线性代数第2讲
超详细MIT线性代数公开课笔记 完整版

第三行: 0 0
1 2 关键第二行: -3 1 0 3 8 0 4
1 0 3 0 1 1 3 0 1 1 1
2 1 8 1 1 2 1 4 1 2 1 8 1 0 4 1 4 1 -3 [1 2 1] 1 [3 8 1] 0 2 2 0 [0 4 1] 1 2 1 1 0 2 0 4 1 E21A 1 2 1
1 2 1 1 2 1 1 2 1 (3,2) (2,1) A= 3 8 1 0 2 -2 U= 0 2 - 2 0 0 5 0 4 1 0 4 1
处在第二行第二列的主元二为 2,因此用第三行减去第二行的两倍进行消元, 得到第三个主元为 5。 , 矩阵 A 为可逆矩阵,消元结束后得到上三角阵 U(Uppertriangular matrix) 其左侧下半部分的元素均为 0,而主元 1,2,5 分列在 U 的对角线上。主元之积即行 列式的值。 需要说明的是, 主元不能为 0, 如果恰好消元至某行, 0 出现在了主元的位置上, 应当通过与下方一行进行“行交换”使得非零数字出现在主元位置上。如果 0 出现 在了主元位置上,并且下方没有对等位置为非 0 数字的行,则消元终止,并证明矩 阵 A 为不可逆矩阵,且线性方程组没有唯一解。
* * * 3 * * * 例如 * * * 4 3* 4 * 5* * * * 5 * * *
画图真不是 GS 的长项,在视频里画的就比较 shi,他自己也承认了。在课本里 他用两个面相交于一条直线画了一个图,然后让这条直线和第三个平面相交画了第 二个图。同样的事,y 一张图分分钟搞定。
线性代数第2讲 行列式的计算, 克莱姆法则

21 2019/1/24
证 先证(1.25)是方程组(1.23)的解, 根据(1.26) n 式,
D j b1 A1 j b2 A2 j
bn Anj bk Akj
k 1
其中Akj是系数行列式中元素akj的代数 余子式. 将 n 1 x j bk Akj ( j 1, 2, , n)代入 D k 1
a x
j 1 ij
n
j
bi
(i 1, 2,
, n)
22 2019/1/24
得
1 1 aij bk Akj aij Akj bk j 1 D k 1 D j 1 k 1
n n n n
1 n n 1 n n aij Akj bk bk aij Akj D k 1 j 1 D k 1 j 1 1 1 bk ik D (bi 1 D) bi (i 1, 2, D k 1 D
线性代数第2讲
行列式的计算, 克莱姆法则
1 2019/1/24
例1 上三角行列式(i>j时, aij=0)
a11 D
a12 a22 0
a1n a2 n ann
a11a22
ann
这是因为上三角行列式的转置是下三 角行列式.
2 2019/1/24
例2 计算4阶行列式
1 1 1 1 1 4 D 2 4 6 1 2 4 2 1 1 2
6 2019/1/24
7 17 8 7 25 8 D 0 5 5 0 0 5 3 (1)
2 1
9 5 3
2 11
3
11
2
7 25
简明线性代数讲义(郭志军,2015,8)

a11 a21 an1
a12 a22 an 2
a1n a2 n ann
N i1i2 in N j1 j2 jn
aij
nn
j1 j2
1
jn
N j1 j2
jn
a1 j1 a2 j2
anjn
i1i2
1
in
N i1i2
1
增加未知量的个数(二元、三元方程组) ;②增加未知量的 幂次(一元二次方程) 。韦达曾经这样地描述过“算术”与 “代数” :所谓“算术” ,即仅研究关于具体数的计算方法; 所谓“代数” ,即是研究关于事物的类或形式的运算方法— 字母表示数的思想方法是代数学发展史上的一个重大转折。 代数学的深化阶段即是高等代数阶段。十七世纪下半叶,从 研究线性方程组的解出发, 在莱布尼茨、 凯莱等人的努力下, 建立了以行列式、矩阵和线性方程组为主要内容的线性代 数,标志着高等代数理论体系的建立。由于计算机的飞速发 展与广泛应用,许多实际问题可以通过离散化的数值计算加 以解决;作为处理离散问题的线性代数,已成为科研与设计 等的必备数学基础。代数学的抽象化阶段—近世代数(抽象 代数)产生于十九世纪,其研究各种抽象的合理化的代数系 统,包括群论、环论、线性代数等许多分支。一般认为,其 形成的时间为 1926 年;从此代数学的研究对象由代数方程 根的计算与分布,进入到研究数字、文字和更一般元素的代 数运算规律和各种代数结构。
in
ai1 ,1ai2 ,2
ain ,n
1, 2,
i1i2 in j1 j2 jn
1
ai1 ai2 j2
这里, j1 j2 ain jn ,
jn 表示求和取遍
《线性代数》考点强化班 配套讲义 第二章 矩阵

( A2 )2
0
1
0
0
1
0
E
0
0
1
0
0
1
所以 B2 P1APP1AP P1A(PP1) AP P1A2P,,
B2020 P1A2020 P P1 A4 505 P P1EP P1P E
1 0 0 3 0 0
所以Leabharlann B2020 2 A2 E 2 0
1
0
,
AB A AE 1,33 A E 1,33 2E 1,33
1 0 3
AB
1
2E
1, 3 3
1
1 2
0 0
1 0
0
1
1 0 0
【例
12】设
A
为
3
阶矩阵,
P
为
3
阶可逆矩阵,且
P 1
AP
0
1
0
.若
0
0
2
P 1,2 ,3 , Q (1 2 ,2 ,3 ) ,则 Q1AQ ( )
行(3)-3行(1)
3 4 6 0 0 1
0 -2 -3 -3 0 1
1 0 0 -2 0 1
1 0 0 -2 0 1
行(1)行(3)
行(3)-2行(2)
0 -1 -1 -1 1 -1 0 1 1 1 -1 1
行(2)-行(3)
(-1)行(2)
0 -2 -3 -3 0 1
0 0 -1 -1 -2 3
0
0 a2
0
【例 2】设 A 其中 ai 0 ;求 Ak1 Ak 2 Akn .
0 0 0 an1
an 0 0 0
1
0 A 0
线性代数讲义2

第二章 矩阵矩阵是线性代数的重要组成部分,也是以后各章中计算的重要工具.在矩阵的理论中,矩阵的运算起着重要的作用.我们在这一章里,将要介绍矩阵的基本概念及其运算.§2.1 矩阵的定义一、矩阵的定义首先看几个例子.例1 设有线性方程组⎪⎪⎩⎪⎪⎨⎧=++-=+-+=++--=--+7739183332154321432143214321x x x x x x x x x x x x x x x x这个方程组未知量系数及常数项按方程组中的顺序组成一个矩形阵列如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------77391111833312111151这个阵列决定着给定方程组是否有解?以及如果有解,解是什么等问题.因此对这个阵列的研究很有必要.例2 某企业生产5种产品,各种产品的季度产值(单位:万元)如表2-1.表2-1这个排成4行5列的产值阵列⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡7680827088809090759076848570986478755880具体描述了这家企业各种产品各季度的产值,同时也揭示了产值随季节变化规律的季增长率及年产量等情况.例3 生产m 种产品需用n 种材料,如果以ij a 表示生产第i 种产品(m i ,,Λ2,1=)耗用第j 种材料(n j ,,Λ2,1=)的定额,则消耗定额可以用一个矩形表表示,如表2-2.表2-2这个由m 行n 列构成的消耗定额阵列⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211描述了生产过程中产出的产品与投入材料的数量关系.类似这样的数表,我们在自然科学、工程技术和经济管理等不同领域中经常遇到.这种数表在数学上就叫做矩阵.下面我们给出矩阵的定义.定义 由n m ⨯个数),,2,1;,,2,1(n j m i a ij ΛΛ==排成m 行n 列的数表⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A ΛΛΛΛΛΛΛ212222111211 (2-1-1) 叫做m 行n 列矩阵,简称n m ⨯矩阵.这n m ⨯个数叫做矩阵A 的元素,ij a 叫做矩阵A 的第i 行第j 列元素.一般情形下,用大写字母A ,B ,C ,…表示矩阵.为了标明矩阵的行数m 和列数n ,可用n m A ⨯表示,或记作()nm ija ⨯.二、几种特殊的矩阵1.n 阶方阵当n m =时,即A =()nn ija ⨯时,A 称为n 阶方阵.2.对角矩阵主对角线以外的元素都为零的方阵称为对角矩阵,即⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=n OO A λλλO21 3.单位矩阵主对角线上的元素都是1的n 阶对角矩阵称为单位矩阵,记为E ,如⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=111O O OE 4.三角矩阵主对角线一侧所有元素都为零的方阵称为三角矩阵,如⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n a a aa a a ΛM O M M ΛΛ00022211211 或 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n a a a a aa ΛM O M M ΛΛ21222111000 5.零矩阵所有元素都为零的矩阵称为零矩阵.记作n m O ⨯,简记O . 6.行矩阵、列矩阵m =1时的矩阵,即()n a a a A Λ21=称为行矩阵;n =1时的矩阵,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A M 21称为列矩阵.7.对称矩阵在矩阵n n ij a A ⨯=)(中,若),,2,1,(n j i a a jiij Λ==则矩阵A 称为对称矩阵,如⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡410781086076258051§2.2 矩阵的运算矩阵的意义不仅在于将一些数据排成数表形式,而且在于对它定义了一些有理论意义和实际意义的运算,从而使它成为进行理论研究或解决实际问题的有力工具.一、矩阵的加法、减法首先给出矩阵相等的概念. 定义1 在矩阵()nm ija A ⨯=和()nm ijb B ⨯=中,若它们的对应元素相等,即),,2,1;,,2,1(n j m i b a ijij ΛΛ===则称矩阵A 与B 相等,记为A=B .定义2 设()nm ija A ⨯=,()nm ijb B ⨯=,矩阵()nm ijij b a ⨯±称为矩阵A 与矩阵B 的和或差,记作A +B 或A -B ,即n m ij ij b a B A ⨯±=±)(注意,只有当两个矩阵的行数相同且列数也相同时,这两个矩阵才能进行加法、减法运算.例1 有两种物资(单位:吨)从3个产地运往4个销地,两次调运方案分别为矩阵A 与矩阵B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=846075120231321034022753B A则从各产地运往各销地两次的物资调运量(单位:吨)为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+11670109142984834261007354102202273513 846075120231321034022753B A矩阵加法满足以下运算规律:(1)A B B A +=+(2))()(C B A C B A ++=++(3)A O A =+ 矩阵()nm ija ⨯-称为矩阵()nm ija A ⨯=的负矩阵,记为()nm ija A ⨯-=-.显然,有(4)O A A =-+)(二、数与矩阵的乘法定义3 以数k 乘矩阵A 的每一个元素所得到的矩阵,称为数k 与矩阵A 的积,记作kA .如果()nm ija A ⨯=,那么()()n m ij n m ij ka a k kA ⨯⨯==不难证明,数与矩阵乘法满足以下运算规律: (1) kB kA B A k +=+)( (2) lA kA A l k +=+)( (3) )()(lA k A kl =(4) A A A A -=-=⋅)1(1, (5) O O k =⋅ (O 为零矩阵) 例2 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=052110351234230412301321B A求3A -2B .解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-----+-+----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-61941016151055011061094021223066910023496683052110351234223412301321323B A 例3 已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=612379154257864297510213B A且B X A =+2,求X ..解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-=1271211122223227212244446421)(21A B X 三、矩阵与矩阵的乘法先看一个例子.例4 某工厂有321,,A A A 三个车间,某月各种原材料的消耗量如表2-3.又各种原材料每吨价格和加工费如表2-4.求各车间某月支出原料费及加工费各为多少元?解我们可以直接计算出各车间支出的原料费用和加工费用为A车间的原料费=21×12+15×14+16×8+10×20=790(元)1A车间的原料费=53×12+0×14+13×8+4×20=820(元)2A车间的原料费=24×12+32×14+10×8+0×20=816(元)3A车间的加工费=21×5+15×4+16×2.5+10×3=235(元)1A车间的加工费=53×5+0×4+13×2.5+4×3=309.5(元)2A车间的加工费=24×5+32×4+10×2.5+0×3=273(元)3上述结果列成表2-5如果用矩阵来表示,则表2-3、表2-4、表2-5分别为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2738165.309820235790,3205.28414512,010322441305310161521C B A 从上述分析可以看出,矩阵A 、B 与C 之间的关系是:C 中第i 行第j 列)2,1;3,2,1(==j i 元素恰好等于A 的第i 行各元素分别和矩阵B 第j 列对应元素的乘积之和.因此,我们将矩阵C 定义为矩阵A 与矩阵B 的乘积,记为C =AB , 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==2738165.3098202357903205.28414512010322441305310161521AB C 我们将上面例题中矩阵之间的这种关系定义为矩阵的乘法. 定义4 设矩阵()l m ik a A ⨯=的列数与矩阵()nl kjb B ⨯=的行数相同,则由元素),,2,1;,,2,1(12211n j m i b a b a b a b a c lk kjik lj il j i j i ij ΛΛΛ===+++=∑=构成的m 行n 列矩阵n m lk kj ik n m ij b a c C ⨯=⨯∑==)()(1称为矩阵A 与矩阵B 的积,记为C =A ·B 或AB .这个定义说明,如果矩阵A 的列数等于矩阵B 的行数,则A 与B 的乘积C 中第i 行第j 列的元素,等于矩阵A 的第i 行元素与矩阵B 的第j 列对应元素乘积的和.并且矩阵C 的行数等于矩阵A 的行数,矩阵C 的列数等于矩阵B 的列数.例5 若,012321,132132⎥⎦⎤⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=B A 求AB . 解⎥⎦⎤⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=012321132132AB⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯+-⨯-⨯+-⨯⨯+⨯⨯-+-⨯-⨯-+-⨯⨯-+⨯⨯+-⨯-⨯+-⨯⨯+⨯=97530367801)3(3)1(1)2(321130)2()3(1)1()2()2(12)2(1103)3(2)1(3)2(22312我们还可以求一下BA .⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⨯+-⨯-+⨯⨯+⨯-+⨯⨯-+-⨯-+⨯⨯-+⨯-+⨯=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡---=834910)2()1(32301)1(221)3()2()2(313)3(1)2(21132132012321BA显然,BA AB ≠.例6 若()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==530412,013B A ,求AB . 解()()()32500113)3(0)4(123530412013=⨯+⨯+⨯-⨯+-⨯+⨯=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=ABBA 没有意义,因为B 的列数不等于A 的行数,BA 不可进行运算.例7 若⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=6342,2142B A ,求AB 及BA .解⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--=168321663422142AB .000021426342BA AB BA ≠⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--=由例5,例6,例7可以看到矩阵的乘法一般不满足交换律.由例6可以看到AB 有意义,BA 不一定有意义.由例5、例7可以看到,即使AB 、BA 都有意义,AB 与BA 也不一定相等.但并不是任何两矩阵相乘都不可以交换,如下面的例8,两矩阵相乘可以交换,但作为统一的运算法则,矩阵乘法交换律是不成立的.由例7还可得出:两个非零矩阵相乘,可能是零矩阵,从而不能从AB =O 必然推出A =O 或B =O .例8 若⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=1021,1011B A ,求AB 与BA . 解⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=103110211011AB⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=103110111021BA 显见,AB=BA .如果两矩阵A 与B 相乘,有AB=BA ,则称矩阵A 与矩阵B 可交换. 矩阵相乘时必须注意顺序,AX 称为用X 右乘A ,XA 称为用X 左乘A . 矩阵乘法具有下列性质:(1)(AB )C=A (BC )(2)k (AB )=(kA )B=A (kB ) (其中k 为数值)(3)A (B+C )=AB+AC (4)(B+C )A=BA+CA 设A 是n 阶方阵,规定:,,,,,1210A A A AA A A A E A k k ⋅====+Λ其中k 为正整数,k A 称为A 的k 次幂.例9 设⎥⎦⎤⎢⎣⎡-=4321A ,求E A A 5322+-. 解E A A 5322+-=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡-1001543213432122=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--6127181650051296344181214四、矩阵的转置定义5 把矩阵A 的所有行换成相应的列所得到的矩阵,称为矩阵A 的转置矩阵,记为TA ,即若()nm ija A ⨯=,则()mn jiT a A ⨯=.例10 若⎥⎦⎤⎢⎣⎡-=52134071A ,则 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=54201731T A 可见,若A 是对称矩阵,则有TA A =. 矩阵的转置具有下列性质: (1)A A TT=)((2)TTTB A B A +=+)( (3)T TA A λλ=)((4)TT T A B AB =)(五、方阵的行列式定义6 由n 阶方阵A 的元素所构成的行列式(各元素的位置不变),叫做方阵A 的行列式,记作A .应该注意,方阵与行列式是两个不同的概念,n 阶方阵是2n 个数按一定方式排列成的数表,而n 阶行列式是这些数(也就是数表A )按一定运算法则所确定的一个数.由A 确定的A 的这个运算满足下述运算规律(设A ,B 为n 阶方阵,k 为数值): (1)A A T = (2)A k kA n= (3)B A AB =由(3)可知,对于n 阶方阵A 、B ,一般说来BA AB ≠,但总有BA AB =例11 设⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=43522231B A ,,求AB . 解法1⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=22171143522231AB所以 56221711=-=AB解法256)7(843522231=-⨯-=⋅-==B A AB习题2.21. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=150421321,111111111B A ,求 (1)3AB-2A (2)B A T2.已知011311232021132=⎥⎦⎤⎢⎣⎡-----⎥⎦⎤⎢⎣⎡--X ,求X .3.计算下列乘积.(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-127075321134 (2)()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡123321 (3)()132211-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-- (4)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--131201********* (5)()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡11212221211211y x c b b b a a b a a y x 4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=321431422,531531531,431541532C B A证明:(1)AB=BA=0 (2)AC=A ,CA=C (3)ACB=CBA5.证明矩阵下列运算性质.(1))()(C B A C B A ++=++ (2)TTTB A B A +=+)( (3)A A nλλ= (4)AE =EA =A 6.求下列矩阵的幂. (1)设⎥⎦⎤⎢⎣⎡=101λA ,求kA A A ,,,Λ32 (2)求nO O⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡λλλOO7.若矩阵AB =BA ,则称B 与A 可交换,设⎥⎦⎤⎢⎣⎡=1011A ,求所有与A 可交换的矩阵.§2.3 逆矩阵一、逆矩阵的定义矩阵与数相类似,有加、减、乘三种运算.于是,自然会提出矩阵的乘法是否也和数一样存在逆运算呢?解一元线性方程ax=b ,当0≠a 时,存在一个数1-a ,使b a x 1-=为方程组的解.那么在解矩阵方程AX =B 时,是否也存在一个矩阵,使这个矩阵乘以B 等于X .这就是我们要讨论的逆矩阵的问题.逆矩阵在矩阵理论和应用中都起着重要的作用.定义1 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得AB =BA=E那么矩阵A 称为可逆矩阵,而B 称为A 的逆矩阵. 如果A 可逆,A 的逆矩阵是唯一的.因为如果B 和1B 都是A 的逆矩阵,则有E A B AB E BA AB ====11,那么 1111)()(B EB B BA AB B BE B ===== 即 1B B =所以逆矩阵是唯一的.我们把矩阵A 唯一的逆矩阵记作1-A .定义2 若n 阶矩阵A 的行列式0≠A ,则称A 为非奇异的. 为了讨论逆矩阵存在的条件和逆矩阵的求法,先引进伴随矩阵的概念. 定义3 设ij A 是矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A ΛΛΛΛΛΛΛ212222111211 的行列式A 中的元素ij a 代数余子式,那么矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n nn n A A A A A A A A A A ΛΛΛΛΛΛΛ212221212111*称为矩阵A 的伴随矩阵.定理1 矩阵A 存在逆矩阵的充分必要条件是0≠A ,即A 为非奇异矩阵时才有逆矩阵存在.证 必要性:因为A 可逆,则有1-A使E A A AA==--11.因此,01111≠====---E A A A A AA ,即0≠A .充分性:若0≠A ,作矩阵*1A AB =由§1.2定理1和定理2,可得E A A AA AA =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=00*O , 即得AB=E .同理,可证,BA=E .故*11A AA B ==- 二、逆矩阵的性质逆矩阵具有下列性质: (1)A A =--11)( (2)111)(---=A B AB(3)11)()(--=TTA A (4)AA11=- (5)111)(--=A kkA 下面仅证明性质2,其它性质请读者自己证明. 证(2) 因为E AA AEA A BB A A B AB ====------111111)())((, E B B EB B B A A B AB A B ====------111111)())((,所以 111)(---=A B AB证毕 由定理1,可得由矩阵A 的伴随矩阵*A 求逆矩阵1-A 的计算方法,求出矩阵A 的所有元素的代数余子式;写出伴随矩阵*A ;由*11A AA=-便得1-A .这种方法常用于三阶以下的方阵求逆矩阵的问题. 例1 求矩阵⎥⎦⎤⎢⎣⎡-=4312A 的逆矩阵. 解 因为011≠=A ,所以1-A 存在.由于213422211211=-===A A A A因此 ⎥⎦⎤⎢⎣⎡--=2314*A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--==-11211311111423141111*1A A A 例2 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=631321222A 的逆矩阵. 解 因为,02≠=A 所以1-A 存在,由于 131213613136332131211==-=-===A A A ,4312210612266322232221-=-===-=-=A A A221224312223222333231=-=-=-===A A A因此⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==-122125231323241410326321211332313322212312111*1A A A A A A A A A A A A 例3 试用逆矩阵求解线性方程组.⎪⎩⎪⎨⎧=+=++=--353042231321321x x x x x x x x 解 令,302,,503411112321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=B x x x X A 于是原方程组可写成AX=B (2-3-1)因为 ,0653411112≠=--=A 故1-A 存在,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==-3339137355611*1A A A对(2-3-1)式两侧左乘1-A ,得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==-63613613131613023339137355611B A X即线性方程组的解为21,613,61321=-==x x x .习题2.31. 验证矩阵B 是矩阵A 的逆矩阵.(1)⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=2123124321B A (2)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1012015120110141101510075504321B A 2.写出下列初等方阵的逆矩阵。
线性代数第2讲 方阵的行列式

□
性质 7
□
性质 7′ | c1 , , c j , , ci , , cn | | c1 , , ci , , c j , , cn | . 注 6′统称为行列式的初等列变换性质. 命题 1 设 A [ aij ] 为 n 阶方阵,则
- 10 -
□
性质 7、3( k 0 )、6 统称为行列式的初等行变换性质;性质 7′、3′( k 0 )、
□
3、按一行(列)展开公式 设 A [ aij ] 为 n 阶方阵 ( n 2) ,则
| A | ai1 Ai1 ai 2 Ai 2 ain Ain , i 1, 2, , n .
上式称为行列式的 Laplace 按一行展开公式. 定理 2′设 A [ aij ] 为 n 阶方阵 (n 2) ,则 □
i j
的 (i, j ) 元素 aij [或 (i, j ) 位置]的余子式 M ij 、代数余子式 Aij (1) 阵. k 阶子方阵的行列式即为 k 阶子式. 定理 1
M ij .
在 m n 矩阵中,k l 子矩阵的余子阵为 ( m k ) ( n l ) 子矩阵,二者互为余子 在 n 阶方阵 A [ aij ] 中选定第 i1 i2 ik 行( 1 k n 1 ),则
-9-
性质 2
r1 r1 r1 ri ri ri ri . rn rn rn
□
性质 2′ | c1 , , c j cj , , cn | | c1 , , c j , , cn | | c1 , , cj , , cn | .
注 2(三角行列式)
a12 a22 a32
辅导讲义(线性代数第二讲)

178第二章 矩阵矩阵本质上就是一个数表,它是线性代数中一个非常重要而且应用十分广泛的概念,贯穿了线性代数的始终,复习时要高度重视,概念要清晰,符号要习惯,运算要准确、迅速、简捷。
1. 理解矩阵的概念,熟练几种特殊的矩阵;2. 了解单位矩阵, 对角矩阵, 三角矩阵, 对称矩阵以及它们的基本性质;3. 掌握矩阵的线性运算, 乘法, 转置及其运算规则;4. 理解逆矩阵的概念; 掌握可逆矩阵的性质; 会用伴随矩阵求矩阵的逆;5. 了解分块矩阵的概念, 了解分块矩阵的运算法则。
一、 考试内容 2.1 矩阵的定义由n m ⨯个数),,2,1;,,2,1(n j m i a ij ==排成如下m 行n 列的形式⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n mna a a a a a a a a A (2)12222111211称为一个n m ⨯矩阵,当n m =时,矩阵A 称为n 阶矩阵或者叫n 阶方阵。
只有一行的矩阵)(21n a a a A =称为行矩阵,又称为行向量;反之,只有一列的矩阵称为列矩阵,又称为列向量。
两个矩阵的行数和列数都相等时,就称它们为同型矩阵。
如果是同型矩阵,而且对应元素都相等,则称两矩阵为相等矩阵。
元素都是零的矩阵称为零矩阵,记作O 。
注意不同型的零矩阵是不同的。
2.2 矩阵的加法设有两个n m ⨯阶矩阵)(ij a A =和)(ij b B =,那么矩阵A 与B 的和记作B A +,规定为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++=+mn mn m m m m n n n n b a b a b a b a b a ba b a b a b a B A (2)21122222221211112121111 运算法则:(1)A B B A +=+ (2))()(C B A C B A ++=++ (3)A O A =+ (4))(B A B A -+=- 注意:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算。
线性代数 1-2 第1章2讲-行列式的基本概念(2)

a21 a22
a2n
an1 an2
ann
01 n 阶行列式是由n!项组成的,结果是一个数.
02 定义式的右边每一项都是 n 个元素的乘积(称为一个乘积项),这 n 个元素是
由行列式的不同行、不同列的元素构成的.
某一乘积项符号的确定:先把该项的 n个元素按行标排成标准顺序,然后由
03
列标所成排列的逆序数来决定这一项的符号.
当n 4k或n 4k 1时,n(n 1) 为偶数; 2
当n 4k 2或n 4k 3时,n(n 1) 为奇数. 2
6
n阶行列式
结论(3)
a11 a12 a22
a1n a2n a11a22 ann
ann
上三角行列式 对角线下方的元素全为零
解
D 中可能不为 0 的项只有 (1)N a11a22 ann ,
此项的符号为 (1)N (1)0 1 ,
所以 D a11a22 ann .
7
n阶行列式
结论(4) 结论(5)
a11 a21 a22
a11a22 ann
an1 an2
ann
a2 ( n 1)
a1n
a2n
n ( n 1)
(1) 2 a a 1n 2(n1)
an1
a a n(n1)
nn
下三角行列式 对角线上方的元素全为零
线性代数(慕课版)
第一章 行列式
第二讲 行列式的基本概念(2)
主讲教师 |
本讲内容
01 排列及其逆序数 02 二阶、三阶行列式
03 n阶行列式
n阶行列式
定义 用 n2个数aij i, j 1, 2, , n 排列成的一个 n 行 n 列的记号
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上式左边的矩阵可写成两矩阵的乘积:
a11 a12 a1n x1 a a22 a2 n x2 21 , a x m1 am 2 amn n
所以有Ax=b
11
利用矩阵的乘法, 线性方程组(1.6)和(1.6')可 分别写为 Ax=b (1.6) 和 Ax=0 (1.6') 这里 A 和 b 分别是方程组(1.6)的系数矩阵和 x1 0 x 0 2 为未知数向量,0 . 常数向量, x x 0 n
16
2. 方阵的乘幂与多项式 设A是n阶方阵, 由矩阵乘法的定义和结 合律, k个A相乘是有意义的, 记作Ak, 即
A AA A
k k
显然Ak仍是n阶方阵, 称为A的(k次)幂, 规 定A0=E. 方阵的幂满足以下运算规律: (i) AkAl=Ak+l (ii) (Ak)l=Akl, 这里k,l为非负整数.
24
例1.8 设L=diag(l1,l2,…,ln), j(x)=x2-5x+4, 求j(L). 解 j(L)=L2-5L+4E
l12
l22
l1 l2 - 5 2 ln ln
1 1 4 1
线性代数第2讲
1
矩阵的乘法在线性代数中有许多重要的 应用. 这里先介绍作为线性代数课程主要 内容之一的线性方程组以及线性变换的 概念和它们的矩阵形式.
2
大家都已熟悉二元线性方程组
ax by p, cx dy q,
其中a,b,c,d,p,q为常数, x,y为未知数.
3
在线性代数课程中将讨论由m个方程, n 个未知数组成的线性方程组, 它的一般形 式是 a11 x1 a12 x2 a1n xn b1 , a x a x a x b , 21 1 22 2 2n n 2 (1.6) am1 x1 am 2 x2 amn xn bm ,
4
a11 x1 a12 x2 a1n xn b1 , a x a x a x b , 21 1 22 2 2n n 2 am1 x1 am 2 x2 amn xn bm ,
(1.6)
其中x1,x2,…,xn为未知数, aij是第i个方程中 未知数xj的系数, (i=1,2,…,m; j=1,2,…,n); bi (i=1,2,…,m)称为常数项. 如果这m个常数 b1,b2,…,bm不全为零, 称方程组(1.6)为非齐 次线性方程组;
15
如果先进行线性变换(1.7)(或(1.7')), 再进 行线性变换(1.9)(或(1.9')), 如果求从变量 x1,x2,x3到变量z1,z2,z3的线性变换呢?利用 线性变换的矩阵形式: z=By=B(Ax)=(BA)x, 即有 z=(BA)x, 这表明矩阵BA就是由变量x1,x2,x3到变量 z1,z2,z3的线性变换矩阵.
26
即有
j (l1 ) j l2 j ( Λ) j (ln ) diag(j (l1 ),j (l2 ),j (ln )).
对于对角阵L, 上式对任一多项式j(x)都是 成立的, 因此对角阵的多项式是很容易计 算的.
27
在许多实际应用的问题中, 经常要计算方 阵的幂和矩阵多项式.
22
例如当A为方阵时, A3-2A, A2-3A+2E都 是矩阵多项式. 对于矩阵多项式, 我们可 以象数x的多项式一样相乘或分解因式.
23
例1.7 (1)计算(A+3E)(A-2E); (2)分解矩 阵多项式A2-3A+2E. 解 由矩阵乘法的分配律, (1) (A+3E)(A-2E)=A(A-2E)+3E(A-2E) =A2-2A+3A-6E=A2+A-6E; (2) A2-3A+2E=(A-2E)(A-E).
18
例1.6 设L=diag(l1,l2,…,ln), 求L3. 解 l1 l1 l2 l2 2
Λ ΛΛ ln
ln
l12
l
2 2
2 ln
19
l12 l1 2 l2 l2 3 2 Λ Λ Λ 2 ln ln l13 3 l2 3 ln 3 3 3 diag(l1 , l2 ,, ln )
14
设另有由变量y1,y2到变量z1,z2,z3的线性变换 z1 b11 y1 b12 y2 , (1.9) z2 b21 y1 b22 y2 , z b y b y , 3 31 1 31 2 写成矩阵形式 z=By (1.9') 其中B为线性变换(1.9)的矩阵, z1 z , y y1 z 2 y 2 z 3
5
如果b1,b2,…,bm全为零, 即
a11 x1 a12 x2 a1n xn 0, a x a x a x 0, 21 1 22 2 2n n am1 x1 am 2 x2 amn xn 0,
(1.6')
13
给定一个线性变换, 就确定了此线性变换 的矩阵; 反过来, 给出一个矩阵, 除了变量 的名称之外, 也确定了一个线性变换. 线性变换(1.7)也可写成矩阵形式 Ax=y (1.7')
x1 x , y y1 , A 为线性变换的矩 其中 x 2 y 2 x 3 阵(1.8).
17
但要注意, 当A,B为同阶方阵时,
( AB ) ( AB )( AB ) ( AB )
k k
A B AA A BB B 上两式右端相等. 所以, 一般地(AB)kAkBk, 这是方阵的幂 的运算与数的幂的运算不同的地方.
32
例1.1 力达公司生产甲,乙,丙三种产品, 它 们的生产成本由原材料费用, 人工费用和 其他费用三项构成. 表1.1给出了每种产 品的每项费用的预算(单位: 百元). 表1.1
7
它的常数项组成m1列矩阵, 称为常数 (列)向量, 记作b, 即 b1 b 2 ; b b m
8
把 b 写在系数矩阵 A 的右边, 便得到 m(n+1)矩阵 a11 a12 a1n b1 a a22 a2 n b2 21 , A a m1 am 2 amn bm 也记为 A ( A, b) , 称 A 为方程组(1.6)的增 广矩阵.
x1 0.7 320 0.2 80, y1 0.3 320 0.8 80, 写成矩阵形式, x1 0.7 0.2 320 240 y 0.3 0.8 80 160 , 1
12
线性变换及其矩阵表示 由变量x1,x2,x3到变量y1,y2的一个线性变换是 指变量x1,x2,x3与y1,y2之间有关系式 y1 a11 x1 a12 x2 a13 x3 , (1.7) y2 a21 x1 a22 x2 a23 x3 , 其中aij为常数(i=1,2;j=1,2,3), 它们构成的矩 阵 a11 a12 a13 A (1.8) , a21 a22 a23 称为线性变换(1.7)的矩阵.
称方程组(1.6')为齐次线性方程组.
6
线性方程组与矩阵有密切的关系. 方程组 (1.6)(或(1.6'))的未知数系数所组成的mn 矩阵 a11 a12 a1n a a22 a2 n 21 A a m1 am 2 amn
称为系数矩阵;
20
由此可知, 对角阵的幂很容易计算: 对角 阵L的幂仍然是对角阵, 且其对角阵元素 就是L的对应元素的同一次幂.
下面介绍矩阵多项式的概念及性质.
21
设有x的多项式 j(x)=amxm+am-1xm-1+…+a1x+a0, A为n阶方阵. 如果多项式右端的每一项 中的x的幂用方阵A的同次幂替代(x的零 次幂用A0=E替代), 那么上式右端每一项 都是n阶方阵, 其和还是n阶方阵, 记此n阶 方阵为j(A), 即 j(A)=amAm+am-1Am-1+…+a1A+a0E, 称为矩阵A的多项式.
0.7 0.2 320 0.55 0.3 320 200 80 0.45 0.7 80 200 , 0.3 0.8
31
2
即2年后, 农村人口与城市人口各为200万. 类似地, 不难得出 xk k 320 y A 80 , k 当k为较大的整数时, 要计算A的k次幂Ak, 一般是比较麻烦的. 在第四章中将介绍求 Ak的一个简便快捷的方法.
28
例1.9 某岛国里每年有30%的农村居民移 居城市, 有20%的城市居民移居农村. 假 设该国总人口数不变, 且上述人口迁移规 律也不变, 该国现有农村人口320万, 城市 人口80万. 问该国一年后农村与城市人口 各是多少?2年后呢?
29
解 设k年后该国农村人口与城市人口分 别为xk和yk(单位:万), 这里正整数k1. 下 面计算x1,y1和x2,y2. 由题意有
25
l12 - 5l1 4 2 l2 - 5l2 4 2 ln - 5ln 4 即有 j (l1 ) j l2 j ( Λ) j (ln ) diag(j (l1 ),j (l2 ),j (ln )).