八年级数学基础巩固与拓展提优:第三章 第3课时 中心对称与中心对称图形(2)

合集下载

八(上)数学 第三章 3.2 中心对称与中心对称图形(1)

八(上)数学 第三章 3.2 中心对称与中心对称图形(1)

八年级数学上第三章中心对称图形(一)3.2 中心对称与中心对称图形第1课时中心对称与中心对称图形(1)1.关于中心对称的两个图形,对称点连线都经过_______,并且被_______平分.2.下列说法中,不正确的是( ) A.关于某一点中心对称的两个图形全等B.全等的图形一定关于某一点成中心对称C.圆是中心对称图形D.任何一条线段的两个端点关于这条线段的中点成中心对称3.国旗上的每颗五角星( ) A.是中心对称图形而不是轴对称图形B.是轴对称图形而不是中心对称图形C.既是中心对称图形,又是轴对称图形D.既不是中心对称图形,又不是轴对称图形4.已知线段AB,用圆规与直尺如何找到线段AB的两个端点的对称中心.5.如图,两个同样的三角形成中心对称,试确定它的对称中心.6.请你画出下图关于点A的中心对称图形.7.如图,O是三角形ABC边AB上的一点,请你画一个三角形,使它与三角形ABC关于点O成中心对称.8.如图,画出四边形ABCD关于点B的对称图形.9.如图,在△ABC与△EDF关于点O成中心对称,你能从图中找出哪些等量关系?10.以如图的正方形右边缘所在的直线为轴将该图形向右翻转180°后,再按顺时针声向旋转180°,所得到的图形是( )11.如图,在四边形ABCD中,AB∥CD,B C⊥CD,垂足为点C,E是AD的中点,连结BE并延长交CD的延长线于点F.(1)图中△EFD可以由△_______绕着点________旋转________度后得到;(2)写出图中的一对全等三角形__________;(3)若AB=4,BC=5,CD=6,求△BCF的面积.12.如图,在四边形ABCD中,AB∥CD,M是BC的中点.(1)连结DM并延长,交AB的延长线于点E,连结AM;(2)△CDM与△BEM关于点_________成__________对称;(3)如果AD=AB+CD,那么△ADE是什么三角形? AM是△ADE的什么线段?请说明理由.13.观察下列银行标志,从图案看是中心对称图形的有( )A.1个B.2个C.3个D.4个14.下面各图形中,是中心对称图形的是( )15.下列四张扑克牌的牌面,不是中心对称图形的是( )参考答案1.对称中心对称中心2.B 3.B 4.对称中心为段AB的中点,图略.5.连结对称点连线,其交点就是对称中心.6.图略7.图略8.图略9.OA=OE,OC=OF,OB=OD,AB=DE,CB=FD,AC=EF,∠ABC=∠FDE,∠BAC=∠FED,∠ACB=∠EFD.10.A11.(1)EBA E 180 (2)△FD E≌△BAE (3)S△BCF=S梯形ABCD=2512.(1)略(2)M 中心(3)等腰,AM是△ADE的DE边上的垂直平分线,又是∠DAE的角平分线.13.C 14.D 15.D。

八上数学第3章 中心对称图形(一)第3课时 中心对称与中心对称图形(2)

八上数学第3章 中心对称图形(一)第3课时 中心对称与中心对称图形(2)

八年级数学(上)第三章中心对称图形(一)第3课时中心对称与中心对称图形(二)(附答案)1.下列图形中,既是轴对称图形又是中心对称图形的是( )2.下列四张扑克牌的牌面,不是中心对称图形的是( )3.观察下列银行标志,从图案看是中心对称图形的有( )A.1个B.2个C.3个D.4个4.下列四组图形中,中心对称的图形有( ) A.1组B.2组C.3组D.4组5.如图①所示的四张牌,若将其中一张牌旋转180°后得到图②,则旋转的牌是( )6.如图,下列图形:(1)是轴对称图形的是___________,它们的对称轴分别有______________条.(2)通过旋转能完全重合的图形是_________.请在图中标出各自的旋转中心,它们分别至少旋转___________才能与原图形重合.(3)是中心对称图形的是___________.7.找出下列各图中的旋转中心,说出至少旋转多少度能与原图形重合,并说出它们是不是中心对称图形.8.如图,AC与BD互相平分且相交于点O,点E、F分别在AB、CD上,且AE=CF.试利用“中心对称”的有关知识说明:点E、O、F在同一直线上,且OE=OF.9.如图是4×4的正方形网格,请在其中选取一个白色的正方形并涂上阴影,使图中阴影部分是一个中心对称图形.10.如图,在△ABC中,D是AB边的中点,AC=4,BC=6.(1)作出△CDB关于点D的中心对称图形.(2)利用“中心对称”的有关知识,求CD的取值范围.11.如图,点M、N分别是△ABC的边BC、AC的中点,点P是点A关于点M的对称点,点Q是点B关于点N的对称点.试说明P、C、Q三点在同一条直线上.12.按要求作图.(1)如图①是有5个大小相同的圆构成的图形,若想要画一条直线把它们分割成面积相等的两个部分,该如何画?(2)如图②是一块方角形钢板,请用一条直线将其分成面积相等的两部分.参考答案1.D 2.D 3.C 4.C 5.A6.(1)①②③④4、3、6、4 (2)①②③④画图略90°,120°,60°,90°(3)①③④7.略8.略9.略10.(1)如图所示(2)B、C点的对应点为点A、E,由中心对称的特征得CD=DE,BC=AE,在△EAC中,AC+AE>CE,AE-AC<CE.∵AC=4,AE=BC=6,∴2<CE<10.∴1<CD<511.连接PC、CQ.∵点M、N分别是△ABC的边BC、AC的中点,∴BM=CM,AN=CN.∴点C是点B关于点M的对称点,点C也是点A关于点N的对称点.又∵点P是A点关于点M的对称点,点Q是点B关于点N的对称点,∴△PCM是△ABM关于点M的对称三角形,△QCN是△BAN关于点N的对称三角形.∴∠ABM=∠PCM,∠BAN=∠QCN.∴∠PCM+∠ACB+∠QCN=∠ABM+∠ACB+∠BAM=180°.∴P、C、Q三点在同一条直线上12.(1)如图①,画辅助圆,设圆心为O6,圆O2与圆O5的公共点为点O,直线O1O6过点O,显然点O为下图的对称中心,这条直线把六个圆分成面积相等的两部分,也把圆O6分成面积相等的两部分.因此,直线O1O6即为所求直线(2)中心对称图形有一个性质:过中心对称图形的对称中心的每一条直线,都将这个中心对称图形分成面积相等的两部分.图中方角形钢板虽不是中心对称图形,但可采用“割”或“补”的方法将其分成两个中心对称的图形.共有三种解法,如图②、③、④所示。

八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

知1-讲
例2 如图,在下列图形中,中心对称图形有( C ) A.1个 B.2个 C.3个 D.4个
导引:这些图形绕某一点旋转一定角度都能与原图形完 全重合,但旋转180°后能与原图形重合的有3个, 只有最后一个图形不重合.
总结
知1-讲
正多边形图案是否为中心对称图形的识别方法: 边数为偶数的正多边形图案是中心对称图形,
知识点 1 中心对称图形的定义
知1-导
问题
(1)如图,将线段AB绕它的中点旋转180°,你 有什么发现?
A
B
可以发现:线段AB绕它的中点旋转180°后与 它BCD 绕它的两条对角线的交点O旋
转180°,你有什么发现?
A
D
O
B
C
Y 可以发现: ABCD 绕它的两条对角线的交点O旋
第三章 图形的平移与旋转
3.3 中心对称
第2课时 中心对称图形
1 课堂讲解 2 课时流程
中心对称图形的定义 中心对称图形的性质 中心对称图形的作图
逐点 导讲练
课堂 小结
作业 提升
我们上节课学习了中心对称的相关知识,中心对 称是指两个图形的关系,而把这两个图形看作一个整 体是什么图形呢?是我们这节课所要学习的中心对称 图形.
相应地,与边数为偶数的正多边形具有类似的特 征的图形是中心对称图形;边数为奇数的正多边 形或具有类似的特征的图形一定不是中心对称图 形.
1 下列哪些图形是中心对称图形?
知1-练
解:中心对称图形有(1)(2)(3).
(来自《教材》)
知1-练
2 下面扑克牌中,哪些牌的牌面是中心对称图形?
解:第一张和第三张牌的牌面是中心对称图形.
(2)本题还有其他分割方法,请分割试一试.

八(上)数学 第三章 3.2 中心对称与中心对称图形(2)

八(上)数学 第三章 3.2 中心对称与中心对称图形(2)

八年级数学上第三章中心对称图形(一)3.2 中心对称与中心对称图形第2课时中心对称与中心对称图形(2)1.如图,□ABCD的对角线AC、BD相交于点O,用纸板验证:把□ABCD绕______旋转_______,旋转后的图形与旋转前的图形互相重合,根据这一过程,可以验证平行四边形的性质有:①_______;②________;③_________.2.在平面内,一个图形绕某个点旋转_________,如果旋转前后的图形______,那么这个图形叫做中心对称图形,这个点叫做它的_________.3.中心对称图形上的每一对对应点所连成的线段都被对称中心_______.4.下列图形中属于中心对称图形的是( )5.下列图形中,既是轴对称图形,又是中心对称图形的是( )6.下列图形中,是中心对称图形的是( )7.如图,四边形ABCD关于点O成中心对称图形.说明:四边形ABCD是平行四边形的理由.8.如图,MN⊥PQ,交点为O,点A、A′是以MN为对称轴的对称点,点A、A″是以PQ为对称轴的对称点,试说明点A′、A″是以点O为对称中心的对称点.9.如图,有一个圆(圆心为O)和一个平行四边形,请画出一条直线,同时把这两个图形分成面积相等的两个部分.10.如图,线段AB与A′B′关于某一点对称.(1)在图上作出对称中心O;(2)连结AB′,A′B,试判断AB′和A′B的关系,并说明理由.11.如图,图中出现的角都是直角.(1)画一条直线将这个图形分成面积相等的两个部分(给出三种画法);(2)符合(1)中要求的直线有多少条?如果只有三条,请说明理由;如果超过三条,请画出一种图出来.12.如图,菱形ABCD(图(1))与菱形EFGH(图(2))的形状、大小完全相同.(1)请从下列序号中选择正确选项的序号填写:①点E、F、G、H;②点G、F、E、H;③点E、H、G、F;④点G、H、E、F.如果图(1)经过一次平移后得到图(2),那么点A、B、C、D对应点分别是________;如果图(1)经过一次轴对称后得到图(2),那么点A、B、C、D对应点分别是________;如果图(1)经过一次旋转后得到图(2),那么点A、B、C、D对应点分别是________;(2)①图(1)、图(2)关于点O成中心对称,请画出对称中心(保留画图痕迹,不写画法);②写出两个图形成中心对称的一条..性质:__________.(可以结合所画图形叙述) 13.将下图按顺时针方向旋转90°后得到的是( )14.如图,在平面直角坐标系中,△ABC和△A1B1C1关于点E成中心对称.(1)画出对称中心E,并写出点E、A、C的坐标;(2)P(a,b)是△ABC的边AC上一点,△ABC经平移后,点P的对应点为P2(a+6,b+2),请画出上述平移后的△A2B2C2,并写出点A2、C2的坐标;(3)判断△A2B2C2和△A1B1C1的位置关系(直接写出结果).参考答案1.点O 180°对边相等对角相等对角线互相平分2.180°能够完全重合对称中心3.平分4.B 5.C 6.B7.∵四边形ABCD关于点O成中心对称图形,∴AC、BD都过点O,且OA=OC,OB=OD.∴∠AOD=∠BOC,∴△AO D≌△COB,∠DAO=∠BCO.∴AD∥BC.同理AB∥DC.∴四边形ABCD是平行四边形.8.如图,连结AA′、A A″、OA、OA′、O A″.∵A、A′是以MN为对称轴的对称点,∴MN是AA′的垂直平分线.∴OA=OA′,∠1=∠2.同理OA=O A″,∠3=∠4,∴OA′=O A″.∴∠1+∠4=∠2+∠3=∠MOQ=90°.∴∠1+∠2+∠3+∠4=180°.∴A′、O、A″在同一直线上,且OA′=O A″.∴点A′、A″是以点O为对称中心的对称点.9.10.(1)连结AA′,BB′,其交点即为对称中心O.(2)AB′∥A′B且AB′=A′B.11.这样的直线有无数条,比如我们可以利用图(1)来画出第四种图形.如图(4),取线段AB的中点O,过点O作直线l4,则直线l4也能将整个图形分成为面积相等的两个部分.因此这样的直线实际上有无数条.12.(1)①②③④(2)①图略②DC=DE等13 A14.(1)图略E(-3,-1)、A(-3,2)、C(-2,0)(2)A2(3,4)、C2(4,6)(3)以点O成中心对称。

北师大版八年级下册数学基础巩固训练:3.3 中心对称(包含答案)

北师大版八年级下册数学基础巩固训练:3.3  中心对称(包含答案)

第三章图形的平移与旋转3.3 中心对称知识要点把一个图形绕着某一个点旋转,如果它能够与另一个图形,那么称这两个图形关于这个点对称或中心对称,这个点叫做,这两个图形中的对应点叫做关于中心的.基础训练1.下列说法错误的是()A. 成中心对称的两个图形全等B. 成中心对称的两个图形中,对称点的连线被对称轴平分C. 中心对称图形的对称中心是对称点连线的中心D. 中心对称图形绕对称中心旋转180°后,都能与自身重合2. 若两个图形关于某点成中心对称,则以下说法:①这两个图形一定全等;②对称点的连线一定经过对称中心;③对称点与旋转中心的连线所成的角都是旋转角;④一定存在某条直线,沿该直线折叠后的两个图形能互相重合.正确的是()A.①②③B.①③④C.①②④D.①②③④3. 关于中心对称的两个图形,对应线段的关系是()A. 相等B. 平行C. 相等且平行D. 相等且平行或在同一条直线上4. 下列图形是中心对称图形的是()5.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′6. 下列图形是中心对称图形的是()7. 如图,四边形ABCD与四边形FGHE关于点O成中心对称,则下列说法错误的是()A. AD∥EF,AB∥GFB. BO=GOC. CD=HE,BC=GHD. DO=HO8. 如图,已知该图形是中心对称图形,则对称中心是()A. 点CB. 点DC. 线段BC的中点D. 线段FC的中点9. 如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等.其中正确的有()A.1个B.2个C.3个D.4个10.如图,△ABC与△DEF关于O点成中心对称,则AB DE,BC∥,AC=.第10题第11题第12题11.如图,在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1关于某一点中心对称,则对称中心的坐标为.12.下面4张扑克牌中,属于中心对称图形的有个.13.如图,已知△ABC和点O,在图中画出△A′B′C′,使△A′B′C′与△ABC关于点O成中心对称.中考链接14. (2019无锡)下列图案中,是中心对称图形但不是轴对称图形的是( )15.(2019深圳)下列图形中是轴对称图形的是 ()16.(2019广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()17. (2019绥化)下列图形中,属于中心对称图形的是( )18.(2018深圳)下列图形中,是中心对称图形的是 ()答案1.B2.A3.D4.C5.D6.A7.D8.D9.D10. = EF DF11. (2,1)12. 113. 解:如答图,△A′B′C′即为所求.14.C15.A16.C17.C18.D。

初二数学第三章《中心对称图形》知识梳理

初二数学第三章《中心对称图形》知识梳理

初二年级数学学科第三单元知识点梳理第三章 中心对称图形江苏省数学特级教师 张顺和一、知识网络二、典例分析 例1 (1)情境观察:将矩形ABCD 纸片沿对角线AC 剪开,得到△ABC 和△''A C D ,如图1所示,将△''A C D 的顶点'A 与点A 重合,并绕点A 按逆时针方向旋转,使点D 、'()A A 、B 在同一条直线上,如图2所示。

观察图2可知:与BC 相等的线段是_____________, 'C AC =_____________。

(2)问题探究:如图3,△ABC 中,AG ⊥BC 于G ,以A 为直角顶点,分别以AB 、AC 为直角边,向△ABC 外作等腰Rt △ABE 和Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q ,试探究EP 与FQ 之间的数量关系,并说明你的结论的正确性。

图1 图2C'A'BADCABCDBCDA (A')C'解 (1)情境观察: AD (或A′D ),90°(2)问题探究:结论:EP =FQ . 理由如下:∵△ABE 是等腰三角形,∴AB =AE ,∠BAE=90°. ∴∠BAG +∠EAP =90°.∵AG ⊥BC , ∴∠BAG +∠ABG =90°,∴∠ABG =∠EAP . ∵EP ⊥AG ,∴∠AGB =∠EPA =90°, ∴Rt △ABG ≌Rt △EAP . ∴AG =EP .同理AG =FQ . ∴EP =FQ .说明 情境观察所得结论是容易的,但它是为问题探究服务的,图3中以PG 为分界线的左、右两个图形实际上就是图2,你看出来了吗?分析问题时应多注意前后的联系,体会用化归思想解决问题。

例2 如图,AB//CD ,GM 平分AGH ∠,HM 平分CHG ⊥,HN 平分DHG ∠,GN平分BGH ∠。

第3课时 中心对称与中心对称图形(2)

第3课时 中心对称与中心对称图形(2)

第3课时中心对称与中心对称图形(2)预学目标1.回忆本学期第一章中轴对称与轴对称图形之间的联系和区别.2.类比轴对称图形,记忆并初步了解中心对称图形的概念.3.结合图形,理解中心对称图形如何体现中心对称性.4.寻找生活中在我们周围出现的中心对称图形.知识梳理1.中心对称图形的概念如图1,将四边形的点B绕点O旋转180°到_______点,将点A绕点O旋转180°到_______点,将点D绕点O旋转180°到_______点,将点C绕点O旋转180°到_______点,此时,整个图形即绕点_______旋转了_______,我们发现旋转后的图形与原图形_______,我们就把具有这种变换特征的图形称为__________________.绕着固定不动的那个点称为图形的_______.2.对比轴对称图形与中心对称图形例题精讲例1下列图形中,既是轴对称图形,又是中心对称图形的是( )提示:根据轴对称知识和中心对称知识,对选项逐一进行讨论.解答:观察选项可发现,A只是轴对称图形,B只是中心对称图形,D只是中心对称图形,只有C既是轴对称图形,又是中心对称图形,故选C.点评:这类题型必须从既是轴对称图形又是中心对称图形考虑,这两个条件是同时存在的,即先判定该选项是否为轴对称图形,若是,则再考虑是否为中心对称图形.例2 如图,在△ABC中,AB=AC,E为AB上的一点,F是AC延长线上的一点,EF交BC于点D,DE=DF,试说明BE=CF成立的理由.提示:DE=DF,∠EDG=∠CDF,可以把△CFD绕点D旋转180°,此时点F落在点E处,点C落在BD上的点G处,△CFD与△GDE关于点D成中心对称,因而CF=GE,故只要说明GE=BE.解答:由于DE=DF,∠EDG=∠CDF,把△CFD绕点D旋转180°得到△GDE,故△CFD与△GDE关于点D成中心对称,根据中心对称的性质,可以得到CF=GE,∠EGD=∠FCD,所以∠EGB=∠ACB.而已知AB=AC,故∠ACD=∠B=∠EGB,即△EBG 为等腰三角形,所以EB=GE=CF.点评:利用中心对称可以巧妙地说明某些线段、角相等.本题将△CFD绕点D旋转180°,实际上就是画出△CFD关于点D成中心对称的图形,从而使问题得以解决.热身练习1.下列几个图形是国际通用的交通标志,其中,不是中心对称图形的是( )2.用一副扑克牌做实验,选黑桃5和方块4(如图),其中,是中心对称图形的是( )A.黑桃5 B.方块4C.黑桃5和方块4 D.以上都不对3.下列几何图形:①两条互相平分的线段;②两个互相交叉的圆;③两个有公共顶点的角;④有一个公共顶点的两个正方形.其中,一定是中心对称图形的有( ) A.1个B.2个C.3个D.4个4.观察“一、羊、口、王、田、旦”这6个汉字,它们都是_______图形,其中,_______字可看成是中心对称图形.5.判断题.(正确的打“√”,错误的打“×”)(1)如果一个图形绕某个点旋转,能与另一个图形重合,那么这两个图形组合在一起就是一个中心对称图形.( )(2)中心对称图形一定是轴对称图形.( )6.下图是几种名车标志,其中是轴对称图形的有_______(填序号),是中心对称图形的有_______(填序号).参考答案1.D 2.B 3.A4.轴对称一、口、王、田5.(1)×(2)×6.①②③①④⑤。

初中数学之中心对称与中心对称图形知识点

初中数学之中心对称与中心对称图形知识点

初中数学之中心对称与中心对称图形知识点中心对称的定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,就说这两个图形关于这个点对称.中心对称的性质:(1)关于中心对称的两个图形是全等形(2)关于中心对称的两个图形,对称点连线都经过对称中心且被对称中心平分已知四边形ABCD和点O(下图),画四边形A’B’C’D’,使它与已知四边形关于点O对称.画法:(1).连结AO并延长到A’,使OA’=OA,得到点A的对称点A’.(2)同样画B、C、D的对称点B’、C’、D’.(3)顺次连结A’、B’、C’、D’各点.四边形A’B’C’D’就是所求的四边形.3.中心对称的判定:如果两个图形对应点连线都经过某一点,并且被在个点平分那么这两个图形关于这一点对称。

4.中心对称图形的定义把一个图形绕着某一点旋转180°,如果旋转后的图形能够和原来的图形相互重合,那么这个图形叫中心对称图形。

5.中心对称与中心对称图形的联系和区别区别:中心对称指两个全等图形的相互位置关系中心对称图形指一个图形本身成中心对称联系:如果将中心对称图形的两个图形看成一个整体,则它们是中心对称图形如果将中心对称图形,把对称的部分看成两个图形,则它们是关于中心对称。

6.中心对称图形与轴对称图形的不同之处为:1判断下列各图形是否是中心对称图形?为什么?⑴平行四边形⑵等边三角形⑶线段解:⑴∵平行四边形的对角线互相平分∴相对的两个顶点都关于对角线交点对称∴平行四边形是中心对称图形⑵∵等边三角形设有对称中心∴等边三角形不是中心对称图形⑶∵线段的中心是对称中心∴线段是中心对称图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3课时中心对称与中心对称图形(2)(附答案)
【基础巩固】
1.下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是 ( )
2.下列图形中,是中心对称图形但不是轴对称图形的是 ( )
3.下列图形中,中心对称图形有 ( )
A.1个 B.2个 C.3个 D.4个
4.一副扑克牌做实验,选其中的黑桃5和方块4,是中心对称图形的是 ( )
A.黑桃5 B.方块4 C.黑桃5和方块4 D.以上都不对
5.下列几何图形中,既是中心对称图形又是轴对称图形的是 ( )
A.正三角形 B.等腰直角三角形C.等腰梯形D.正方形
6.对右图的对称性表述,正确的是 ( )
A.轴对称图形
B.中心对称图形
C.既是轴对称图形又是中心对称图形
D.既不是轴对称图形又不是中心对称图形
7.观察“一、羊、口、王、田、旦”这6个汉字,它们都是
______________图形,其中_______字可看成中心对称图形.
8.下图是几种名车标志,其中是轴对称图形的有___________(填序号),是中心对称图形的有______________(填序号).
9.在线段、角、平行四边形、长方形、等腰梯形、圆、等边三角形中,是中心对称图形的有_______,一定是轴对称图形的有_______,既是中心对称图形又是轴对称图形的有_______.
10.如图是一个平行四边形土地ABCD,后来在其边缘挖了一个小平行四边形水塘EFGH,现准备将其分成两块,并使其满足:两块地的面积相等,分割线恰好做成水渠,便于灌溉,请你在图中画出分界线(保留作图痕迹),简要说明理由.
【拓展提优】
11.已知如图①所示的四张牌,若将其中一张牌旋转180°后得到图②,则旋转的牌是( )
12.判断下列两个结论:①正三角形是轴对称图形;②正三角形是中心对称图形. ( ) A.①②都正确 B.①②都错误 C.①正确,②错误 D.①错误,②正确
13.在艺术字中,有些字母是中心对称图形,下面的5个字母中,是中心对称图形的有( )
A.2个B.3个C. 4个 D.5个
14.在你认识的图形中,写出一个既是轴对称又是中心对称的图形名称:_______.15.如图,四边形EFGH是由四边形ABCD经过旋转得到的,如果用有序数对(2,1)表示方格纸上A点的位置,用(1,2)表示B点的位置,那么四边形ABCD旋转得到四边形EFGH时的旋转中心用有序数对表示是_______.
16.如图,五角星的顶点是一个正五边形的五个顶点,这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过_______次旋转而得到,每一次旋转_______度.
17.如图,在正方形ABCD的中间有一个圆,其圆心是正方形对角线的交点O,E是圆上任意一点,请在圆上按逆时针顺次再取三点F、G、H,连接AG、BH、CE、DF,把正方形中圆外的部分分成形状和大小都相同的四块.
18.如图,在7×6的正方形网格中,选取14个格点,以其中3个格点为顶点画出△ABC,请你以选取的格点为顶点再画出一个三角形.且分别满足下列条件:
(1)图①中所画的三角形与△ABC组成的图形是轴对称图形;
(2)图②中所画的三角形与△ABC组成的图形是中心对称图形;
(3)图③中所画的三角形与△ABC的面积相等,但不全等.
19.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.
(1)求x的取值范围;
(2)若△ABC为直角三角形,求x的值;
(3)探究△ABC的最大面积是多少.
参考答案
【基础巩固】
1.C 2.A 3.C 4.B 5.D 6.B 7.轴对称 一、口、王、田
8.①②③ ①④⑤ 9.线段、平行四边形、长方形、圆线段、角、长方形、等腰梯形、圆、等边三角形 线段、长方形、圆 10.略 【拓展提优】
11.A 12.C 13.B 14.答案不唯一,如:圆 15.(5,2) 16.4 72 17.略 18.(1)
(2)
(3)
19.(1)1<x<2. (2)x =53或x =4
3。

相关文档
最新文档