【步步高 学案导学设计】2014-2015学年高中数学(人教A版,必修四) 第三章 三角恒等变换 第三章 章末检测(B)]

合集下载

《步步高 学案导学设计》2013-2014学年 高中数学 人教A版必修4【配套备课资源】第3章 3.1.1

《步步高 学案导学设计》2013-2014学年 高中数学 人教A版必修4【配套备课资源】第3章 3.1.1

β α β α =cosα-2cos2-β+sinα-2sin2-β
1 5 4 5 2 7 5 =-9× 3 + 9 ×3= 27 .
研一研·问题探究、课堂更高效
3.1.1
本 课 时 栏 目 开 关
π 1 11 例 3 已知 cos α= ,cos(α+β)=- ,且 α、β∈0,2 , 7 14 求 β 的值. π 1 11 解 ∵α、β∈0,2且 cos α=7,cos(α+β)=-14, 4 3 2 ∴sin α= 1-cos α= 7 , 5 3 2 sin(α+β)= 1-cos α+β= 14 . 又∵β=(α+β)-α,

π π (1)原式=cos2-12
π π π π 5 - - =cos 12π=cos4+6=cos 4 6
6- 2 π π π π =cos 4cos 6-sin 4sin 6= 4 .
(2)原式=cos(15° -105° )=cos(-90° )=0.
本 课 时 栏 目 开 关
3 x;(2)cos2π-x=-sin
(1)cos(π-x)=-cos
x.
证明 (1)cos(π-x)=cos πcos x+sin πsin x
=(-1)×cos x+0×sin x=-cos x;
3 (2)cos2π-x=cos
3 3 2πcos x+sin 2πsin x
1-cos
2
2
β α- = 2
1 4 5 1-81= 9 , 4 5 1-9= 3 .
1-sin
α -β= 2
研一研·问题探究、课堂更高效
3.1.1

《步步高 学案导学设计》2013-2014学年 高中数学 人教A版必修4【配套备课资源】第2章 2.3.4

《步步高 学案导学设计》2013-2014学年 高中数学 人教A版必修4【配套备课资源】第2章 2.3.4

1.两向量共线的坐标表示
本 课 时 栏 目 开 关
设 a=(x1,y1),b=(x2,y2). (1)当 a∥b 时,有 x1y2-x2y1=0 . x1 y1 = x (2)当 a∥b 且 x2y2≠0 时,有 2 y2 .即两向量的相应坐标成 比例.
填一填·知识要点、记下疑难点
2.3.4
→ → 2.若P1P=λPP2,则 P 与 P1、P2 三点共线.

本 课 时 栏 目 开 关
设 P 点坐标为(x,y).
→ → → → → → ∵|AP|=2|PB|,∴AP=2PB或AP=-2PB. → → 当AP=2PB时,(x-3,y+4)=2(-1-x,2-y),
x-3=-2-2x ∴ y+4=4-2y
1 x= 1 ,解得 3 ,∴P 点坐标为3,0. y = 0
x1+λx2 y1+λy2 , = 1+λ . 1 + λ x1+λx2 y1+λy2 , ∴P 1+λ . 1 + λ
本 课 时 栏 目 开 关
研一研·问题探究、课堂更高效
2.3.4
【典型例题】 例1 已知 a=(1,2),b=(-3,2),当 k 为何值时,ka+b 与 a
答 ∵a=(x1,y1),b=(x2,y2),b≠0.
本 课 时 栏 目 开 关
∴x2,y2 不全为 0,不妨假设 x2≠0. ∵a∥b,∴存在实数 λ,使 a=λb,
x1=λx2, 即(x1,y1)=λ(x2,y2)=(λx2,λy2),∴ y1=λy2,
x1 ∵x2≠0.∴λ=x . 2 x1 x1y2 将 λ=x 代入 y1=λy2 得 y1= x ,即 x1y2-x2y1=0. 2 2
本 课 时 栏 目 开 关

【教育资料】《步步高 学案导学设计》-2014学年 高中数学 人教a版必修4【配套备课资源】第1章 1.2.1(一)学

【教育资料】《步步高 学案导学设计》-2014学年 高中数学 人教a版必修4【配套备课资源】第1章 1.2.1(一)学

§1.2 任意角的三角函数1.2.1 任意角的三角函数(一)一、基础过关 1. sin 1 860°等于( )A.12B .-12C.32D .-32 2. 当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是( )A .1B .0C .2D .-23. 角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( )A .3B .-3C .±3D .54. 点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动23π弧长到达点Q ,则点Q 的坐标为( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12 C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,12 5. 设角α的终边经过点(-6t ,-8t ) (t ≠0),则sin α-cos α的值是( )A.15B .-15C .±15D .不确定6. 已知sin θ·tan θ<0,则角θ位于第________象限.7. 已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为________. 8. 化简下列各式:(1)sin 72π+cos 52π+cos(-5π)+tan π4;(2)a 2sin 810°-b 2cos 900°+2ab tan 1 125°. 二、能力提升9. 已知角α的终边上一点的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为 ( )A.5π6 B.2π3 C.5π6D.11π610.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________.11.角α的终边上一点P 的坐标为(4a ,-3a )(a ≠0),求2sin α+cos α的值. 12. 判断下列各式的符号:(1)sin 340°cos 265°;(2)sin 4tan ⎝⎛⎭⎫-23π4; (3)sin (cos θ)cos (sin θ)(θ为第二象限角). 三、探究与拓展13.若θ为第一象限角,则能确定为正值的是( )A .sin θ2B .cos θ2C .tan θ2D .cos 2θ答案1.C 2.C 3.A 4.A 5.C 6.二或三 7.-2<a ≤3 8.(1)原式=-1 (2)原式=(a +b )2 9.D 10.211.解 由题意有x =4a ,y =-3a ,故r =(4a )2+(-3a )2=5|a |.(1)当a >0时,α是第四象限的角,所以 sin α=y r =-3a 5a =-35,cos α=x r =45,故2sin α+cos α=-25.(2)当a <0时,α是第二象限的角,所以 sin α=y r =-3a -5a =35,cos α=x r =-45,故2sin α+cos α=25.12.解 (1)∵340°是第四象限角,265°是第三象限角,∴sin 340°<0,cos 265°<0, ∴sin 340°cos 265°>0.(2)∵π<4<3π2,∴4是第三象限角,∵-23π4=-6π+π4,∴-23π4是第一象限角.∴sin 4<0,tan ⎝⎛⎭⎫-23π4>0,∴sin 4tan ⎝⎛⎭⎫-23π4<0.(3)∵θ为第二象限角,∴0<sin θ<1<π2,-π2<-1<cos θ<0,∴sin(cos θ)<0,cos(sin θ)>0, ∴sin (cos θ)cos (sin θ)<0.13.C。

【步步高 学案导学设计】2014-2015学年高中数学 第三章 三角恒等变换章末综合检测(B)新人教A版必修4

【步步高 学案导学设计】2014-2015学年高中数学 第三章 三角恒等变换章末综合检测(B)新人教A版必修4

第三章 三角恒等变换章末检测(B )(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.sin 15°cos 75°+cos 15°sin 105°等于( )A .0 B.12 C.32D .12.若函数f (x )=sin 2x -12(x ∈R ),则f (x )是( )A .最小正周期为π2的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数3.已知α∈(π2,π),sin α=35,则tan(α+π4)等于( )A.17 B .7 C .-17D .-7 4.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A .[-π,-5π6]B .[-5π6,-π6]C .[-π3,0]D .[-π6,0]5.化简:+θ+cos 120°sin θcos θ的结果为( )A .1 B.32C. 3 D .tan θ 6.若f (sin x )=3-cos 2x ,则f (cos x )等于( ) A .3-cos 2x B .3-sin 2x C .3+cos 2x D .3+sin 2x7.若函数f (x )=sin(x +π3)+a sin(x -π6)的一条对称轴方程为x =π2,则a 等于( )A .1 B. 3 C .2 D .38.函数y =12sin 2x +sin 2x ,x ∈R 的值域是( )A .[-12,32]B .[-22+12,22+12]C .[-32,12]D .[-22-12,22-12]9.若3sin θ=cos θ,则cos 2θ+sin 2θ的值等于( )A .-75 B.75 C .-35 D.3510.已知3cos(2α+β)+5cos β=0,则tan(α+β)tan α的值为( ) A .±4 B.4 C .-4 D .111.若cos θ2=35,sin θ2=-45,则角θ的终边所在的直线方程为( )A .7x +24y =0B .7x -24y =0C .24x +7y =0D .24x -7y =012.使奇函数f (x )=sin(2x +θ)+3cos(2x +θ)在[-π4,0]上为减函数的θ的值为( )A .-πB .-π C.5π D.2π二、填空题(本大题共4小题,每小题5分,共20分)13.函数f (x )=sin 2(2x -π4)的最小正周期是______.14.已知sin αcos β=1,则sin(α-β)=________.15.若0<α<π2<β<π,且cos β=-13,sin(α+β)=13,则cos α=________.16.函数y =sin(x +10°)+cos(x +40°),(x ∈R )的最大值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知sin(α+π2)=-55,α∈(0,π).(1)求α-π2-3π2+απ-α+π+α的值;(2)求cos(2α-3π4)的值.18.(12分)已知函数f (x )=2cos x sin x +23cos 2x - 3. (1)求函数f (x )的最小正周期;(2)求函数f (x )的最大值和最小值及相应的x 的值; (3)求函数f (x )的单调增区间.19.(12分)已知向量a =(cos 3x 2,sin 3x 2),b =(cos x 2,-sin x 2),且x ∈[-π3,π4].(1)求a ²b 及|a +b |;(2)若f (x )=a ²b -|a +b |,求f (x )的最大值和最小值.20.(12分)已知△ABC 的内角B 满足2cos 2B -8cos B +5=0,若BC →=a ,CA →=b 且a ,b 满足:a ²b =-9,|a |=3,|b |=5,θ为a ,b 的夹角. (1)求角B ;(2)求sin(B +θ).21.(12分)已知向量m =(-1,cos ωx +3sin ωx ),n =(f (x ),cos ωx ),其中ω>0,且m ⊥n ,又函数f (x )的图象任意两相邻对称轴的间距为3π2.(1)求ω的值;(2)设α是第一象限角,且f (32α+π2)=2326,求α+π4π+2α的值.22.(12分)已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin(π2+φ)(0<φ<π),其图象过点(π6,12).(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在[0,π4]上的最大值和最小值.第三章 三角恒等变换(B)答案1.D [原式=sin 15°cos 75°+cos 15°sin 75°=sin 90°=1.]2.D [f (x )=sin 2x -12=12(2sin 2x -1)=-12cos 2x ,∴T =2π2=π,f (x )为偶函数.]3.A [∵α∈(π2,π),sin α=35,∴cos α=-45,tan α=sin αcos α=-34.∴tan(α+π4)=1+tan α1-tan α=1-341+34=17.]4.D [f (x )=sin x -3cos x =2sin(x -π3).令2k π-π2≤x -π3≤2k π+π2(k ∈Z ),得2k π-π6≤x ≤2k π+5π6(k ∈Z ),令k =0得-π6≤x ≤5π6.由此可得[-π6,0]符合题意.]5.B [原式=sin 60°cos θ+cos 60°sin θ-12sin θcos θ=sin 60°cos θcos θ=sin 60°=32.]6.C [f (sin x )=3-(1-2sin 2x )=2+2sin 2x ,∴f (x )=2x 2+2,∴f (cos x )=2cos 2x +2=1+cos 2x +2=3+cos 2x .]7.B [f (x )=sin(x +π3)-a sin(π6-x )=sin(x +π3)-a cos(π3+x )=1+a 2sin(x +π3-φ)∴f (π2)=sin 5π6+a sin π3=32a +12=1+a 2.解得a = 3.]8.B [y =12sin 2x +sin 2x =12sin 2x +1-cos 2x 2=12sin 2x -12cos 2x +12=22sin(2x -π4)+12, ∵x ∈R ,∴-1≤sin(2x -π4)≤1,∴y ∈[-22+12,22+12]. 9.B [∵3sin θ=cos θ,∴tan θ=13.cos 2θ+sin 2θ=cos 2θ-sin 2θ+2sin θcos θ=cos 2θ+2sin θcos θ-sin 2θcos 2θ+sin 2θ=1+2tan θ-tan 2θ1+tan 2θ=1+2³13-191+19=75.] 10.C [3cos(2α+β)+5cos β=3cos(α+β)cos α-3sin(α+β)sin α+5cos(α+β)cos α+5sin(α+β)sin α=0,∴2sin(α+β)sin α=-8cos(α+β)cos α, ∴tan(α+β)tan α=-4.]11.D [cos θ2=35,sin θ2=-45,tan θ2=-43,∴tan θ=2tan θ21-tan 2θ2=-831-169=247.∴角θ的终边在直线24x -7y =0上.]12.D [∵f (x )为奇函数,∴f (0)=sin θ+3cos θ=0.∴tan θ=- 3.∴θ=k π-π3,(k ∈Z ).∴f (x )=2sin(2x +θ+π3)=±2sin 2x .∵f (x )在[-π4,0]上为减函数,∴f (x )=-2sin 2x ,∴θ=2π3.]13.π2解析 ∵f (x )=12[1-cos(4x -π2)]=12-12sin 4x ∴T =2π4=π2.14.1解析 ∵sin αcos β=1,∴sin α=cos β=1,或sin α=cos β=-1, ∴cos α=sin β=0.∴sin(α-β)=sin αcos β-cos αsin β=sin αcos β=1. 15.429解析 cos β=-13,sin β=223,sin(α+β)=13,cos(α+β)=-223,故cos α=cos[(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β=(-223)³(-13)+223³13=429. 16.1解析 令x +10°=α,则x +40°=α+30°, ∴y =sin α+cos(α+30°)=sin α+cos αcos 30°-sin αsin 30° =12sin α+32cos α =sin(α+60°). ∴y max =1.17.解 (1)sin(α+π2)=-55,α∈(0,π)⇒cos α=-55,α∈(0,π)⇒sin α=255.α-π2-3π2+απ-α+π+α=-cos α-sin αsin α-cos α=-13.(2)∵cos α=-55,sin α=255⇒sin 2α=-45,cos 2α=-35. cos(2α-3π4)=-22cos 2α+22sin 2α=-210.18.解 (1)原式=sin 2x +3cos 2x =2(12sin 2x +32cos 2x )=2(sin 2x cos π3+cos2x sin π3)=2sin(2x +π3).∴函数f (x )的最小正周期为π.(2)当2x +π3=2k π+π2,即x =k π+π12(k ∈Z )时,f (x )有最大值为2.当2x +π3=2k π-π2,即x =k π-5π12(k ∈Z )时,f (x )有最小值为-2.(3)要使f (x )递增,必须使2k π-π2≤2x +π3≤2k π+π2(k ∈Z ),解得k π-5π12≤x ≤k π+π12(k ∈Z ).∴函数f (x )的递增区间为[k π-5π12,k π+π12](k ∈Z ).19.解 (1)a ²b =cos 3x 2cos x 2-sin 3x 2sin x2=cos 2x ,|a +b |=cos 3x 2+cos x 22+sin 3x 2-sinx22=2+2cos 2x =2|cos x |,∵x ∈[-π3,π4],∴cos x >0,∴|a +b |=2cos x . (2)f (x )=cos 2x -2cos x =2cos 2x -2cos x -1=2(cos x -12)2-32.∵x ∈[-π3,π4].∴12≤cos x ≤1,∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1.20.解 (1)2(2cos 2B -1)-8cos B +5=0,即4cos 2B -8cos B +3=0,得cos B =12.又B 为△ABC 的内角,∴B =60°.(2)∵cos θ=a ²b |a |²|b |=-35,∴sin θ=45.∴sin(B +θ)=sin B cos θ+cos B sin θ=4-3310. 21.解 (1)由题意,得m ²n =0,所以f (x )=cos ωx ²(cos ωx +3sin ωx )=1+cos 2ωx 2+3sin 2ωx 2=sin(2ωx +π6)+12. 根据题意知,函数f (x )的最小正周期为3π.又ω>0,所以ω=13.(2)由(1)知f (x )=sin(2x 3+π6)+12,所以f (32α+π2)=sin(α+π2)+12=cos α+12=2326.解得cos α=513.因为α是第一象限角,故sin α=1213.所以α+π4π+2α=α+π4cos 2α=22sin α+22cos αcos 2α-sin 2α=2α-sin α=-13214.22.解 (1)因为f (x )=12sin 2x sin φ+cos 2x cos φ-12sin(π2+φ)(0<φ<π),所以f (x )=12sin 2x sin φ+1+cos 2x 2cos φ-12cos φ=12sin 2x sin φ+12cos 2x cos φ =12(sin 2x sin φ+cos 2x cos φ) =12cos(2x -φ). 又函数图象过点(π6,12),所以12=12cos(2³π6-φ),即cos(π3-φ)=1,又0<φ<π,所以φ=π3.(2)由(1)知f (x )=12cos(2x -π3),将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,可知g (x )=f (2x )=12cos(4x -π3),因为x ∈[0,π4],所以4x ∈[0,π],因此4x -π3∈[-π3,2π3],故-12≤cos(4x -π3)≤1.所以y =g (x )在[0,π4]上的最大值和最小值分别为12和-14.。

《步步高 学案导学设计》2013-2014学年 高中数学 人教A版必修4【配套备课资源】第1章 1.3(二)

《步步高 学案导学设计》2013-2014学年 高中数学 人教A版必修4【配套备课资源】第1章 1.3(二)

§1.3 三角函数的诱导公式(二)一、基础过关1. 已知f (sin x )=cos 3x ,则f (cos 10°)的值为( )A .-12B.12 C .-32D.32 2. 若sin(3π+α)=-12,则cos ⎝⎛⎭⎫7π2-α等于( )A .-12B .12C.32D .-32 3. 已知sin ⎝⎛⎭⎫α-π4=13,则cos ⎝⎛⎭⎫π4+α的值等于( )A .-13B.13 C .-223D.2234. 若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫32π-α+2sin(2π-α)的值为( )A .-2m3B.2m 3 C .-3m2D.3m 2 5. 已知cos ⎝⎛⎭⎫π2+φ=32,且|φ|<π2,则tan φ等于( )A .-33B.33C .- 3D. 36. 已知cos(75°+α)=13,则sin(α-15°)+cos(105°-α)的值是( )A.13B .23C .-13D .-237.sin 21°+sin 22°+…+sin 288°+sin 289°=________. 8.求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝⎛⎭⎫α+3π2cos ⎝⎛⎭⎫α+3π2=-tan α.二、能力提升9. 已知tan(3π+α)=2,则sin (α-3π)+cos (π-α)+sin ⎝⎛⎭⎫π2-α-2cos ⎝⎛⎭⎫π2+α-sin (-α)+cos (π+α)=________.10.化简:sin ⎝⎛⎭⎫4k -14π-α+cos ⎝⎛⎭⎫4k +14π-α (k ∈Z ). 11.已知sin ⎝⎛⎭⎫-π2-α·cos ⎝⎛⎭⎫-5π2-α=60169,且π4<α<π2,求sin α与cos α的值. 12.已知cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2,求sin 3(π+α)+cos (α+π)5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α的值.三、探究与拓展13.是否存在角α,β,α∈⎝⎛⎭⎫-π2,π2,β∈(0,π),使等式⎩⎪⎨⎪⎧sin (3π-α)=2cos ⎝⎛⎭⎫π2-β3cos (-α)=-2cos (π+β)同时成立.若存在,求出α,β的值;若不存在,说明理由.答案1.A 2.A 3.A 4.C 5.C 6.D 7.8928.证明 左边=tan (-α)·sin (-α)·cos (-α)sin ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α·cos ⎣⎡⎦⎤2π-⎝⎛⎭⎫π2-α=(-tan α)·(-sin α)·cos αsin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-αcos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α=sin 2α-sin ⎝⎛⎭⎫π2-αcos ⎝⎛⎭⎫π2-α=sin 2α-cos α·sin α=-sin αcos α=-tan α=右边. ∴原等式成立. 9.210.解 原式=sin ⎣⎡⎦⎤k π-⎝⎛⎭⎫π4+α+cos ⎣⎡⎦⎤k π+⎝⎛⎭⎫π4-α. 当k 为奇数时,设k =2n +1 (n ∈Z ),则原式=sin ⎣⎡⎦⎤(2n +1)π-⎝⎛⎭⎫π4+α +cos ⎣⎡⎦⎤(2n +1)π+⎝⎛⎭⎫π4-α =sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+α+ cos ⎣⎡⎦⎤π+⎝⎛⎭⎫π4-α =sin ⎝⎛⎭⎫π4+α+⎣⎡⎦⎤-cos ⎝⎛⎭⎫π4-α =sin ⎝⎛⎭⎫π4+α-cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α =sin ⎝⎛⎭⎫π4+α-sin ⎝⎛⎭⎫π4+α=0; 当k 为偶数时,设k =2n (n ∈Z ),则原式=sin ⎣⎡⎦⎤2n π-⎝⎛⎭⎫π4+α+cos ⎣⎡⎦⎤2n π+⎝⎛⎭⎫π4-α =-sin ⎝⎛⎭⎫π4+α+cos ⎝⎛⎭⎫π4-α =-sin ⎝⎛⎭⎫π4+α+ cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α=-sin ⎝⎛⎭⎫π4+α+sin ⎝⎛⎭⎫π4+α=0. 综上所述,原式=0. 11.解 sin ⎝⎛⎭⎫-π2-α=-cos α, cos ⎝⎛⎭⎫-5π2-α=cos ⎝⎛⎭⎫2π+π2+α =-sin α.∴sin α·cos α=60169,即2sin α·cos α=120169.①又∵sin 2α+cos 2α=1,② ①+②得(sin α+cos α)2=289169,②-①得(sin α-cos α)2=49169.又∵α∈⎝⎛⎭⎫π4,π2,∴sin α>cos α>0, 即sin α+cos α>0,sin α-cos α>0, ∴sin α+cos α=1713,③sin α-cos α=713,④③+④得sin α=1213,③-④得cos α=513.12.解 ∵cos ⎝⎛⎭⎫π2+α=2sin ⎝⎛⎭⎫α-π2, ∴-sin α=-2cos α,∴tan α=2.∴sin 3(π+α)+cos (α+π)5cos ⎝⎛⎭⎫5π2-α+3sin ⎝⎛⎭⎫7π2-α=-sin 3α-cos α5sin α-3sin ⎝⎛⎭⎫π2-α=-(sin 3α+cos α)5sin α-3cos α=sin 3α+cos α3cos α-5sin α=sin 2α·tan α+13-5tan α =sin 2αsin 2α+cos 2α·tan α+13-5tan α=tan 3α1+tan 2α+13-5tan α=231+22+13-5×2=-1335.13.解 由条件,得⎩⎪⎨⎪⎧sin α=2sin β, ①3cos α=2cos β. ②①2+②2,得sin 2α+3cos 2α=2,③ 又因为sin 2α+cos 2α=1,④ 由③④得sin 2α=12,即sin α=±22,因为α∈⎝⎛⎭⎫-π2,π2, 所以α=π4或α=-π4.当α=π4时,代入②得cos β=32,又β∈(0,π),所以β=π6,代入①可知符合.当α=-π4时,代入②得cos β=32,又β∈(0,π),所以β=π6,代入①可知不符合.综上所述,存在α=π4,β=π6满足条件.。

【教育资料】《步步高 学案导学设计》-2014学年 高中数学 人教a版必修4【配套备课资源】第3章 3.1.3学习专

【教育资料】《步步高 学案导学设计》-2014学年 高中数学 人教a版必修4【配套备课资源】第3章 3.1.3学习专

3.1.3 二倍角的正弦、余弦、正切公式一、基础过关1. 函数y =2cos 2(x -π4)-1是( )A .最小正周期为π的奇函数B .最小正周期为π2的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数2.3-sin 70°2-cos 210°的值是( )A.12B.22C .2 D.32 3. 若sin(π6-α)=13,则cos(2π3+2α)的值为( ) A .-13B .-79C.13D.79 4. 若1-tan θ2+tan θ=1,则cos 2θ1+sin 2θ的值为( ) A .3B .-3C .-2D .-125. 已知等腰三角形底角的正弦值为53,则顶角的正弦值是( )A.459B.259 C .-459D .-2596. 2sin 222.5°-1=________.7. 函数f (x )=cos x -sin 2x -cos 2x +74的最大值是______.8. 已知角α在第一象限且cos α=35,求1+2cos (2α-π4)sin (α+π2)的值.二、能力提升9. 如果|cos θ|=15,5π2<θ<3π,则sin θ2的值是( )A .-105B.105C .-155D.15510.已知tan θ2=3,则1-cos θ+sin θ1+cos θ+sin θ=______.11.已知sin 22α+sin 2αcos α-cos 2α=1,α∈(0,π2),求α.12.求值:(1)sin 6°sin 42°sin 66°sin 78°;(2)sin 50°(1+3tan 10°)-cos 20°cos 80°1-cos 20°.三、探究与拓展 13.化简:(1)cos π11cos 2π11cos 3π11cos 4π11cos 5π11;(2)cos x 2cos x 4cos x 8…cos x2n .答案1.A 2.C 3.B 4.A 5.A 6.-227.28.原式=1459.C10.311.α=π612.(1)原式=116(2)原式= 213.解(1)原式=125sin π11·25sinπ11·cosπ11cos2π11·cos⎝⎛⎭⎫π-8π11cos4π11·cos⎝⎛⎭⎫-π+16π11=1 25sin π11·24sin2π11cos2π11cos4π11·⎝⎛⎭⎫-cos8π11⎝⎛⎭⎫-cos16π11=1 25sin π11·23sin4π11cos4π11cos8π11·cos16π11=1 25sin π11sin32π11=1 25sin π11sin⎝⎛⎭⎫3π-π11=sinπ1125sin π11=132.(2)原式=12n sin x2n·2n sinx2n·cosx2·cosx4…cosx2n=1 2n sin x2n·2n-1⎝⎛⎭⎫2sinx2n·cosx2n·cosx2cosx4…cosx2n-1=1 2n sin x2n·2n-1sinx2n-1·cosx2·cosx4…cosx2n-1=sin x2n sinx2n.。

【教育资料】《步步高 学案导学设计》-2014学年 高中数学 人教a版必修4【配套备课资源】第1章 1.2.1(二)学

【教育资料】《步步高 学案导学设计》-2014学年 高中数学 人教a版必修4【配套备课资源】第1章 1.2.1(二)学

1.2.1 任意角的三角函数(二)一、基础过关1. 有三个命题:①π6和5π6的正弦线长度相等;②π3和4π3的正切线相同;③π4和5π4的余弦线长度相等.其中正确说法的个数为( ) A .1 B .2 C .3 D .02. 利用正弦线比较sin 1,sin 1.2,sin 1.5的大小关系是( ) A .sin 1>sin 1.2>sin 1.5B .sin 1>sin 1.5>sin 1.2C .sin 1.5>sin 1.2>sin 1D .sin 1.2>sin 1>sin 1.53. 函数y =tan ⎝⎛⎭⎫x -π3的定义域为( ) A.⎩⎨⎧⎭⎬⎫x |x ≠π3,x ∈RB.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6,k ∈ZC.⎩⎨⎧⎭⎬⎫x |x ≠k π+5π6,k ∈ZD.⎩⎨⎧⎭⎬⎫x |x ≠k π-5π6,k ∈Z4. 设a =sin(-1),b =cos(-1),c =tan(-1),则有( ) A .a <b <c B .b <a <cC .c <a <bD .a <c <b5. 若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A.⎝⎛⎭⎫-π3,π3 B.⎝⎛⎭⎫0,π3C.⎝⎛⎭⎫5π3,2π D.⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫5π3,2π6. 如果π4<α<π2,那么下列不等式成立的是( )A .cos α<sin α<tan αB .tan α<sin α<cos αC .sin α<cos α<tan αD .cos α<tan α<sin α7. 集合A =[0,2π],B ={α|sin α<cos α},则A ∩B =________________.8. 利用三角函数线,写出满足下列条件的角x 的集合:(1)sin x >-12且cos x >12;(2)tan x ≥-1. 二、能力提升9. 不等式tan α+33>0的解集是______________. 10.求函数f (x )=cos 2x -sin 2x 的定义域为________________.11.设θ是第二象限角,试比较sin θ2,cos θ2,tan θ2的大小. 12.设π2>α>β>0,求证:α-β>sin α-sin β. 三、探究与拓展13.当α∈⎝⎛⎭⎫0,π2时,求证:sin α<α<tan α.答案1.C 2.C 3.C 4.C 5.D 6.A 7.⎣⎡⎭⎫0,π4∪⎝⎛⎦⎤54π,2π8.解(1)由图(1)知:当sin x >-12且cos x >12时,角x 满足的集合:⎩⎨⎧⎭⎬⎫x |-π6+2k π<x <π3+2k π,k ∈Z .(2)由图(2)知:当tan x ≥-1时,角x 满足的集合:⎩⎨⎧⎭⎬⎫x |2k π-π4≤x <2k π+π2,k ∈Z ∪⎩⎨⎧⎭⎬⎫x |2k π+34π≤x <2k π+32π,k ∈Z ,即⎩⎨⎧⎭⎬⎫x |n π-π4≤x <n π+π2,n ∈Z .9.⎩⎨⎧⎭⎬⎫α|k π-π6<α<k π+π2,k ∈Z 10.⎣⎡⎦⎤k π-π4,k π+π4,k ∈Z11.解 θ是第二象限角,即2k π+π2<θ<2k π+π (k ∈Z ),故k π+π4<θ2<k π+π2 (k ∈Z ).作出θ2所在范围如图所示.当2k π+π4<θ2<2k π+π2 (k ∈Z )时,易知OM <MP <AT .∴cos θ2<sin θ2<tan θ2;当2k π+54π<θ2<2k π+32π(k ∈Z )时,易知MP <OM <AT .∴sin θ2<cos θ2<tan θ2.12.证明如图所示,设单位圆与角α、β的终边分别交于P 1、P 2,作P 1M 1⊥x 轴于M 1,作P 2M 2⊥x 轴于M 2,作P 2C ⊥P 1M 1于C ,连接P 1P 2,则sin α=M 1P 1,sin β=M 2P 2,α-β=12PP , ∴α-β=12PP >P 1P 2>CP 1=M 1P 1-M 1C =M 1P 1-M 2P 2=sin α-sin β,即α-β>sin α-sin β.13.证明如图所示,在直角坐标系中作出单位圆,α的终边与单位圆交于P ,α的正弦线、正切线为有向线段MP ,AT ,则MP =sin α,AT =tan α.因为S △AOP =12OA ·MP =12sin α, S 扇形AOP =12αOA 2=12α, S △AOT =12OA ·AT =12tan α,又S △AOP <S 扇形AOP <S △AOT , 所以12sin α<12α<12tan α,即sin α<α<tan α.。

《步步高 学案导学设计》 高中数学 人教A版必修4【配套备课资源】第1章 1.1.1

《步步高 学案导学设计》 高中数学 人教A版必修4【配套备课资源】第1章 1.1.1

45°+2×180°=405°;45°+3×180°=585°.
研一研·问题探究、课堂更高效
1.1.1
小结 当角的集合的表达式分两种或两种以上情形时,能合并

课 的尽量合并,注意,把最后角的集合化成简约的形式.
时 栏 目 开 关
研一研·问题探究、课堂更高效
1.1.1
跟踪训练 2 求终边在直线 y=-x 上的角的集合 S.
研一研·问题探究、课堂更高效
1.1.1
当 k=2n+1,n∈Z 时,n·360°+225°<α2<n·360°+270°,
即α2的终边在第三象限.

课 时 栏
所以α2的终边在第一或第三象限.
目 开 关
小结 若已知角 α 是第几象限角,判断α2,α3等是第几象限
1.1.1
小结 解答本题可先利用终边相同的角的关系:β=α+k·360°, 本 k∈Z,把所给的角化归到 0°~360°范围内,然后利用 0°~360°

时 范围内的角分析该角是第几象限角.
栏 目 开 关
研一研·问题探究、课堂更高效
1.1.1
跟踪训练 1 判断下列角的终边落在第几象限内: (1)1 400°; (2)-2 010°.
开 关
(2)因为 650°=360°+290°,所以在 0°~360°范围内,与 650°
角终边相同的角是 290°角,它是第四象限角.
(3)因为-950°15′=-3×360°+129°45′,所以在 0°~
360°范围内,与-950°15′角终边相同的角是 129°45′角,
它是第二象限角.
研一研·问题探究、课堂更高效

栏 目
相同的角,其中最小的正角是 330° .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 三角恒等变换(B) (时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.sin 15°cos 75°+cos 15°sin 105°等于( )A .0 B.12 C.32D .12.若函数f (x )=sin 2x -12(x ∈R ),则f (x )是( )A .最小正周期为π2的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数3.已知α∈(π2,π),sin α=35,则tan(α+π4)等于( )A.17 B .7 C .-17D .-7 4.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A .[-π,-5π6]B .[-5π6,-π6]C .[-π3,0]D .[-π6,0]5.化简:sin (60°+θ)+cos 120°sin θcos θ的结果为( )A .1 B.32C. 3 D .tan θ6.若f (sin x )=3-cos 2x ,则f (cos x )等于( ) A .3-cos 2x B .3-sin 2x C .3+cos 2x D .3+sin 2x7.若函数f (x )=sin(x +π3)+a sin(x -π6)的一条对称轴方程为x =π2,则a 等于( )A .1 B. 3 C .2 D .38.函数y =12sin 2x +sin 2x ,x ∈R 的值域是( )A .[-12,32]B .[-22+12,22+12]C .[-32,12]D .[-22-12,22-12]9.若3sin θ=cos θ,则cos 2θ+sin 2θ的值等于( )A .-75 B.75 C .-35 D.3510.已知3cos(2α+β)+5cos β=0,则tan(α+β)tan α的值为( ) A .±4 B .4 C .-4 D .111.若cos θ2=35,sin θ2=-45,则角θ的终边所在的直线方程为( )A .7x +24y =0B .7x -24y =0C .24x +7y =0D .24x -7y =012.使奇函数f (x )=sin(2x +θ)+3cos(2x +θ)在[-π4,0]上为减函数的θ的值为( )A .-πB .-π C.5π D.2π二、填空题(本大题共4小题,每小题5分,共20分)13.函数f (x )=sin 2(2x -π4)的最小正周期是______.14.已知sin αcos β=1,则sin(α-β)=________.15.若0<α<π2<β<π,且cos β=-13,sin(α+β)=13,则cos α=________.16.函数y =sin(x +10°)+cos(x +40°),(x ∈R )的最大值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知sin(α+π2)=-55,α∈(0,π).(1)求sin (α-π2)-cos (3π2+α)sin (π-α)+cos (3π+α)的值;(2)求cos(2α-3π4)的值.18.(12分)已知函数f (x )=2cos x sin x +23cos 2x - 3. (1)求函数f (x )的最小正周期;(2)求函数f (x )的最大值和最小值及相应的x 的值; (3)求函数f (x )的单调增区间.19.(12分)已知向量a =(cos3x 2,sin 3x 2),b =(cos x 2,-sin x 2),且x ∈[-π3,π4]. (1)求a ·b 及|a +b |;(2)若f (x )=a ·b -|a +b |,求f (x )的最大值和最小值.20.(12分)已知△ABC 的内角B 满足2cos 2B -8cos B +5=0,若BC →=a ,CA →=b 且a ,b 满足:a ·b =-9,|a |=3,|b |=5,θ为a ,b 的夹角. (1)求角B ;(2)求sin(B +θ).21.(12分)已知向量m =(-1,cos ωx +3sin ωx ),n =(f (x ),cos ωx ),其中ω>0,且m ⊥n ,又函数f (x )的图象任意两相邻对称轴的间距为3π2.(1)求ω的值;(2)设α是第一象限角,且f (32α+π2)=2326,求sin (α+π4)cos (4π+2α)的值.22.(12分)已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12sin(π2+φ)(0<φ<π),其图象过点(π6,12).(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在[0,π4]上的最大值和最小值.第三章 三角恒等变换(B)答案1.D [原式=sin 15°cos 75°+cos 15°sin 75°=sin 90°=1.]2.D [f (x )=sin 2x -12=12(2sin 2x -1)=-12cos 2x ,∴T =2π2=π,f (x )为偶函数.]3.A [∵α∈(π2,π),sin α=35,∴cos α=-45,tan α=sin αcos α=-34.∴tan(α+π4)=1+tan α1-tan α=1-341+34=17.]4.D [f (x )=sin x -3cos x =2sin(x -π3).令2k π-π2≤x -π3≤2k π+π2(k ∈Z ),得2k π-π6≤x ≤2k π+5π6(k ∈Z ),令k =0得-π6≤x ≤5π6.由此可得[-π6,0]符合题意.]5.B [原式=sin 60°cos θ+cos 60°sin θ-12sin θcos θ=sin 60°cos θcos θ=sin 60°=32.]6.C [f (sin x )=3-(1-2sin 2x )=2+2sin 2x , ∴f (x )=2x 2+2,∴f (cos x )=2cos 2x +2=1+cos 2x +2=3+cos 2x .]7.B [f (x )=sin(x +π3)-a sin(π6-x )=sin(x +π3)-a cos(π3+x )=1+a 2sin(x +π3-φ)∴f (π2)=sin 5π6+a sin π3=32a +12=1+a 2.解得a = 3.]8.B [y =12sin 2x +sin 2x =12sin 2x +1-cos 2x 2=12sin 2x -12cos 2x +12=22sin(2x -π4)+12,∵x ∈R ,∴-1≤sin(2x -π4)≤1,∴y ∈[-22+12,22+12].9.B [∵3sin θ=cos θ,∴tan θ=13.cos 2θ+sin 2θ=cos 2θ-sin 2θ+2sin θcos θ=cos 2θ+2sin θcos θ-sin 2θcos 2θ+sin 2θ=1+2tan θ-tan 2θ1+tan 2θ=1+2×13-191+19=75.]10.C [3cos(2α+β)+5cos β=3cos(α+β)cos α-3sin(α+β)sin α+5cos(α+β)cos α+5sin(α+β)sin α=0, ∴2sin(α+β)sin α=-8cos(α+β)cos α, ∴tan(α+β)tan α=-4.]11.D [cos θ2=35,sin θ2=-45,tan θ2=-43,∴tan θ=2tan θ21-tan 2θ2=-831-169=247.∴角θ的终边在直线24x -7y =0上.]12.D [∵f (x )为奇函数,∴f (0)=sin θ+3cos θ=0.∴tan θ=- 3.∴θ=k π-π3,(k ∈Z ).∴f (x )=2sin(2x +θ+π3)=±2sin 2x .∵f (x )在[-π4,0]上为减函数,∴f (x )=-2sin 2x ,∴θ=2π3.]13.π2解析 ∵f (x )=12[1-cos(4x -π2)]=12-12sin 4x ∴T =2π4=π2.14.1解析 ∵sin αcos β=1,∴sin α=cos β=1,或sin α=cos β=-1, ∴cos α=sin β=0.∴sin(α-β)=sin αcos β-cos αsin β=sin αcos β=1. 15.429解析 cos β=-13,sin β=223,sin(α+β)=13,cos(α+β)=-223,故cos α=cos[(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β=(-223)×(-13)+223×13=429.16.1解析 令x +10°=α,则x +40°=α+30°,∴y =sin α+cos(α+30°) =sin α+cos αcos 30°-sin αsin 30° =12sin α+32cos α =sin(α+60°). ∴y max =1.17.解 (1)sin(α+π2)=-55,α∈(0,π)⇒cos α=-55,α∈(0,π)⇒sin α=255.sin (α-π2)-cos (3π2+α)sin (π-α)+cos (3π+α)=-cos α-sin αsin α-cos α=-13.(2)∵cos α=-55,sin α=255⇒sin 2α=-45,cos 2α=-35.cos(2α-3π4)=-22cos 2α+22sin 2α=-210.18.解 (1)原式=sin 2x +3cos 2x =2(12sin 2x +32cos 2x )=2(sin 2x cos π3+cos 2x sin π3)=2sin(2x +π3).∴函数f (x )的最小正周期为π.(2)当2x +π3=2k π+π2,即x =k π+π12(k ∈Z )时,f (x )有最大值为2.当2x +π3=2k π-π2,即x =k π-5π12(k ∈Z )时,f (x )有最小值为-2.(3)要使f (x )递增,必须使2k π-π2≤2x +π3≤2k π+π2(k ∈Z ),解得k π-5π12≤x ≤k π+π12(k ∈Z ).∴函数f (x )的递增区间为[k π-5π12,k π+π12](k ∈Z ).19.解 (1)a ·b =cos 3x 2cos x 2-sin 3x 2sin x2=cos 2x ,|a +b |=(cos 3x 2+cos x 2)2+(sin 3x 2-sin x2)2=2+2cos 2x =2|cos x |,∵x ∈[-π3,π4],∴cos x >0,∴|a +b |=2cos x .(2)f (x )=cos 2x -2cos x =2cos 2x -2cos x -1=2(cos x -12)2-32.∵x ∈[-π3,π4].∴12≤cos x ≤1,∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1.20.解 (1)2(2cos 2B -1)-8cos B +5=0,即4cos 2B -8cos B +3=0,得cos B =12.又B 为△ABC 的内角,∴B =60°.(2)∵cos θ=a ·b |a |·|b |=-35,∴sin θ=45.∴sin(B +θ)=sin B cos θ+cos B sin θ=4-3310.21.解 (1)由题意,得m ·n =0,所以f (x )=cos ωx ·(cos ωx +3sin ωx )=1+cos 2ωx 2+3sin 2ωx 2=sin(2ωx +π6)+12.根据题意知,函数f (x )的最小正周期为3π.又ω>0,所以ω=13.(2)由(1)知f (x )=sin(2x 3+π6)+12,所以f (32α+π2)=sin(α+π2)+12=cos α+12=2326.解得cos α=513.因为α是第一象限角,故sin α=1213.所以sin (α+π4)cos (4π+2α)=sin (α+π4)cos 2α=22sin α+22cos αcos 2α-sin 2α=22(cos α-sin α)=-13214. 22.解 (1)因为f (x )=12sin 2x sin φ+cos 2x cos φ-12sin(π2+φ)(0<φ<π),所以f (x )=12sin 2x sin φ+1+cos 2x 2cos φ-12cos φ=12sin 2x sin φ+12cos 2x cos φ =12(sin 2x sin φ+cos 2x cos φ) =12cos(2x -φ). 又函数图象过点(π6,12),所以12=12cos(2×π6-φ),即cos(π3-φ)=1,又0<φ<π,所以φ=π3.(2)由(1)知f (x )=12cos(2x -π3),将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,可知g (x )=f (2x )=12cos(4x -π3),因为x ∈[0,π4],所以4x ∈[0,π],因此4x -π3∈[-π3,2π3],故-12≤cos(4x -π3)≤1.所以y =g (x )在[0,π4]上的最大值和最小值分别为12和-14.。

相关文档
最新文档