos B , 2sin A cos C -sin B cos C =cos B sin C , 即2sin A cos C =sin(B +C ), ∴2sin A cos C =sin A .∵A ∈(0,π),∴sin A ≠0,∴cos C =12,∴C =π3.(2)由S =12ab sin C =103,C =π3,得ab =40.①由余弦定理得:c 2=a 2+b 2-2ab cos C ,即c 2=(a +b )2-2ab ⎝⎛⎭⎫1+cos π3, ∴72=(a +b )2-2×40×⎝⎛⎭⎫1+12. ∴a +b =13.②由①②得a =8,b =5或a =5,b =8.跟踪演练2 在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若a =2,C =π4,cos B 2=255,求△ABC的面积S .解 由于cos B =2cos 2 B 2-1=35,且B ∈(0,π),所以sin B =45.所以sin A =sin(π-B -C )=sin ⎝⎛⎭⎫3π4-B =sin3π4cos B -cos 3π4sin B =7210. 由正弦定理,得c =a sin C sin A =107,所以S △ABC =12ac sin B =12×2×107×45=87.题型三 正弦、余弦定理在实际中的应用 应用解三角形学问解决实际问题需要下列四步:(1)分析题意,精确 理解题意,分清已知与所求,尤其要理解题中的有关名词、术语,如坡度、仰角、俯角、视角、方位角等;(2)依据题意画出示意图,并将已知条件在图形中标出;(3)将所求问题归结到一个或几个三角形中,通过合理运用正弦、余弦定理等有关学问正确求解; (4)检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.例3 如图,a 是海面上一条南北方向的海防警戒线,在a 上点A 处有一个水声监测点,另两个监测点B ,C 分别在A 的正东方20 km 和54 km 处.某时刻,监测点B 收到发自静止目标P 的一个声波信号,8 s 后监测点A 、20 s 后监测点C 相继收到这一信号,在当时气象条件下,声波在水中的传播速度是1.5 km/s.(1)设A 到P 的距离为x km ,用x 表示B ,C 到P 的距离,并求x 的值; (2)求静止目标P 到海防警戒线a 的距离(精确到0.01 km). 解 (1)由题意P A -PB =1.5×8=12(km), PC -PB =1.5×20=30(km).∴PB =(x -12)(km),PC =(18+x )(km). 在△P AB 中,AB =20 km ,cos ∠P AB =P A 2+AB 2-PB 22P A ·AB =x 2+202-(x -12)22x ·20=3x +325x. 同理cos ∠P AC =72-x3x .∵cos ∠P AB =cos ∠P AC ,∴3x +325x =72-x 3x ,解得x =1327(km).(2)作PD ⊥a 于D ,在Rt △PDA 中 ,PD =P A cos ∠APD =P A cos ∠P AB =x ·3x +325x =3×1327+325≈17.71(km).答 静止目标P 到海防警戒线a 的距离为17.71 km.跟踪演练3 甲船在A 处、乙船在甲船正南方向距甲船20海里的B 处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A 处向北偏西60°方向行驶,问经过多少小时后,甲、乙两船相距最近?解 设甲、乙两船经t 小时后相距最近,且分别到达P 、Q 两处,因乙船到达A 处需2小时.①当0≤t <2时,在△APQ 中,AP =8t ,AQ =20-10t , ∴PQ =AQ 2+AP 2-2AP ·AQ cos 120°= (20-10t )2+(8t )2-2(20-10t )×8t ×⎝⎛⎭⎫-12 =84t 2-240t +400 =221t 2-60t +100.②当t =2时,PQ =8×2=16.③当t >2时,在△APQ 中,AP =8t ,AQ =10t -20,∴PQ =AQ 2+AP 2-2AQ ·AP cos 60°=221t 2-60t +100.综合①②③知,PQ =221t 2-60t +100 (t ≥0).当且仅当t =3021=107时,PQ 最小.答 甲、乙两船行驶107小时后,相距最近.题型四 函数与方程思想的应用与函数思想相联系的就是方程思想.所谓方程思想,就是在解决问题时,用事先设定的未知数沟通问题所涉及的各量间的制约关系,列出方程(组),从而求出未知数及各量的值,使问题获得解决,所设的未知数沟通了变量之间的联系.方程可以看做未知量与已知量相互制约的条件,它架设了由已知探究未知的桥梁.本章在利用正弦、余弦定理求角或边长时,往往渗透着函数与方程思想.例4 在△ABC 中,已知A >B >C ,且A =2C ,b =4,a +c =8,求a ,c 的长. 解 由正弦定理得a sin A =csin C ,∵A =2C ,∴a sin 2C =csin C,∴a =2c cos C . 又∵a +c =8,∴cos C =8-c2c ,①由余弦定理及a +c =8,得 cos C =a 2+b 2-c 22ab =a 2+42-c 28a=(8-c )2+42-c 28(8-c )=10-2c8-c .②由①②知8-c 2c =10-2c 8-c,整理得5c 2-36c +64=0. ∴c =165或c =4(舍去).∴a =8-c =245.故a =245,c =165.跟踪演练4 已知函数f (x )=32sin 2x -1+cos 2x 2-12,x ∈R . (1)求函数f (x )的最小值和最小正周期;(2)设△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,且c =3,f (C )=0,若向量m =(1,sin A )与向量n =(2,sin B )共线,求a ,b 的值.解 (1)∵f (x )=32sin 2x -1+cos 2x 2-12=sin (2x -π6)-1,∴函数f (x )的最小值是-2,最小正周期是T =2π2=π.(2)由题意得f (C )=sin(2C -π6)-1=0,∴sin(2C -π6)=1,∵0<C <π,∴-π6<2C -π6<116π,∴2C -π6=π2,∴C =π3,∵m ∥n ,∴12=sin A sin B ,由正弦定理得,a b =12,①由余弦定理得,c 2=a 2+b 2-2ab cos π3,即3=a 2+b 2-ab ,② 由①②解得a =1,b =2.1.在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B 等价于a >b 等价于sin A >sin B .2.依据所给条件确定三角形的外形,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.3.正弦定理是一个关于边角关系的连比等式,在运用此定理时,只要知道其比值或等量关系就可以通过约分达到解决问题的目的,在解题时要学会机敏运用.运用余弦定理时,要留意整体思想的运用.。
高中数学 第二章 解三角形教案 北师大版必修5

第二章解三角形§1正弦定理与余弦定理1.1 正弦定理(教师用书独具)●三维目标1.知识与技能通过对任意三角形边长和角度的关系探索,掌握正弦定理的内容及其证明方法;会用正弦定理与三角形内角和定理解斜三角形的基本问题.2.过程与方法让学生从已有的几何知识出发,探究在任意三角形中,边与其对角的关系,引导学生观察、推导、比较,由特殊到一般归纳出正弦定理.3.情感、态度与价值观培养学生在方程思想指导下处理三角形问题的运算能力;培养学生合情推理探索数学规律的能力.●重点难点重点:正弦定理的探索的证明及其应用.难点:已知两边和其中一边的对角解三角形时判断个数.(教师用书独具)●教学建议已知两边和其中一边的对角解三角形时判断个数,此类问题有两个、一个、零个的情况,需要进行讨论,可做如下处理:在△ABC中,已知a,b和A时三角形解的情况:A为锐角A为钝角或直角图 像关系式 ①a =b sin A②a ≥b b sin A<a <b a <b sin Aa >ba ≤b解的个数 一解两解无解一解无解●教学流程创设问题情境,提出了2个问题⇒通过引导学生回答所提问题,理解正弦定理及三角形面积公式⇒通过例1及互动探究,使学生掌握利用正弦定理解三角形问题⇒通过例2及变式训练,使学生掌握三角形面积公式的应用⇒通过例3及变式训练,使学生掌握判断三角形的形状问题⇒归纳整理,进行课堂小结,整体认识本节课所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正(对应学生用书第32页)课标解读1.通过对特殊三角形边角间数量关系的研究,发现正弦定理,了解其向量证法(难点).2.掌握正弦定理,并能解决一些简单的三角形度量问题(重点).正弦定理【问题导思】在Rt △ABC 中,c 为斜边,试问a sin A ,b sin B ,csin C 的值相等吗?为什么?对于一般的三角形而言,a sin A ,b sin B ,csin C的值是否相等?【提示】 在Rt △ABC 中,∵sin A =a c ,sin B =b c且C =90°, ∴a sin A =b sin B =csin C.对一般的三角形而言,也相等. 语言表述 在一个三角形中,各边和它所对角的正弦的比相等符号表示 asin A =bsin B =csin C比值的 含义a sin A =b sin B =csin C=2R(其中R 为△ABC 的外接圆半径)变形(1)a =2R sin__A ,b =2R sin__B ,c =2R sin__C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c2R ;(3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C.作用 揭示了三角形边、角之间的数量关系三角形面积公式【问题导思】在Rt △ABC 中,c 为斜边,三角形的面积与12ab sin C ,12bc sin A ,12ac sin B 的值相等吗?猜想一下在一般三角形中是否成立?【提示】 ∵C =90°,∴S △ABC =12ab =12ab sin C ,设边c 上的高为h , 则sin B =ha ,sin A =h b,∴S △ABC =12hc =12ac sin B =12bc sin A ,∴在Rt △ABC 中,c 为斜边,三角形的面积与12ab sin C ,12bc sin A ,12ac sin B 的值相等.猜想在一般三角形中也成立.三角形ABC 的面积:S =12ab sin__C=12bc sin__A =12ac sin__B .(对应学生用书第32页)利用正弦定理解三角形在△ABC 中,(1)若A =45°,B =30°,a =2,求b ,c 与C ; (2)若B =30°,b =5,c =53,求A 、C 与a .【思路探究】 (1)已知A ,B ,如何求C ?在正弦定理中b ,c 分别怎样表示? (2)已知B ,b ,c 运用正弦定理可先求出哪个量? 【自主解答】 (1)由三角形内角和定理,得:C =180°-(A +B )=180°-(45°+30°)=105°.由正弦定理a sin A =b sin B =csin C ,得b =a sin B sin A =2sin 30°sin 45°=2×1222=2,sin 105°=sin(60°+45°)=6+24, c =a sin C sin A =2sin 105°sin 45°=2×6+2422=3+1. (2)∵b =5,c =53,B =30°, ∴c ·si n B <b <c , ∴△ABC 有两解, 由正弦定理得:sin C =c sin B b =32, ∴C =60°或120°.当C =60°时,A =90°,易得a =10; 当C =120°时,A =30°,此时a =b =5.1.已知两角与任一边解三角形,可先利用三角形内角和定理求第三个角,再利用正弦定理求出两未知边.2.已知△ABC 的两边a ,b 和角A ,判断三角形解的个数,有以下两种方法: 法一 作图判断.作出已知角A ,边长b ,以点C 为圆心,以边长a 为半径画弧,与射线AB 的公共点(除去顶点A )的个数即为三角形解的个数.法二 根据三角函数的性质来判断. 由正弦定理,得sin B =b sin A a ,当b sin A a >1时,无解;当b sin Aa=1时,有一解;当b sin Aa<1时,如果a ≥b ,即A ≥B ,则B 一定为锐角,有一解;如果a <b ,即A <B ,有两解.本例(2)中,若B =60°,b =43,a =42,如何求解? 【解】 由正弦定理a sin A =b sin B =csin C,得 sin A =a sin Bb =42sin 60°43=22, 又a <b ,∴A =45°,C =180°-A -B =75°.∴c =b sin C sin B =43sin 75°sin 60°=43×2+6432=2(2+6).三角形的面积问题在△ABC 中,sin(C -A )=1,sin B =13.(1)求sin A 的值;(2)设AC =6,求△ABC 的面积.【思路探究】 (1)先寻找角A 、B 间的关系,再求sin A. (2)先由正弦定理求BC ,再代入三角形的面积公式求解. 【自主解答】 (1)由C -A =π2和A +B +C =π,得2A =π2-B ,0<A <π4.故cos 2A =sin B ,即1-2sin 2A =13,sin A =33.(2)由(1)得cos A =63. 又由正弦定理,得BC sin A =AC sin B ,BC =sin Asin BAC =32,又C =π2+A ,∴sin C =cos A =63.所以S △ABC =12AC ·BC ·sin C =12AC ·BC ·cos A=3 2.1.求三角形的面积是在已知两边及其夹角的情况下求得的,所以在解题中要有目的的为具备两边及其夹角的条件作准备.2.三角形面积计算公式(1)S =12a ·h a =12b ·h b =12c ·h c (h a 、h b 、h c 分别表示a ,b ,c 边上的高).(2)S =12ab sin C =12ac sin B =12bc sin A =abc 4R .(3)S =12r (a +b +c )(r 为内切圆半径).已知△ABC 中,AB →·AC →<0,S △ABC =154,|AB →|=3,|AC →|=5,则∠BAC =( ) A .30° B .120° C .150° D .30°或150° 【解析】 由S △ABC =154,得12×3×5sin ∠BAC =154,∴sin ∠BAC =12,又由AB →·AC →<0,得∠BAC >90°, ∴∠BAC =150°. 【答案】 C判断三角形的形状已知△ABC 中,b sin B =c sin C ,且sin 2A =sin 2B +sin 2C ,试判断三角形的形状.【思路探究】 利用正弦定理的变形(如a =2R sin A ),将条件中的角化为边,或将边化为角,从而进行判断.【自主解答】 法一 由b sin B =c sin C 得,2R sin 2B =2R sin 2C , 即sin 2B =sin 2C. ∵0<B <π,0<C <π, ∴sin B >0,sin C >0. ∴sin B =sin C ,∴B =C.又sin 2A =sin 2B +sin 2C ,A =π-(B +C )=π-2B , ∴sin 22B =2sin 2B. 即4sin 2B ·cos 2B =2sin 2B. ∴cos 2B =12.由A =π-2B ∈(0,π)知,0<B <π2.∴cos B =22,∴B =π4,A =π2. 故△ABC 是等腰直角三角形.法二 由b sin B =c sin C 得:b ·2R sin B =c ·2R sin C , ∴b 2=c 2,b =c .由sin 2A =sin 2B +sin 2C 得,(2R sin A )2=(2R sin B )2+(2R sin C )2, ∴a 2=b 2+c 2,结合b =c 知,△ABC 为等腰直角三角形.1.本题已知三角形中的边角关系式,判断三角形的形状,可考虑使用正弦定理,把关系式中的边化为角,再进行三角恒等变换求出三个角之间的关系式,然后给予判定.2.在正弦定理的推广中,a =2R sin A ,b =2R sin B ,c =2R sin C 是边化角的主要工具.其他变形还有角化边,如sin A =a 2R ,sin B =b 2R ,sin C =c2R ,借助正弦定理可以进行三角形形状的判断,三角恒等式的证明.在△ABC 中,已知a 2tan B =b 2tan A ,试判断三角形的形状.【解】 由已知得a 2sin B cos B =b 2sin Acos A,由正弦定理a =2R sin A ,b =2R sin B (R 为△ABC 的外接圆半径),得 4R 2sin 2A sinB cos B =4R 2sin 2B sin Acos A ,sin A cos A =sin B cos B , ∴sin 2A =sin 2B. ∴2A +2B =π或2A =2B. ∴A +B =π2或A -B =0.∴△ABC 为等腰三角形或直角三角形.(对应学生用书第34页)解三角形时忽视讨论致误在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且b =6,a =23,A =30°,求△ABC 的面积.【错解】 由正弦定理得: sin B =b sin A a =6×sin 30°23=32, ∴B =60°.故C =180°-A -B =180°-30°-60°=90°, 在Rt △ABC 中,C =90°,a =23,b =6, 故S △ABC =12ab =12×23×6=6 3.【错因分析】 上述解答错误之处在于在利用正弦定理求得sin B =32后直接得出B =60°,未对解的情况作出判断和讨论,从而导致丢解.【防范措施】 遇到已知两边及其中一边对角解三角形时一定要讨论. 【正解】 由正弦定理得, sin B =b sin A a =6×sin 30°23=32. 由b =6,a =23知,b >a ,∴B >A =30°. ∴B =60°或120°.(1)当B =60°时,C =180°-A -B =90°. ∴S △ABC =12ab =12×6×23=6 3.(2)当B =120°时,C =180°-A -B =30°. ∴S △ABC =12ab sin C =12×6×23×sin 30°=3 3.综合以上得△ABC 的面积为63或3 3.1.应用正弦定理可解决两类三角形问题:(1)已知三角形两角及一边;(2)已知两边及其中一边的对角. 2.已知两边及其中一边的对角解三角形时,要注意分类讨论.3.正弦定理揭示了三角形中边、角之间的数量关系,可以借助三角形外接圆的半径,用边表示角或用角表示边,从而在解决有关问题时,可利用其“化边为角”或“化角为边”.(对应学生用书第34页)1.在△ABC 中,一定成立的等式是( ) A .a sin A =b sin B B .a cos A =b cos B C .a sin B =b sin A D .a cos B =b cos A 【解析】 由正弦定理得a sin A =bsin B,∴a sin B =b sin A.【答案】 C2.在△ABC 中,A =30°,C =105°,b =8,则a 等于( )A .4B .4 2C .4 3D .4 5【解析】 由三角形内角和定理知B =180°-A -C =180°-30°-105°=45°.由正弦定理a sin A =b sin B ,得a =b sin A sin B =8·sin 30°sin 45°=4 2.【答案】 B3.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A ,则角C =________.【解析】 根据正弦定理,a sin A =csin C,由3a =2c sin A ,得3sin A =2sin C sin A , ∴sin C =32,而角C 是锐角,∴C =π3. 【答案】π34.在△ABC 中,求证:a 2sin 2B +b 2sin 2A =2ab sin C. 【证明】 由正弦定理得a 2sin 2B +b 2sin 2A ab =a b sin 2B +basin 2A=sin A ·sin 2B sin B +sin B ·sin 2Asin A=2(sin A ·cos B +sin B ·cos A ) =2sin(A +B )=2sin C ,故原式成立.(对应学生用书第97页)一、选择题1.在△ABC 中,下列a 与b sin A 的关系正确的是( ) A .a >b sin A B .a ≥b sin A C .a <b sin A D .a ≤b sin A 【解析】 由正弦定理得a sin A =bsin B,所以a =b sin Asin B,又因为sin B ∈(0,1], 所以a ≥b sin A. 【答案】 B2.△ABC 中,a =5,b =3,sin B =22,则符合条件的三角形有( ) A .1个 B .2个 C .3个 D .0个 【解析】 ∵a sin B =102, ∴a sin B <b =3<a =5, ∴符合条件的三角形有2个. 【答案】 B3.在△ABC 中,若A =75°,B =45°,c =6,则△ABC 的面积为( ) A .9+3 3 B.9(6-2)2C.9+332 D.9(6+2)2【解析】 ∵A =75°,B =45°,∴C =60°,b =c sin Bsin C=6×2232=26,∴S △ABC =12bc sin A =12×26×6×6+24=9+3 3.【答案】 A4.在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,且a cos B +a cos C =b +c ,则△ABC 的形状是( )A .等边三角形B .锐角三角形C .钝角三角形D .直角三角形【解析】 ∵a cos B +a cos C =b +c ,故由正弦定理得,sin A cos B +sin A cos C =sin B +sin C =sin(A +C )+sin(A +B ), 化简得:cos A (sin B +sin C )=0,又sin B +sin C >0, ∴cos A =0,即A =π2,∴△ABC 为直角三角形. 【答案】 D5.(2012·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C =( )A.725 B .-725C .±725 D.2425【解析】 由b sin B =csin C ,且8b =5c ,C =2B ,所以5c sin 2B =8c sin B ,所以cos B=45.所以cos C =cos 2B =2cos 2B -1=725. 【答案】 A 二、填空题6.在△ABC 中,B =45°,C =60°,c =1,则最短边的边长等于________. 【解析】 由三角形内角和定理知:A =75°,由边角关系知B 所对的边b 为最小边,由正弦定理b sin B =c sin C 得b =c sin B sin C =1×2232=63.【答案】637.(2013·济南高二检测)已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则sin C =________.【解析】 ∵A +B +C =180°,且A +C =2B ,∴B =60°. 由正弦定理得sin A =a sin B b =1×sin 60°3=12, 又a <b ,∴A =30°.∴C =180°-(30°+60°)=90°.即sin C =1. 【答案】 18.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________. 【解析】 由于S △ABC =3,BC =2,C =60°, ∴3=12×2·AC ·32,∴AC =2,∴△ABC 为正三角形,∴AB =2. 【答案】 2 三、解答题9.在△ABC 中,c =6,A =45°,a =2,求b 和B ,C. 【解】 ∵a sin A =csin C,∴sin C =c sin A a =6×sin 45°2=32. ∵c sin A <a <c ,∴C =60°或C =120°. ∴当C =60°时,B =75°,b =c sin B sin C =6sin 75°sin 60°=3+1, ∴当C =120°时,B =15°,b =c sin B sin C =6sin 15°sin 120°=3-1. ∴b =3+1,B =75°,C =60°或b =3-1,B =15°,C =120°.10.在△ABC 中,如果lg a -lg c =lgsin B =-lg 2,且B 为锐角,判断此三角形的形状.【解】 由lg a -lg c =lgsin B =-lg 2, 得sin B =22,又B 为锐角, ∴B =45°,又a c =22,∴sin A sin C =22, ∴sin C =2sin A =2sin(135°-C ), ∴sin C =sin C +cos C , ∴cos C =0,即C =90°, 故此三角形是等腰直角三角形.11.在△ABC 中,已知tan B =3,cos C =13,AC =36,求△ABC 的面积.【解】 设△ABC 中AB 、BC 、CA 的长分别为c 、a 、b . 由tan B =3,得B =60°, ∴sin B =32,cos B =12. 又cos C =13,∴sin C =1-cos 2C =223,由正弦定理得c =b sin Csin B =36×22332=8.又∵sin A =sin(B +C )=sin B cos C +cos B sin C =36+23, ∴三角形面积S △ABC =12bc sin A =62+8 3.(教师用书独具)已知△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,且a cos C +12c =b ,(1)求角A 的大小;(2)若a =1,求△ABC 的周长l 的取值范围.【思路探究】 (1)本题可考虑把边化为角,通过寻找三角形角与角之间的关系求解; (2)将周长表示为三角形某内角的函数,通过求函数的值域来求周长的取值范围. 【自主解答】 (1)由a cos C +12c =b 和正弦定理得,sin A cos C +12sin C =sin B ,又sin B =sin(A +C )=sin A cos C +cos A sin C , ∴12sin C =cos A sin C , ∵sin C ≠0,∴cos A =12,∵0<A <π,∴A =π3.(2)由正弦定理得,b =a sin B sin A =23sin B , c =a sin C sin A =23sin C ,则l =a +b +c =1+23(sin B +sin C )=1+23[sin B +sin(A +B )]=1+2(32sin B +12cos B )=1+2sin(B +π6). ∵A =π3,∴B ∈(0,2π3),∴B +π6∈(π6,5π6),∴sin(B +π6)∈(12,1],∴△ABC 的周长l 的取值范围为(2,3].利用正弦定理可以实现边、角互化(1)将边转化为角:a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)将角转化为边:sin A =a 2R ,sin B =b 2R ,sin C =c 2R.已知△ABC 的角A 、B 、C 的对边分别为a 、b 、c ,若1-c 2a =sin (B -C )sin (B +C ),求cosA +C2的值.【解】 由正弦定理以及sin A =sin(B +C ),得: 1-sin C 2sin A =sin (B -C )sin A, 整理得2sin A -sin C =2sin(B -C ), ∴4cos B sin C =sin C , 又sin C ≠0, ∴cos B =14,∴1-2sin 2B 2=14,sin B 2=64, ∴cosA +C2=cos π-B 2=sin B 2=64. 趣味材料中国南宋末年数学家秦九韶发现三斜求积公式,其著作《数书九章》卷五第二题即三斜求积.“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步,欲知为田几何?”答曰:“三百十五顷.”其术文是:“以小斜幂并大斜幂,减中斜幂,余半之,自乘于上;以小斜幂乘大斜幂,减上,余四约之为实,……开平方得积.”若以大斜记为a ,中斜记为b ,小斜记为c ,秦九韶的方法相当于下面的一般公式:S =14[a 2c 2-(a 2+c 2-b 22)2],这里a >b >c .1.2 余弦定理(教师用书独具)●三维目标1.知识与技能掌握余弦定理的两种表示形式及余弦定理的向量方法;并会用余弦定理解决基本的解三角形问题.2.过程与方法利用向量数量积推出余弦定理并通过实践演算掌握运用余弦定理解决解三角形问题.3.情感、态度与价值观培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辨证统一.●重点难点重点:余弦定理的发现和证明过程及应用.难点:正、余弦定理与三角函数、三角恒等变换的综合问题.(教师用书独具)●教学建议探究和证明余弦定理的过程既是本节课的重点,也是本节课的难点.学生已具备了勾股定理的知识,即当C=90°时,有c2=a2+b2,作为一般的情况,当C≠90°时,三角形的三边满足什么呢?学生一时很难找到思路.最容易想到的思路就是构造直角三角形,尝试用勾股定理去探究三角形的边角关系.用向量的数量积证明余弦定理更是学生想不到的,原因是学生很难将向量的知识与解三角形的知识相结合.因此教师在授课时可以适当点拨、启发.鼓励学生大胆的探索.在教学中引导学生从不同的途径去探索余弦定理的证明,这样既能开拓学生的视野,加深学生对余弦定理的理解,又能培养学生形成良好的思维习惯,从而突破本节难重点.●教学流程创设问题情境,提出问题⇒通过引导学生回答所提问题,结合勾股定理,理解余弦定理⇒通过例1及变式训练,使学生掌握利用余弦定理解三角形问题⇒通过例2及互动探究,使学生掌握、判断三角形形状问题⇒通过例3及变式训练,使学生掌握正、余弦定理的综合应用⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正(对应学生用书第35页)课标解读1.了解用向量数量积证明余弦定理的方法,体会向量工具在解决三角形度量问题时的作用(难点). 2.掌握余弦定理,并能解决一些简单的三角形度量问题(重点).余弦定理【问题导思】图2-1-1如图2-1-1,在△ABC 中,设CB →=a ,CA →=b ,AB →=c ,如果C =90°,如何求AB 边的长?当C ≠90°,如何用向量的数量积表示AB 边的长?【提示】 利用勾股定理求AB 的边长. |c |2=c·c =(a -b )·(a -b )=a 2-2a·b +b 2=a 2+b 2-2|a ||b |cos C ∴c 2=a 2+b 2-2ab cos C. 余弦定理语言表述三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.符号表示a 2=b 2+c 2-2bc cos__A ;b 2=a 2+c 2-2ac cos__B ; c 2=a 2+b 2-2ab cos__C.推论cos A =b 2+c 2-a 22bc;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab.作用 实现三角形边与角的互化.(对应学生用书第35页)利用余弦定理解三角形(1)在△ABC 中,若a =1,b =1,C =120°求c ;(2)已知△ABC 中,a ∶b ∶c =2∶6∶(3+1),求△ABC 各内角的度数. 【思路探究】 (1)直接利用余弦定理求解. (2)先根据比值设出各边的长,再利用余弦定理求解. 【自主解答】 (1)c 2=a 2+b 2-2ab cos C =1+1-2cos 120°=3, ∴c = 3.(2)∵a ∶b ∶c =2∶6∶(3+1), ∴令a =2k ,b =6k ,c =(3+1)k . 由余弦定理得cos A =b 2+c 2-a 22bc =6+(3+1)2-426(3+1)=22,∴A =45°.cos B =a 2+c 2-b 22ac =4+(3+1)2-62×2×(3+1)=12,∴B =60°.∴C =180°-A -B =180°-45°-60°=75°.1.本题(2)关键是根据已知条件设出三边,为使用余弦定理的推论求角创造条件. 2.余弦定理是刻画三角形两边及其夹角的余弦与第三边关系的定理.在余弦定理的每一个等式中均含有四个不同的量,它们分别是三角形的三边和一个角,知道其中的任意三个量,便可求得第四个量.(1)在△ABC 中,已知角A ,B ,C 所对的三边长分别为a ,b ,c ,若A =π4,b =2,S △ABC=2,求a .(2)在△ABC 中,a ∶b ∶c =2∶3∶13,求△ABC 中最大角的度数.【解】 (1)因为S △ABC =12bc sin A =12×2×22c =22c =2,所以c =2 2.根据余弦定理得a 2=b 2+c 2-2bc cos A =4+8-2×2×22×22=4,所以a =2. (2)∵a ∶b ∶c =2∶3∶13,∴令a =2k ,b =3k ,c =13k (k >0),由b <a <c ,知C 为△ABC 最大内角,cos C =a 2+b 2-c 22ab =4+3-132×2×3=-32,又0°<C <180°∴C =150°.判断三角形的形状在△ABC 中,已知(a +b +c )(a +b -c )=3ab ,且2cos A sin B =sin C ,确定△ABC 的形状.【思路探究】 可先把角的关系转化为边的关系,通过边来判断三角形的形状,也可把边的关系转化为角的关系,通过角来判断三角形的形状.【自主解答】 法一 由正弦定理得sin C sin B =cb ,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b.又由余弦定理得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc,即c 2=b 2+c 2-a 2,所以a 2=b 2,所以a =b . 又因为(a +b +c )(a +b -c )=3ab , 所以(a +b )2-c 2=3ab ,所以4b 2-c 2=3b 2,即b 2=c 2.所以b =c ,所以a =b =c . 所以△ABC 为等边三角形. 法二 因为A +B +C =180°, 所以sin C =sin(A +B ), 又因为2cos A sin B =sin C ,所以2cos A sin B =sin A cos B +cos A sin B , 所以sin(A -B )=0.又因为A 与B 均为△ABC 的内角,所以A =B. 又由(a +b +c )(a +b -c )=3ab 得(a +b )2-c 2=3ab , 所以a 2+b 2-c 2+2ab =3ab ,即a 2+b 2-c 2=ab .由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°<C <180°,所以C =60°. 所以△ABC 为等边三角形.1.本题解法一利用了边的关系判断,解法二利用了角的关系判断.2.判断三角形的形状,应围绕三角形的边角关系进行思考,主要有以下两条途径:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,此时要注意应用A +B +C =π这个结论.若将例题中的条件改为“△ABC 中,b ,c 是角B 、C 的对边,且cos 2A 2=b +c 2c”,试判断△ABC 的形状.【解】 法一 ∵cos 2A 2=1+cos A2且cos 2A 2=b +c 2c, ∴1+cos A 2=b +c 2c ,即cos A =bc. 由正弦定理,得cos A =sin B sin C,∴cos A sin C =sin(A +C ),整理得sin A cos C =0. ∵sin A ≠0,∴cos C =0,∴C =π2.故△ABC 为直角三角形.法二 同法一得cos A =b c.由余弦定理得b 2+c 2-a 22bc =b c,整理得a 2+b 2=c 2,故△ABC 为直角三角形.正、余弦定理的综合应用在△ABC 中,C =2A ,a +c =10,cos A =34,求b .【思路探究】 先根据正弦定理求出a ,c 的值,再利用余弦定理建立b 的方程求b . 【自主解答】 由正弦定理得c a =sin C sin A =sin 2A sin A =2cos A =32, 又a +c =10, ∴a =4,c =6.由余弦定理a 2=b 2+c 2-2bc cos A 得b 2-9b +20=0, 解得b =4或b =5. 当b =4时, ∵a =4,∴A =B ,又C =2A 且A +B +C =180°, ∴A =45°与cos A =34矛盾,舍去,∴b =5.1.本题易忽视检验b =4的情况导致出错.2.余弦定理和正弦定理都是解三角形的重要工具,都可以实现三角形中的边角转化.在解决三角形中的综合问题时,要有意识地合理选择,一般情况下,如果条件中含有角的余弦或边的二次式,要考虑余弦定理;若条件中含有角的正弦或边的一次式,则考虑正弦定理.学习时应注意归纳总结正、余弦定理的应用技巧,如公式的正用、逆用以及变形用等,同时牢固掌握内角和定理的运用和三角变换的技巧.已知A 、B 、C 是△ABC 的三个内角,且满足(sin A +sin B )2-sin 2C =3sin A sin B. 求证:A +B =120°.【证明】 由(sin A +sin B )2-sin 2C =3sin A sin B 可得sin 2A +sin 2B -sin 2C =sin A sinB.由正弦定理得sin A =a 2R ,sin B =b 2R ,sin C =c2R,∴a 24R 2+b 24R 2-c 24R 2=a 2R ·b2R, 即a 2+b 2-c 2=ab .由余弦定理的推论得cos C =a 2+b 2-c 22ab =12,∴C =60°, ∴A +B =120°.(对应学生用书第37页)转化思想在三角形中的应用(12分)在△ABC 中,A 、B 、C 的对边分别为a 、b 、c ,且a cos A =b cos B =ccos C ,试判断△ABC 的形状.【思路点拨】 可以把角转化为边,也可以把边转化为角来处理. 【规范解答】 法一 由正弦定理a sin A =b sin B =csin C=2R 得:a =2R sin A ,b =2R sin B ,c =2R sin C.代入a cos A =b cos B =c cos C 中,得:2R sin A cos A =2R sin B cos B =2R sin C cos C,4分即sin A cos A =sin B cos B =sin C cos C, ∴tan A =tan B =tan C .10分又∵A 、B 、C 是△ABC 的内角,∴A =B =C. ∴△ABC 是等边三角形.12分 法二 由余弦定理得a ·2bcb 2+c 2-a 2=b ·2ac a 2+c 2-b 2=c ·2aba 2+b 2-c 2,6分∴b 2+c 2-a 2=a 2+c 2-b 2=a 2+b 2-c 2. 得a 2=b 2=c 2,即a =b =c .10分∴△ABC 是等边三角形.12分转化也称化归,它是将未知的,陌生的,复杂的问题转为已知的,熟悉的,简单的问题,从而使问题解决的数学思想.在解三角形时,若已知条件中含边角共存的关系式时,往往可利用正弦定理或余弦定理实现边角间的互化,从而发现各元素间的关系.1.余弦定理揭示了任意三角形边角之间的客观规律,也是解三角形的重要工具,可解决以下两类问题:(1)已知两边及其夹角,求第三边和其他两角; (2)已知三边求三角.2.判断三角形的形状,应围绕三角形的边角关系进行思考,依据已知条件中的边角关系判断时,可利用正弦定理或余弦定理转化为边的关系作代数运算,也可转化角的关系,通过三角变换求解.(对应学生用书第37页)1.在△ABC 中,已知a =5,b =4,C =120°,则c 为( ) A.41 B.61 C.41或61 D.21【解析】 ∵c 2=a 2+b 2-2ab cos 120°=25+16+2×5×4×12=61.∴c =61.【答案】 B2.在△ABC 中,若a =3+1,b =3-1,c =10,则△ABC 的最大角的度数为( ) A .60° B .90° C.120° D .150° 【解析】 ∵c >a >b ,∴C 是最大角,由余弦定理得:cos C =(3+1)2+(3-1)2-(10)22×(3+1)×(3-1)=8-104=-12.∴C =120°.【答案】 C3.若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形 C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 【解析】 由正弦定理知a ∶b ∶c =5∶11∶13, 设a =5k ,b =11k ,c =13k (k >0),由余弦定理知cos C =a 2+b 2-c 22ab =(5k )2+(11k )2-(13k )22×5k ×11k =-23110<0,∴C 为钝角.【答案】 C4.已知△ABC 的边长满足等式a 2-(b -c )2bc =1时,求A.【解】 由a 2-(b -c )2bc =1,得b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12,又0<A <π,所以A =π3.(对应学生用书第99页)一、选择题1.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c .若a =c =6+2,且A =75°,则b =( )A .2B .4+2 3C .4-2 3 D.6- 2【解析】 在△ABC 中,易知B =30°,由余弦定理得b 2=a 2+c 2-2ac cos 30°=4,∴b =2. 【答案】 A2.a 、b 、c 是△ABC 的三边,B =60°,那么a 2-ac +c 2-b 2的值( ) A .大于0 B .小于0 C .等于0 D .不确定【解析】 由余弦定理得b 2=a 2+c 2-2ac cos 60°=a 2+c 2-ac , 所以a 2-ac +c 2-b 2=(a 2+c 2-ac )-b 2=b 2-b 2=0. 【答案】 C3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 2【解析】 由余弦定理得,b 2=a 2+c 2-2ac ·cos B , ∴6=a 2+2+2a ,∴a =2或-22(舍去). 【答案】 D4.(2012·上海高考)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定【解】 由正弦定理知a sin A =b sin B =csin C =2R ,∴sin A =a 2R ,sin B =b 2R ,sin C =c2R.∵sin 2A +sin 2B <sin 2C ,∴a 24R 2+b 24R 2<c 24R2,∴a 2+b 2<c 2,∴cos C =a 2+b 2-c 22ab<0,∴C 为钝角,∴△ABC 为钝角三角形. 【答案】 C5.△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A .19 B .14 C .-18 D .-19【解析】 由余弦定理的推论cos B =AB 2+BC 2-AC 22AB ·BC =1935,又AB →·BC →=|AB →|·|BC →|·cos (π-B )=5×7×(-1935)=-19.【答案】 D 二、填空题6.在△ABC 中,若(a -c )(a +c )=b (b -c ),则A =________. 【解析】 由(a -c )(a +c )=b (b -c )得a 2-c 2=b 2-bc , 即b 2+c 2-a 2=bc 与余弦定理b 2+c 2-a 2=2bc cos A , 比较知cos A =12,∴A =60°.【答案】 60°7.在不等边三角形中,a 是最大的边,若a 2<b 2+c 2,则角A 的取值范围是________. 【解析】 ∵a 是最大边,∴A >π3,又a 2<b 2+c 2,由余弦定理cos A =b 2+c 2-a 22bc >0,∴A <π2,故π3<A <π2.【答案】 (π3,π2)8.(2012·北京高考)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.【解析】 在△ABC 中,由b 2=a 2+c 2-2ac cos B 及b +c =7知,b 2=4+(7-b )2-2×2×(7-b )×(-14),整理得15b -60=0.∴b =4. 【答案】 4 三、解答题9.已知△ABC 的顶点为A (2,3),B (3,-2)和C (0,0),求∠AB C. 【解】 |AB |=(3-2)2+(-2-3)2=26, |BC |=(0-3)2+[0-(-2)]2=13, |CA |=(2-0)2+(3-0)2=13, 由余弦定理得cos ∠ABC =(13)2+(26)2-(13)22×13×26=22,又∵∠ABC ∈(0,π),∴∠ABC =π4.10.a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且(sin B +sin C +sin A )(sin B +sinC -sin A )=185sin B sin C ,边b 和c 是关于x 的方程x 2-9x +25cos A =0的两根(b >c ).(1)求角A 的正弦值; (2)求边a ,b ,c ; (3)判断△ABC 的形状.【解】 (1)∵(sin B +sin C +sin A )(sin B +sin C -sin A )=185sin B ·sin C.结合正弦定理得(b +c +a )(b +c -a )=185bc ,整理得b 2+c 2-a 2=85bc .由余弦定理得cos A =b 2+c 2-a 22bc =45,∴sin A =35.(2)由(1)知方程x 2-9x +25cos A =0, 可化为x 2-9x +20=0, 解之得x =5或x =4. ∵b >c ,∴b =5,c =4.由余弦定理知:a 2=b 2+c 2-2bc cos A , ∴a =3.(3)由(1)(2)知,a 2+c 2=b 2, ∴△ABC 为直角三角形.11.(2013·潍坊高二检测)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且2b ·cosA =c ·cos A +a ·cos C ,(1)求角A 的大小;(2)若a =7,b +c =4,求△ABC 的面积.【解】 (1)根据正弦定理2b ·cos A =c ·cos A +a ·cos C ⇒ 2cos A sin B =sin A cos C +cos A sin C =sin(A +C )=sin B , ∵sin B ≠0,∴cos A =12,又∵0°<A <180°,∴A =60°. (2)由余弦定理得:7=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc =(b +c )2-3bc , 代入b +c =4得bc =3,故△ABC 面积为S =12bc sin A =334.(教师用书独具)在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c ,证明:a 2-b 2c 2=sin (A -B )sin C.【思路探究】 本题可考虑把边化为角,通过三角变换寻找等式左、右两边的联系. 【自主解答】 由余弦定理可知:a 2=b 2+c 2-2bc ·cos A ,b 2=a 2+c 2-2ac ·cos B则a 2-b 2=b 2-a 2-2bc ·cos A +2ac ·cos B , 整理得:a 2-b 2c 2=a cos B -b cos A c , 又a c =sin A sin C ,b c =sin B sin C, ∴a 2-b 2c 2=sin A cos B -cos A sin B sin C =sin (A -B )sin C.在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,求b .【解】 法一 ∵sin B =4cos A sin C , 由正弦定理,得b 2R =4cos A c2R,∴b =4c cos A ,由余弦定理得b =4c ·b 2+c 2-a 22bc,∴b 2=2(b 2+c 2-a 2),∴b 2=2(b 2-2b ),∴b =4. 法二 由余弦定理,得a 2-c 2=b 2-2bc cos A , ∵a 2-c 2=2b ,b ≠0,∴b =2c cos A +2,①由正弦定理,得b c =sin Bsin C,又由已知得,sin Bsin C =4cos A ,∴b =4c cos A .②由①②得b =4.§2三角形中的几何计算(教师用书独具)●三维目标1.知识与技能掌握正、余弦定理解任意三角形的方法,体会正、余弦定理在平面几何计算与推理中的作用.2.过程与方法能过图形的观察、识别、分析、归纳来正确选择正、余弦定理.3.情感、态度与价值观通过本节课的探究,培养学生勇于探索、创新的学习习惯.●重点难点重点:利用正、余弦定理解决三角形中的几何计算.难点:将几何计算转化为解三角形问题.(教师用书独具)●教学建议通过例题的活动探究,要让学生结合图形理解题意,学会分析问题状态,确定合适的求解顺序,明确所用的定理.其次,在教学中还要让学生分析讨论,明确正、余弦定理各自实用的范围.●教学流程创设问题情境,提出问题⇒通过引导学生回答所提问题理解三角形中的几何计算——长度、角度、面积等⇒通过例1及变式训练,使学生掌握与长度或角度有关的问题的计算⇒通过例2及变式训练,使学生掌握有关面积问题的处理⇒通过例3及变式训练,使学生进一步掌握正、余弦定理的综合应用⇒归纳整理,进行课堂小结,整体认识所学知识⇒完成当堂双基达标,巩固所学知识,并进行反馈、矫正(对应学生用书第38页)课标解读1.掌握正、余弦定理解任意三角形的方法(重点).2.提高分析问题解决问题的能力(难点).三角形中的几何计算【问题导思】图2-2-1如图2-2-1,2011年8月,利比亚战争期间,北约为了准确分析战场形势,由位于相距32a的英法两军事基地C和D,测得卡扎菲的两支精锐部队分别位于A、B两处,且∠ADB=∠BDC=30°,∠DCA=60°,∠ACB=45°.试问你能根据实例中测量的数据计算卡扎菲这支精锐部队的距离吗?【提示】在△BCD中用正弦定理求出BC,在△ABC中用余弦定理求AB的长.(对应学生用书第38页)与长度或角度有关的问题图2-2-2(2013·中山高二检测)在△ABC 中,已知B =30°,D 是BC 边上的一点,AD =10,AC =14,DC =6,(1)求∠ADC 的大小; (2)求AB 的长.【思路探究】 (1)在△ACD 中已知了AD 、AC 、DC ,可根据余弦定理求∠AD C. (2)在△ABD 中,可用正弦定理求A B.【自主解答】 (1)在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =100+36-1962×10×6=-12,∴∠ADC =120°.(2)由(1)知∠ADB =60°,在△ABD 中,AD =10,B =30°,∠ADB =60°, 由正弦定理得AB sin ∠ADB =ADsin B,∴AB =AD sin ∠ADB sin B =10sin 60°sin 30°=10×3212=10 3.1.正弦、余弦定理是解三角形常用的两个重要定理,在使用时要根据题设条件,恰当选择定理,使求解更方便、简捷.2.解决此类问题要处理好两个方面:(1)找出已知某边长的三角形,从中筛选出可解三角形;(2)找要求线段所在的三角形,确定所需条件.图2-2-3如图2-2-3所示,在△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.【解析】 在△ABC 中,由余弦定理,有cos C =AC 2+BC 2-AB 22AC ·BC=(23)22×2×23=32, 则C =30°.在△ACD 中,由正弦定理,有ADsin C=ACsin ∠ADC,∴AD =AC ·sin30°sin 45°=2×1222=2,即AD 的长度等于 2. 【答案】 2有关面积问题图2-2-4如图2-2-4所示,在△ABC 中,BC =5,AC =4,cos ∠CAD =3132且AD =BD ,求△ABC的面积.【思路探究】 先由余弦定理建立方程求CD 的长,再在△ACD 中由正弦定理求sin C ,进而可求△ABC 的面积.【自主解答】 设CD =x ,则AD =BD =5-x . 在△CAD 中,由余弦定理可知 cos ∠CAD =(5-x )2+42-x 22×4×(5-x )=3132,解得x =1.在△CAD 中,由正弦定理可知ADsin C=CDsin ∠CAD,∴sin C =AD CD·1-cos 2∠CAD =41-(3132)2=387.∴S △ABC =12AC ·BC ·sin C=12×4×5×387=1547. 即△ABC 的面积为1547.1.本题求三角形面积容易考虑用12×底×高,但高不易求得,应灵活应用三角形面积公式.2.涉及三角形面积问题通常选用S =12ab sin C =12bc sin A =12ac sin B ,这个公式中含有正弦值,可以和正弦定理建立关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是根据题中的条件选择正确的变换方向.图2-2-5如图2-2-5所示,△ABC 中,D 在边BC 上,且BD =2,DC =1,B =60°,∠ADC =150°,求AC 的长及△ABC 的面积.【解】 在△ABC 中,∠BAD =150°-60°=90°, ∴AD =BD sin 60°=2×32=3, 在△ACD 中,AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC =(3)2+12-2×3×1×cos 150°=7,∴AC =7.又∵AB =BD cos 60°=1,∴S △ABC =12AB ·BC sin B =12×1×3×32=34 3.正、余弦定理的综合应用。
高中数学第二章解三角形章末复习提升课巩固提升训练北师大版必修5(2021年整理)

2018年高中数学第二章解三角形章末复习提升课巩固提升训练北师大版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高中数学第二章解三角形章末复习提升课巩固提升训练北师大版必修5)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高中数学第二章解三角形章末复习提升课巩固提升训练北师大版必修5的全部内容。
第二章解三角形1.在△ABC中,a=2错误!,b=2错误!,B=45°,则A等于( )A.30° B.60°C.60°或120°D.30°或150°解析:选C。
由正弦定理得:sin A=错误!=错误!,因为a〉b,所以A=60°或A=120°,故选C.2.在△ABC中,若lg sin A-lg sin C=lg sin B=-lg错误!,且B∈错误!,则△ABC的形状是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形解析:选C.由lg sin A-lg sin C=lg sin B=-lg2可得lg错误!=lg sin B=lg错误!,所以错误!=错误!=sin B,又B∈错误!,所以B=错误!,c=错误!a.由余弦定理可知b2=a2+2a2-2a×错误!a×错误!,整理可得b=a,因此△ABC为等腰直角三角形.3.为维护国家主权和领土完整,我海监船310号奉命赶赴钓鱼岛海域执法巡航.当我船航行到A处时测得钓鱼岛在我船北偏东45°方向上,我船沿正东方向继续航行20海里到达B处后,又测得钓鱼岛在我船北偏东15°方向上,则此时B处到钓鱼岛的距离为()A.20海里B.10海里C.20错误!海里D.20错误!海里解析:选C。
2020_2021学年新教材高中数学第二章平面解析几何章末综合测评课时分层作业含解析新人教B版选择性必修第一册

章末综合测评(二) 平面解析几何一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若直线l 与直线y =1,x =7分别交于P 、Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A .13 B .-13 C .3D .-3B [设P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧ a +7=2,b +1=-2.∴⎩⎪⎨⎪⎧a =-5,b =-3,故直线l 的斜率为-3-17+5=-13.] 2.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +5=0垂直,则实数a 的值是( )A .23B .1C .12D .2A [直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +5=0垂直, 则a ×1+2(a -1)=0, 解得a =23.]3.若方程x 2+y 2-x +y -2m =0表示一个圆,则实数m 的取值范围是( ) A .⎝ ⎛⎭⎪⎫-∞,-14B .⎝ ⎛⎭⎪⎫14,+∞C .⎝ ⎛⎭⎪⎫-14,+∞D .⎝ ⎛⎭⎪⎫-∞,14C [根据题意,方程x 2+y 2-x +y -2m =0表示一个圆, 则有1+1-4×(-2m )>0,解的m >-14,即m 的取值范围为⎝ ⎛⎭⎪⎫-14,+∞.]4.过点A (1,0)的直线l 与圆(x -1)2+(y -1)2=1相交于A ,B 两点,若|AB |=2,则该直线的斜率为( )A .±1B .±2C .±3D .±2A [设直线l 方程为y =k (x -1),则圆心到直线l 的距离为|-1|1+k2=11+k2,则弦|AB |=21-11+k2=2,解得k =±1.] 5.已知点P 为双曲线x 216-y 29=1右支上一点,点F 1,F 2分别为双曲线的左、右焦点,M 为△PF 1F 2的内心.若S △PMF 1=S △PMF 2+8,则△MF 1F 2的面积为( )A .27B .10C .8D .6B [由题意知,a =4,b =3,c =5.又由双曲线的定义可知|PF 1|-|PF 2|=2a =8.设△PF 1F 2的内切圆的半径为R .∵S △PMF 1=S △PMF 2+8,∴12(|PF 1|-|PF 2|)R =8,即4R =8,∴R =2,∴S △MF 1F 2=12·2c ·R =10.故选B .]6.焦点为(0,±3),且与双曲线x 22-y 2=1有相同的渐近线的双曲线方程是( ) A .x 23-y 26=1 B .y 23-x 26=1 C .y 26-x 23=1D .x 26-y 23=1B [双曲线x 22-y 2=1中,a 2=2,b 2=1,所以渐近线方程为y =±12x ,所以所求双曲线的方程中a b =12,c =3,a 2+b 2=c 2,所以a 2=3,b 2=6,则双曲线方程为y 23-x 26=1,故选B .]7.若圆C1:(x-1)2+(y-1)2=1与圆C2:(x+2)2+(y+3)2=r2外切,则正数r的值是()A.2 B.3C.4 D.6C[圆C1:(x-1)2+(y-1)2=1,圆C2:(x+2)2+(y+3)2=r2,∴C1坐标为(1,1),半径为1,C2坐标为(-2,-3),半径为r,∴|C1C2|=r1+r2⇒(1+2)2+(1+3)2=r+1⇒r=4.]8.已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线与椭圆交于A,B两点,若△F1AB是以A为直角顶点的等腰直角三角形,则椭圆的离心率为()A.22B.2- 3C.5-2 D.6- 3D[设|F1F2|=2c,|AF1|=m,若△ABF1是以A为直角顶点的等腰直角三角形,则|AB|=|AF1|=m,|BF1|=2m.由椭圆的定义可得△ABF1的周长为4a,即有4a=2m+2m,即m=(4-22)a,则|AF2|=2a-m=(22-2)a.在Rt△AF1F2中,|F1F2|2=|AF1|2+|AF2|2,即4c2=4(2-2)2a2+4(2-1)2a2,即c2=(9-62)a2,即c=(6-3)a,即e=ca=6-3.]二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得分5分,部分选对的得3分,有选错的得0分.9.已知平面上一点M(5,0),若直线上存在点P使|PM|=4,则称该直线为“切割型直线”.下列直线中是“切割型直线”的是()A.y=x+1 B.y=2C.y=43x D.y=2x+1BC[对于A,d1=|5-0+1|2=32>4;对于B,d2=2<4;对于C,d3=|5×4-3×0|5=4;对于D,d4=|5×2-0+1|5=115>4,所以符合条件的有BC.]10.实数x,y满足x2+y2+2x=0,则下列关于yx-1的判断正确的是()A.yx-1的最大值为 3B.yx-1的最小值为- 3C.yx-1的最大值为33D.yx-1的最小值为-33CD[由题意可得方程x2+y2+2x=0为圆心是C(-1,0),半径为1的圆,由yx-1为圆上的点与定点P(1,0)的斜率的值,设过P(1,0)点的直线为y=k(x-1),即kx-y-k=0,圆心到直线的距离d=r,即|-2k|1+k2=1,整理可得3k2=1,解得k=±33,所以yx-1∈⎣⎢⎡⎦⎥⎤-33,33,即yx-1的最大值为33,最小值为-33.]11.已知点A是直线l:x+y-10=0上一定点,点P,Q是圆C:(x-4)2+(y -2)2=4上的动点,若∠P AQ的最大值为60°,则点A的坐标可以是() A.(4,6) B.(2,8)C.(6,4) D.(8,2)AD[点A是直线l:x+y-10=0上一定点,点P,Q是圆C:(x-4)2+(y-2)2=4上的动点,如图:圆的半径为2,所以直线l 上的A 点到圆心的距离为4, 结合图形,可知A 的坐标(4,6)与(8,2)满足题意.]12.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为233,右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点,则有( )A .渐近线方程为y =±3xB .渐近线方程为y =±33x C .∠MAN =60° D .∠MAN =120°BC [由题意可得e =c a =233,可设c =2t ,a =3t ,t >0, 则b =c 2-a 2=t ,A (3t,0),圆A 的圆心为(3t,0),半径r 为t ,双曲线的渐近线方程为y =±b a x ,即y =±33x , 圆心A 到渐近线的距离为d =⎪⎪⎪⎪⎪⎪33·3t 1+13=32t ,弦长|MN |=2r 2-d 2=2t 2-34t 2=t =b ,可得三角形MNA 为等边三角形, 即有∠MAN =60°.]三、填空题:本题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.圆x 2+y 2-ax +2y +1=0关于直线x -y =1对称的圆的方程为x 2+y 2=1,则实数a 的值为 .2 [圆的方程可化为⎝ ⎛⎭⎪⎫x -a 22+(y +1)2=a 24,表示以A ⎝ ⎛⎭⎪⎫a 2,-1为圆心,以⎪⎪⎪⎪⎪⎪a 2为半径的圆,关于直线x -y =1对称的圆x 2+y 2=1的圆心为(0,0),故有-1-0a 2-0×1=-1,得a =2.]14.已知直线l 与直线y =1,x -y -7=0分别相交于P 、Q 两点,线段PQ 的中点坐标为(1,-1),那么直线l 的斜率为 .-23 [设P (a,1),Q (b ,b -7),由PQ 中点坐标为(1,-1)得⎩⎨⎧a +b2=1,1+b -72=-1,解得a =-2,b =4.∴P (-2,1),Q (4,-3) 直线l 的斜率为-3-14+2=-23.]15.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为33,过F 2的直线l 交椭圆C 于A ,B 两点,若△AF 1B 的周长为43,则椭圆C 的方程为 .x 23+y 22=1 [由椭圆的定义,可知△AF 1B 的周长为|AF 1|+|BF 1|+|AB |=|AF 1|+|BF 1|+|AF 2|+|BF 2|=4a =43,解得a =3.又离心率c a =33,所以c =1.由a 2=b 2+c 2,得b =2,所以椭圆C 的方程为x 23+y 22=1.]16.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则双曲线方程为 ,离心率为 .(本题第一空2分,第二空3分)x 24-y 24=12 [双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±ba x ,由题意知两条渐近线互相垂直,由双曲线的对称性可知ba =1,又正方形OABC 的边长为2,所以c =22,由a 2+b 2=c 2可得2a 2=(22)2,解得a =2.∴b =2,∴双曲线方程为x 24-y 24=1,离心率为e =ca =2.]四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)直线l 在两坐标轴上的截距相等,且P (4,3)到直线l 的距离为32,求直线l 的方程.[解] 若l 在两坐标轴上截距为0, 设l :y =kx ,即kx -y =0,则|4k -3|1+k2=32.解得k =-6±3214.此时l 的方程为y =⎝ ⎛⎭⎪⎫-6±3214x ; 若l 在两坐标轴上截距不为0,设l :x a +ya =1,即x +y -a =0,则|4+3-a |12+12=32.解得a =1或13.此时l 的方程为x +y -1=0或x +y -13=0. 综上,直线l 的方程为y =⎝ ⎛⎭⎪⎫-6±3214x 或x +y -1=0或x +y -13=0. 18.(本小题满分12分)过原点O 的圆C ,与x 轴相交于点A (4,0),与y 轴相交于点B (0,2).(1)求圆C 的标准方程.(2)直线l 过点B 与圆C 相切,求直线l 的方程,并化为一般式. [解] (1)设圆C 的标准方程为(x -a )2+(y -b )2=r 2, 分别代入原点和A (4,0),B (0,2),得⎩⎪⎨⎪⎧a 2+b 2=r 2,(4-a )2+b 2=r 2,a 2+(2-b )2=r 2,解得⎩⎪⎨⎪⎧a =2,b =1,r = 5.则圆C 的标准方程为(x -2)2+(y -1)2=5. (2)由(1)得圆心C (2,1),半径r =5, 由于直线l 过点B 与圆C 相切, 则设直线l :x =0或y =kx +2,当直线l :x =0时,C 到l 的距离为2,不合题意,舍去;当直线l :y =kx +2时,由直线与圆相切,得到圆心到直线距离d =r , 即有|2k -1+2|k 2+1=5,解得k =2,故直线l :y =2x +2,即2x -y +2=0.19.(本小题满分12分)已知椭圆的中心是坐标原点,长轴在x 轴上,离心率e =32,点P ⎝ ⎛⎭⎪⎫0,32到椭圆上的点的最远距离是7,求这个椭圆的方程.[解] 设所求椭圆的方程为x 2a 2+y 2b 2=1(a >b >0). ∵b a =a 2-c 2a 2=1-e 2=12,∴a =2b ,∴椭圆的方程为x 24b 2+y 2b 2=1.设椭圆上点M (x ,y )到点P ⎝ ⎛⎭⎪⎫0,32的距离为d ,则d 2=x 2+⎝ ⎛⎭⎪⎫y -322=4b 2⎝ ⎛⎭⎪⎫1-y 2b 2+y 2-3y +94=-3⎝ ⎛⎭⎪⎫y +122+4b 2+3,-b ≤y ≤b .记f (y )=-3⎝ ⎛⎭⎪⎫y +122+4b 2+3,-b ≤y ≤b .①当-b ≤-12,即b ≥12时,d 2max =f ⎝ ⎛⎭⎪⎫-12=4b 2+3=7,∴b =1,∴椭圆的方程为x 24+y 2=1;②当-12<-b ,即0<b <12时,d 2max =f (-b )=7,解得b =±7-32,与0<b <12矛盾.综上,可知所求椭圆的方程为x 24+y 2=1.20.(本小题满分12分)已知抛物线的顶点在坐标原点,焦点在x 轴的正半轴上,直线x +y -1=0与抛物线交于A ,B 两点,且|AB |=8611.(1)求抛物线的方程;(2)在x 轴上是否存在一点C ,使△ABC 为正三角形?若存在,求出点C 的坐标;若不存在,请说明理由.[解] (1)由题意,设所求抛物线的方程为y 2=2px (p >0).由⎩⎪⎨⎪⎧y 2=2px ,x +y -1=0,消去y ,得x 2-2(1+p )x +1=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2(1+p ),x 1x 2=1. ∵|AB |=8611, 即[1+(-1)2][(x 1+x 2)2-4x 1x 2]=8611,∴121p 2+242p -48=0, 解得p =211或p =-2411(舍去), ∴抛物线的方程为y 2=411x .(2)设AB 的中点为点D ,则D ⎝ ⎛⎭⎪⎫1311,-211.假设在x 轴上存在满足条件的点C (x 0,0),连接CD . ∵△ABC 为正三角形,∴CD ⊥AB ,即0-⎝ ⎛⎭⎪⎫-211x 0-1311·(-1)=-1,解得x 0=1511,∴C ⎝ ⎛⎭⎪⎫1511,0,∴|CD |=⎝ ⎛⎭⎪⎫1511-13112+⎝ ⎛⎭⎪⎫0+2112=2211. 又|CD |=32|AB |=12211≠2211,∴矛盾,不符合题目条件, ∴在x 轴上不存在一点C ,使△ABC 为正三角形.21.(本小题满分12分)已知半径为5的圆的圆心在x 轴上,圆心的横坐标是整数,且与直线4x +3y -29=0相切.(1)求圆的方程;(2)若直线ax -y +5=0(a ≠0)与圆相交于A ,B 两点,是否存在实数a ,使得过点P (-2,4)的直线l 垂直平分弦AB ?若存在,求出实数a 的值;若不存在,请说明理由.[解] (1)设圆心坐标为M (m,0)(m ∈Z ),由于圆与直线4x +3y -29=0相切,且圆的半径为5,所以|4m -29|5=5,即|4m -29|=25, 即4m -29=25或4m -29=-25,解得m =272或m =1.因为m 为整数,故m =1,故所求的圆的方程为(x -1)2+y 2=25.(2)设符合条件的实数a 存在,因为a ≠0,则直线l 的斜率为-1a ,所以直线l 的方程为y =-1a (x +2)+4,即x +ay +2-4a =0.由于直线l 垂直平分弦AB ,故圆心M (1,0)必在直线l 上,所以1+0+2-4a =0,解得a =34.经检验,当a =34时,直线ax -y +5=0与圆有两个交点,故存在实数a =34,使得过点P (-2,4)的直线l 垂直平分弦AB .22.(本小题满分12分)设斜率不为0的直线l 与抛物线x 2=4y 交于A ,B 两点,与椭圆x 26+y 24=1交于C ,D 两点,记直线OA ,OB ,OC ,OD 的斜率分别为k 1,k 2,k 3,k 4.(1)若直线l 过(0,4),证明:OA ⊥OB ;(2)求证:k 1+k 2k 3+k 4的值与直线l 的斜率的大小无关. [证明] (1)设直线方程为y =kx +4,A (x 1,y 1),B (x 2,y 2),由x 21=4y 1,x 22=4y 2,两式相乘可得(x 1x 2)2=16y 1y 2,由⎩⎪⎨⎪⎧ y =kx +4x 2=4y可得x 2-4kx -16=0, 则x 1x 2=-16,y 1y 2=16,x 1x 2+y 1y 2=0,即OA →·OB →=0,OA ⊥OB .(2)设直线y =kx +m ,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4), ⎩⎪⎨⎪⎧y =kx +m x 2=4y可得x 2-4kx -4m =0,x 1+x 2=4k ,x 1x 2=-4m , k 1+k 2=y 1x 1+y 2x 2=x 14+x 24=k , 联立y =kx +m 和椭圆2x 2+3y 2=12,可得(2+3k 2)x 2+6kmx +3m 2-12=0, Δ=36k 2m 2-4(2+3k 2)(3m 2-12)>0,即4+6k 2>m 2,x 3+x 4=-6km 2+3k 2,x 3x 4=3m 2-122+3k 2, k 3+k 4=y 3x 3+y 4x 4=kx 3+m x 3+kx +m x 4=2k +m ⎝ ⎛⎭⎪⎫1x 3+1x 4=2k +m (x 3+x 4)x 3x 4=2k -6km 23m 2-12=-8k m 2-4, 则k 1+k 2k 3+k 4=-m 2-48与直线l 的斜率的大小无关.。
2020学年高中数学第2章解三角形1.2余弦定理教案北师大版必修5(2021-2022学年)

1.2余弦定理1.余弦定理阅读教材P49~P50例4以上部分,完成下列问题.思考:[提示]余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.(2)观察余弦定理的符号表示及推论,你认为余弦定理可用来解哪类三角形?[提示]①已知两边及其夹角,解三角形;②已知三边,解三角形.2.余弦定理的推导ﻬ如图,设错误!=a,错误!=b,错误!=c那么c=a-b.|c|2=c·c=(a-b)·(a-b)=a·a+b·b-2a·b=a2+b2-2ab cosC所以c2=a2+b2-2ab cos_C.同理可证:a 2=b 2+c 2-2bc c os A , b 2=c 2+a 2-2ac co s B ,1.在△ABC 中,符合余弦定理的是( )A .c 2=a2+b2-2ab cos C ﻩB .c 2=a 2-b 2-2bc cos A C.b 2=a2-c 2-2b cco s A D .c os C =错误!A [由余弦定理知选A .]2.在△ABC 中,若已知a =2,b =3,c=错误!未定义书签。
,则cos A =_____________。
错误!未定义书签。
[c os A =错误!=错误!未定义书签。
=错误!。
]3.在△A BC中,已知A =60°,b =2,c =1,则a =________.\r (3) [a 2=b 2+c 2-2b ccos A =4+1-2×2×1×错误!未定义书签。
=3,所以a=错误!。
]【例1 (2)在△ABC 中,已知a =3\r (3),c =2,B =150°,则边b的长为________. (1)5 (2)7 [(1)A为b ,c的夹角,由余弦定理a2=b 2+c2-2b ccos A , 得16=9+c2-6×错误!未定义书签。
c , 整理得5c 2-18c -35=0。
高中数学 第二章解三角形教案 北师大版必修5

北师大版高中数学必修5 第二章《解三角形》全部教案一、教学目标1、知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
2、过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
3、情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
二、教学重点:正弦定理的探索和证明及其基本应用。
教学难点:已知两边和其中一边的对角解三角形时判断解的个数。
三、教学方法:探析归纳,讲练结合 四、教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? A 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.探析新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==, A 则sin sin sin a b c c A B C=== b c 从而在直角三角形ABC 中,sin sin sin a b cA B C==(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin ab=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 解三角形[巩固层·知识整合][提升层·题型探究]利用正、余弦定理解三角形【例1】 在△ABC 中,∠A =60°,c =7a .(1)求sin C 的值;(2)若a =7,求△ABC 的面积.[解] (1)在△ABC 中,因为∠A =60°,c =37a ,所以由正弦定理得sin C =c sin A a =37×32=3314. (2)因为a =7, 所以c =37a =37×7=3,由余弦定理a 2=b 2+c 2-2bc cos A 得 72=b 2+32-2b ×3×12,解得b =8或b =-5(舍去),所以△ABC 的面积S =12bc sin A =12×8×3×32=63.解三角形的四种类型已知条件 应用定理 一般解法一边和两角(如a ,B ,C )正弦定理 由A +B +C =180°,求角A ;由正弦定理求出b 与c ,在有解时只有一解两边和夹角(如a ,b ,C )余弦定理、正弦定理 由余弦定理求第三边c ;由正弦定理求出一边所对的角;再由A +B +C =180°求出另一角,在有解时只有一解 三边(a ,b ,c ) 余弦定理 由余弦定理求出角A ,B ;再利用A +B +C =180°求出角C ,在有解时只有一解两边和其中一边的对角(如a ,b ,A )正弦定理、余弦定理由正弦定理求出角B ;由A +B +C =180°求出角C ;再利用正弦定理或余弦定理求c ,可有两解、一解或无解[跟进训练]1.(1)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A .31010B .1010C .-1010D .-31010(2)在△ABC 中,若三边的长为连续整数,且最大角是最小角的二倍,求三边长. (1)C [设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得13a =c sin π4=22c ,则a =322c .在△ABC 中,由余弦定理可得b 2=a 2+c 2-2ac =92c 2+c 2-3c 2=52c 2,则b =102c .由余弦定理,可得cos A =b2+c2-a22bc=52c2+c2-92c22×102c×c=-1010.] (2)[解] 设最小内角为θ,三边长为n-1,n,n+1,由正弦定理,得n-1sin θ=n+1sin 2θ,所以n-1=n+12cos θ,所以cos θ=n+12n-1.由余弦定理的变形公式,得cos θ=n2+n+12-n-122n n+1,所以n+12n-1=n2+n+12-n-122n n+1,解得n=5.所以△ABC的三边分别为4,5,6.判断三角形的形状【例2】在△ABC中,若b cos Cc cos B=1+cos 2C1+cos 2B,试判断△ABC的形状.[解]由已知1+cos 2C1+cos 2B=2cos2C2cos2B=cos2Ccos2B=b cos Cc cos B得cos Ccos B=bc,以下可有两种解法:法一:(利用正弦定理边化角)由正弦定理得bc=sin Bsin C,∴cos Ccos B=sin Bsin C,即sin C cos C=sin B cos B,即sin 2C=sin 2B,∵B、C均为△ABC的内角,∴2C=2B或2C+2B=180°.∴B=C或B+C=90°,∴△ABC为等腰三角形或直角三角形.法二:(利用余弦定理角化边)由余弦定理得a2+b2-c2·2aca2+c2-b2·2ab=bc,即a2(b2-c2)=(b2+c2)(b2-c2),解得a2=b2+c2或b2=c2(即b=c),∴△ABC为等腰三角形或直角三角形.1.利用正弦定理、余弦定理判断三角形的形状的两种方法法一:通过边之间的关系判断形状; 法二:通过角之间的关系判断形状.利用正弦、余弦定理可以将已知条件中的边、角互化,把条件化为边的关系或化为角的关系.2.判断三角形的形状时常用的结论(1)在△ABC 中,A >B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B .(2)在△ABC 中,A +B +C =π,A +B =π-C ,则cos(A +B )=-cos C ,sin(A +B )=sinC .(3)在△ABC 中,a 2+b 2<c 2⇔π2<C <π,a 2+b 2=c 2⇔cos C =0⇔C =π2,a 2+b 2>c 2⇔cos C >0⇔0<C <π2.[跟进训练]2.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且a cos B +a cos C =b +c ,试判断△ABC 的形状.[解] 由a cos B +a cos C =b +c ,法一:得sin A cos B +sin A cos C =sin B +sin C =sin(A +C )+sin(A +B ). 化简得,cos A (sin B +sin C )=0, 又sin B +sin C >0,∴cos A =0,即A =π2,∴△ABC 为直角三角形.法二:由a cos B +a cos C =b +c ,得a ×a 2+c 2-b 22ac +a ×a 2+b 2-c 22ab =b +c ,a 2+c 2-b 22c +a 2+b 2-c 22b =b +c , a 2b +a 2c -b 3-c 3=b 2c +bc 2,(b +c )(a 2-b 2+bc -c 2)=bc (b +c ),a 2-b 2+bc -c 2=bc , a 2=b 2+c 2,所以,△ABC 是直角三角形.三角形中的几何计算【例3】 =3∶7∶4∶10,求AB 的长.[解] 如图所示,连接BD .∵A +∠ABC +C +∠ADC =360°, ∴A =45°,∠ABC =105°,C =60°, ∠ADC =150°,在△BCD 中,由余弦定理,得BD 2=BC 2+CD 2-2BC ·CD cos C=a 2+4a 2-2a ·2a ·cos 60°=3a 2, ∴BD =3a . ∴BD 2+BC 2=CD 2,∴∠CBD =90°,∴∠ABD =15°,∴∠BDA =120°. 在△ABD 中,由AB sin∠BDA =BDsin A,得AB =BD ·sin∠BDA sin A =3a sin 120°sin 45°=322a .解决三角形中的几何计算问题要注意把握三点:一是对几何图形中几何性质的挖掘,它往往是解题的切入点;二是根据条件或图形,找出已知、未知及求解中需要的三角形,合理利用正、余弦定理和三角恒等变换公式;三是要有应用方程思想解题的意识,同时还要有引入参数,突出主元,简化问题的解题意识.[跟进训练]3.如图所示,已知∠MON =60°,Q 是∠MON 内一点,它到两边的距离分别为2和11,求OQ 的长.[解] 作QA ⊥OM 于A ,QB ⊥ON 于B ,连接AB ,则QA =2,QB =11,且O ,A ,Q ,B 都在以OQ 为直径的圆上.∠AOB 和∠AQB 为同一弦AB 所对的圆周角,且两角互补. ∵∠AOB =60°,∴∠AQB =120°. 在△AQB 中,由余弦定理,得AB 2=AQ 2+BQ 2-2·AQ ·BQ ·cos∠AQB =22+112-2×2×11×cos 120°=147, ∴AB =73.连接OQ ,在Rt△OBQ 中,OQ =OB sin∠OQB =OBsin∠OAB .又在△AOB 中,OB sin∠OAB =AB sin 60°,∴OQ =ABsin 60°=14.解三角形与平面向量的综合应用【例4】 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若AB ·AC =BA ·BC =1. (1)求证:A =B ; (2)求边长c 的值;(3)若|AB →+AC →|=6,求△ABC 的面积. [解] (1)证明:∵AB →·AC →=BA →·BC →, ∴bc cos A =ac cos B ,即b cos A =a cos B . 由正弦定理,得sin B cos A =sin A cos B , ∴sin(A -B )=0.∵-π<A -B <π,∴A -B =0,即A =B . (2)∵AB →·AC →=1,∴bc cos A =1.由余弦定理,得bc ×b 2+c 2-a 22bc=1,即b 2+c 2-a 2=2.∵由(1),得a =b ,∴c 2=2,∴c =2. (3)∵|AB →+AC →|=6, ∴|AB →|2+|AC →|2+2AB →·AC →=6,即∵c 2+b 2+2=6,∵c 2+b 2=4,∴c 2=2,∴b 2=2,b =2. ∴△ABC 为正三角形.∴S △ABC =12×2×2×sin 60°=32.在高考中解三角形问题常与平面向量知识主要是数量积结合在一起进行考查.判断三角形形状或结合正弦定理、余弦定理求值,这也是高考命题的新趋势.[跟进训练]4.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若sin 2B +sin 2C =sin 2A +sinB sinC ,且AC →·AB →=4,求△ABC 的面积S .[解] 由已知得b 2+c 2=a 2+bc , ∴bc =b 2+c 2-a 2=2bc cos A , ∴cos A =12,sin A =32.由AC →·AB →=4,得bc cos A =4,∴bc =8. ∴S =12bc sin A =23.与三角形有关的综合问题[1.在△ABC 中,由a 2+b 2-c 2=-ab 可得到什么?[提示] 由a 2+b 2-c 2=-ab 得a 2+b 2-c 22ab =-12,即cos C =-12,故C =120°.2.在△ABC 中,若A +B =2π3,能否求出sin A +sin B 的范围?[提示] 用角B 表示角A 得B =2π3-A ,则sin A +sin B =sin A +sin ⎝ ⎛⎭⎪⎫2π3-A ,化为一个角的三角函数可求其范围.【例5】 在△ABC 中,设角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2A =sin 2B +cos 2C +sin A sin B .(1)求角C 的大小;(2)若c =3,求△ABC 周长的取值范围.思路探究:(1)利用正弦定理把角转化为边,然后利用余弦定理求角C ;(2)利用正弦定理得到周长的表达式化为一个角的三角函数求范围.[解] (1)由题意知1-sin 2A =sin 2B +1-sin 2C +sin A sin B , 即sin 2A +sin 2B -sin 2C =-sin A sin B , 由正弦定理得a 2+b 2-c 2=-ab ,由余弦定理得cos C =a 2+b 2-c 22ab =-ab 2ab =-12,又∵0<C <π,∴C =2π3.(2)由正弦定理得a sin A =b sin B =csin C=2,∴a =2sin A ,b =2sin B ,则△ABC 的周长为L =a +b +c =2(sin A +sin B )+3=2⎣⎢⎡⎦⎥⎤sin A +sin ⎝ ⎛⎭⎪⎫π3-A +3=2sin ⎝⎛⎭⎪⎫A +π3+3.∵0<A <π3,∴π3<A +π3<2π3,∴32<sin ⎝⎛⎭⎪⎫A +π3≤1,∴23<2sin ⎝⎛⎭⎪⎫A +π3+3≤2+3, ∴△ABC 周长的取值范围是(23,2+3].1.(变结论)例5的条件不变,若c =2,a =3,求sin 2B 的值.[解] 由例5的解答可知C =2π3,由正弦定理a sin A =c sin C ,即sin A =a sin Cc=3×322=34, 由于c >a ,故A 是锐角,cos A =1-sin 2A =74, 所以sin 2A =2sin A cos A =378,cos 2A =2cos 2A -1=-18,得sin 2B =sin 2⎝ ⎛⎭⎪⎫π3-A =sin ⎝ ⎛⎭⎪⎫2π3-2A =32cos 2A +12sin 2A =32×⎝ ⎛⎭⎪⎫-18+12×378=37-316. 2.(变条件)把例5的条件换为“2c cos B =2a +b ”,求角C . [解] 由正弦定理及2c cos B =2a +b 得 2sin C cos B =2sin A +sin B ,因为A +B +C =π,所以sin A =sin(B +C ), 则2sin C cos B =2sin(B +C )+sin B , 即2sin B cos C +sin B =0, 又0<B <π,所以sin B >0,则cos C =-12,又C ∈(0,π),故C =2π3.与三角形有关的综合问题的解法,该类问题以三角形为载体,在已知条件中设计了三角形的一些边角关系,由于正弦定理和余弦定理都是关于三角形的边角关系的等式,通过定理的运用能够实现边角互化,在边角互化时,经常用到三角函数中两角和与差的公式及倍角公式等.。