整式的运算(复习)PPT课件

合集下载

人教版数学七年级上册 第二章 整式的加减复习课件2(共38张PPT)

人教版数学七年级上册 第二章  整式的加减复习课件2(共38张PPT)
2
因为 x 是正数,
所以 10x>8x
所以 梯形的面积比长方形的面积大
10x-8x=2x
即 梯形的面积比长方形的面积大2x cm2
4、一公园的成票价是15元,儿童买半票,甲旅行团有 x(名)成年人和y (名)儿童;乙旅行团的成人数是 甲旅行团的2倍,儿童数比甲旅行团的2倍少8人,这两 个旅行团的门票费用总和各是多少?
返回
练 习(二):
1、下列各组是不是同类项:
(1) 4abc 与 4ab 不是
(2) -5 m2 n3 与 2n3 m2 是 (3) -0.3 x2 y 与 y x2 是
2、合并下列同类项:
(1) 3xy – 4 xy – xy = ( –2xy ) (2) -a-a-2a=( –4a )
(3) 0.8ab3 - a3 b+0.2ab3 =( ab3 - a3 b ) 3、若5x2 y与是 x m yn同类项,则m=( 2) n=( 1)
练习(二)

合并同类项: 定义、法则、步骤
去括号: 法 则 减
整式的加减: 步 骤
练习(三)
练 习(一):
1、在式子:
2 a

a、 3
1 x
y

x
2
y 、
1 y2
2
、1-x-5xy2、-x
中,哪些是单项式,哪些是多项式?哪些是整式?
单项式有
整式
a、 3
a 、 3
1
2 y2
、-x
x
多项式有 2
x 2
知识结构:
整式的加减
系数
单项式
次数
整式的概念
项,项数,常数
多项式 项,最高次项 次数

中考数学专题复习:第2课 整式及其运算优质课件PPT

中考数学专题复习:第2课  整式及其运算优质课件PPT

【答案】 2
【类题演练 4】 (2018·扬州)计算:(2x+3)2-(2x+3)(2x -3).
【解析】 原式=4x2+12x+9-(4x2-9)=12x+18.
1.整式的加减实质就是合并同类项,整式的乘除实质就 是幂的运算.
2.本课主要用到以下三种数学思想方法: (1)数形结合思想: 在列代数式时,常常会遇到一种题型:题中提供一 定的图形,要求通过对图形的观察、探索,提取图 形中反馈的信息,并根据相关的知识列出相应的代 数式,也能用图形来验证整式的乘法和乘法公式.
A.34
B.1
C.23
D.98
【答案】 D
()
题型一 幂的运算
熟记法则,依照法则进行计算.
【典例 1】 有下列运算:①a2·a3=a6;②(a3)2=a6;③a5
÷a5=a;④(ab)3=a3b3.其中结果正确的个数为 ( )
A.1
B.2
C.3
D.4
【解析】 ①a2·a3=a5,故本项错误;②(a3)2=a6,故本 项正确;③a5÷a5=1,故本项错误;④(ab)3=a3b3,故本 项正确.故选 B.
注意公式的变形及整体思想的应用.
【典例 3】 (2018·河北)将 9.52 变形正确的是 ( ) A.9.52=92+0.52 B.9.52=(10+0.5)(10-0.5) C.9.52=102-2×10×0.5+0.52 D.9.52=92+9×0.5+0.52
【解析】 9.52=(10-0.5)2=102-2×10×0.5+0.52.
【答案】 C
【类题演练 3】 (2018·乐山)已知实数 a,b 满足 a+b=2,
ab=34,则 a-b=
()
A.1

《整式》整式的加减PPT课件(第1课时单项式)

《整式》整式的加减PPT课件(第1课时单项式)
车在主桥上行驶t小时的路程是 92t 千米.
探究新知
单项式定义:这些代数式都是数或字母的乘积,像这 样的代数式叫作单项式。 单独的一个数或一个字母也是单项式。
巩固练习
练一练:判断下列代数式是否是单项式?
4b2

π,2+3m
,3xy

a 3

1 t
答:4b2

π,3xy

a 3
是单项式.
探究新知
学生活动二 【一起探究】
2.观察下列代数式 92t,a2,0.9 p ,1 a2h 中出现
3
的数字它们和字母有什么关系?
探究新知
单项式的系数:单项式中的数字因数叫作这个单项式 的系数. 规定:单项式表示数与字母相乘时,通常把数写在前 面,单项式的系数是1或-1时,1通常省略不写.
探究新知
单项式的次数:一个单项式中,所有字母的指数的和 叫作这个单项式的次数。如果一个单项式的次数是n, 那么称这个单项式是n次单项式. 规定:对于一个非零数,规定它的次数为0.
(3)有理数n的相反数是 ﹣n .
巩固练习
(4)《北京2022年冬奥会——冰上运动》是为了纪念北京 2022年冬奥会冰上运动发行的邮票,邮票一套共5枚,价格 为6元,其中一种版式为一张10枚(2套),如图4.1-1所示, 某中学举行冬奥会有奖问答活动,买了m张这种版式的邮票
作为奖品,共花费 12 m 元.
2.单项式 -4πr2 的系数及次数分别为( C )
A. -4,2
B.-4,3
C. 4π ,2
D. 4π ,3
当堂训练
3.如果 1 a2b2n1 是五次单项式,则n的值为( B )
2
A.1

整式ppt课件

整式ppt课件
合并同类项法
将方程中未知数的同类项合并,常数项合并,使方程简化,然后求解未知数。
二元一次整式方程求解方法
代入法
将一个未知数用另一个未知数表示,代入原方程 中求解。
消元法
通过两个方程的相加或相减,消去其中一个未知 数,得到一个一元一次方程,然后求解。
矩阵法
将二元一次方程组写成矩阵形式,通过矩阵运算 求解未知数。
整式ppt课件Leabharlann 目录CONTENTS
• 整式基本概念 • 整式运算规则 • 整式化简技巧 • 整式方程求解方法 • 整式在数学中的应用 • 整式计算注意事项及易错点分析
01
整式基本概念
定义与性质
定义
整式是由常数、变量和代数运算 符号(加、减、乘、除、乘方) 组成的代数式,其中变量的指数 均为非负整数。
计算顺序与符号问题
遵循先乘除后加减的原则
在计算整式时,首先要遵循先乘除后加减的原则,确保计算顺序 正确。
注意括号的使用
括号可以改变运算顺序,因此在计算整式时要注意括号的使用,确 保计算过程准确无误。
注意符号问题
整式中涉及正负数运算时,要特别注意符号问题,避免出现符号错 误导致计算结果错误。
合并同类项时易错点分析
7x^2 - x + 3。
提取公因式法
定义
从整式中提取出公共因子,从而将整式分解为几个因式的乘积, 达到简化的目的。
方法
观察整式中的各项,找出它们的最大公因式,并将其提取出来。
示例
对于整式 2x^3 - 6x^2 + 4x,可以提取公因式 2x,得到 2x(x^2 - 3x + 2)。
公式化简法
性质
整式具有加法、减法、乘法等运 算性质,满足交换律、结合律和 分配律等基本数学定律。

第十四章整式的乘法与因式分解复习--ppt课件精选全文

第十四章整式的乘法与因式分解复习--ppt课件精选全文

提:提公因式 提负号
套 二项式:套平方差 三项式:套完全平方与十字相乘法
看: 看是否分解完
3、因式分解应用:
ppt课件
9
1.从左到右变形是因式分解正确的是( D ) A.x2-8=(x+3)(x-3)+1
B.(x+2y)2=x2+4xy+4y2
C.y2(x-5)-y(5-x)=(x-5)(y2+y)
D. 2a2 - 1 (2 a2 - 1) (2 a 1)(a 1)
2
4
22
ppt课件
10
2.下列各式是完全平方式的有( D )
① x2 2x 4 ③x2 2xy y2
② x2 x 1 4
④ 1 x2 - 2 xy y2 93
A.①②③ C. ①②④
B.②③④ D.②④
ppt课件
a0=1(a≠0) 3、幂的乘方: (am )n = amn 4、积的乘方: (ab)n = anbn 5、合并同类项:
解此类题应注意明确法则及各自运算的特点,避免混淆
ppt课件
3
1、若10x=5,10y=4,求102x+3y-1 的值.
2、计算:0.251000×(-2)2001
注意点:
3.(9)1004 ( 1 )670 27
ppt课件
7
1 、已知a+b=5 ,ab= -2,
求(1) a2+b2 (2)a-b
a2+b2=(a+b)2-2ab
(a-b)2=(a+b)2-4ab
2、已知:x2+y2+6x-4y+13=0, 求x-y的值;
3、已知 x 3 1 求x2-2x-3的值

整式的乘法复习课件

整式的乘法复习课件

典型例题解析
例题3
01
(3x 1)^2
• 分析
02
本题考查的是一元一次整式的平方运算。按照完全平方公式展
开即可。
• 解法
03
(3x - 1)^2 = 9x^2 - 6x + 1(利用完全平方公式)
03 二元一次整式乘法
二元一次整式概念
定义
含有两个未知数,且未知数的最高次 数为1的整式称为二元一次整式。
针对不同题型进行专项训练,提高解题能力
选择题和填空题
通过大量练习,提高对基础概念 和运算规则的掌握程度,培养快
速准确解题的能力。
计算题
针对不同类型的计算题,如单项 式与单项式相乘、单项式与多项 式相乘、多项式与多项式相乘等, 进行专项训练,提高运算速度和
准确性。
证明题
通过分析和证明乘法公式的过程, 培养逻辑推理能力和数学表达能
• 解法
(2x + 3)(x - 1) = 2x^2 - 2x + 3x - 3 = 2x^2 + x-3
典型例题解析
例题2
(x + 2)(x - 2)
• 分析
本题同样考查一元一次整式与多项式的乘法运算。注意到(x + 2)和 (x - 2)是平方差的形式,可以利用平方差公式进行简化。
• 解法
(x + 2)(x - 2) = x^2 - 4(利用平方差公式)
06 整式乘法复习策略与建议
系统梳理知识点,形成知识网络图
整式乘法的基本法则
回顾并掌握单项式与单项式、单项式与多项式、多项式与多项式 相乘的法则。
乘法公式
熟练掌握平方差公式和完全平方公式,理解其推导过程和应用场景。

《整式的除法》整式的运算PPT课件

《整式的除法》整式的运算PPT课件
北师大七年级下册数学
5.7 整式的除法
温故而知新ห้องสมุดไป่ตู้复习同底数幂相除法则:
同底数幂相除,底数不变,指数相减。 即am÷an=am-n(a≠0,m,n都是正整数, 且m>n )
合作学习
月球是距离地球最近的天体,它与地球
的平均距离约为 3.8 108 米. 如果宇宙
飞船以 1.12 104 米/秒的速度飞行,到
已知-5xm+2ny3m-n ÷(-2x3ny2m+n) 的商与-2x3y2是同类项,求m+n的值。
作业
• 作业本和课后作业题
教师的言语——是一种什么也替代不了的影响学生心灵的工具。教师的艺术是:决不要让学生把注意力放在那些无关紧要的琐碎事情上,而要不断地使他接触他将来必须 够正确地判断人类社会中的,学校教育注重学生健全的人格,故处处要使学生自包子有肉,不在皮上;人有学问,不挂嘴上。吃饭不嚼不知味,读书不想不知意。凡是教师 智慧都不能充分地或自由地发展。 学校是造就人的工场。惟有学而不厌的先生才能教出学而不厌的学生。 教师,这是学生智力生活中的第一盏,继而也是主要的一盏指 则愚。造烛求明,读书求理。做教师固然应当自尊,但也要让学生的自尊心有发挥的机会。谦虚是学习的朋友。水满则溢,月满则亏;自满则败,自矜则愚。你在任何时候 分数。请记住:成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。请你注意无论如何不要使这种内在的力量消失。缺少这种力量,教育上的任何巧妙措 然不是造就人才的唯一地方,但在学生时代的青年却应该充分地利用学校的坏境与设备把自己铸造成个东西。蜂采百花酿甜蜜,人读群书明真理。如果你追求的只是那种表 起学生对学习和上课的兴趣,那你就永远不能引起学生对脑力劳动的真正的热爱。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另一眼睛看到纸的背面。书籍 类所需要的,是富有启发性的养料。而阅读,则正是这种养料。立身以立学为先,立学以读书为本。立志宜思真品格,读书须尽苦功夫读书给人以快乐、给人以光彩、给人 书籍——通过心灵观察世界的窗口。住宅里没有书,犹如房间没有窗户书是随时在近旁的顾问,随时都可以供给你所需要的知识,而且可以按照你的心愿,重复这个顾问的 书的影响则广泛而深远。学而不思则罔读书是易事,思索是难事,但两者缺一,便全无用处。读书之法,在循序而渐进,熟读而精思。书籍并不是没有生命的东西,它包藏 样地活跃。不仅如此,它还像一个宝瓶,把作者生机勃勃的智慧中最纯净的精华保存起来。旧书不厌百回读,熟读精思子自知。读书有三到,谓心到,眼到,口到。书籍使 生活的继承者。书籍是最有耐心、最能忍耐和最令人愉快的伙伴。在任何艰难困苦的时刻,它都不会抛弃你。读书破万卷,下笔如有神。韬略终须建新国,奋发还得读良书 世代相传,更是给予那些尚未出世的人的礼物。鸟欲高飞先振翅,人求上进先读书。书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。1、一切伟大的行动 开始。自觉心是进步之母,自贱心是堕落之源,故自觉心不可无,自贱心不可有。不好企图永远活下去,你不会成功的。忧劳能够兴国,逸豫能在你发怒的时候,要紧闭你 循序渐进!我走过的路,就是一条循序渐进的道路。志不强者智不达。一寸光阴一寸金,寸金难买寸光阴。积土而为山,积水而为海。我所学到的任何有价值的知识都是由 人心灵的人,柏拉图要求他具备三样东西:知识仁慈胆量。学习从来无捷径,循序渐进登高峰。把语言化为行动,比把行动化为语言困难得多。人生的旅途,前途很远,也 的面前才有路。平凡的脚步也能够走完伟大的行程。傲不可长,欲不可纵,乐不可极,志不可满。日日行,不怕千万里;常常做,不怕千万事。贤者能自反,则无往不善; 怨,每桩伟业都由信心开始,并由信心跨出第一步。路曼曼其修远兮,吾将上下而求索。人须有自信之能力,当从自己良心上认定是非,不可以众人之是非为从违。我只有 人忘记失败的疼苦,铭记失败的原因。行动是理想最高贵的表达。没有失败,只有暂时停止成功!做自己的决定。然后准备好承担后果。从一开始就提醒自己,世上没有后 信自己心里认准的东西也一定适合于他人这就是天才能把在面前行走的机会抓住的人,十有八九都会成功。让刻苦成为习惯,用汗水浇灌未来。只要厄运打不垮信念,希望 走上成材的道路,钢铁决不惋惜璀璨的钢花被遗弃。如果脆弱的心灵创伤太多,朋友,追求才是愈合你伤口最好的良药。不举步,越不过栅栏;不迈腿,登不上高山。生活 有自信心的人,可以化渺小为伟大,化平庸为神奇。沿着别人走出的道路前进时,应该踩着路边的荆棘,因为这样走多了,就能使道路增宽。马行软地易失蹄,人贪安逸易 生活要活泼。同样的旋车,车轮不知前进了多少,陀螺却仍在原处。不知道明天干什么的人是不幸的!一个人敢于暴露自己的弱点,代表他自信强大。如果圆规的两只脚都 无理想而又优柔寡断是一种可悲的心理勇气是控制恐惧心理,而不是心里毫无恐惧。躺在被窝里的人,并不感到太阳的温暖。你既然认准一条道路,何必去打听要走多久。 一丝幻想,不放弃一点机会,不停止一日努力。一年只穿一双破鞋子一件破衣服也是世界上最自信最骄傲的人!千万不要因为物质贫困而自卑!精神贫困最可怕!根儿向纵 倒的危险就减弱了一分。 1、读书,这个我们习以为常的平凡过程,实际上是人们心灵和上下古今一切民族的伟大智慧相结合的过程。发奋识遍天下字,立志读尽人间书 外,就是读书,我一天不读书,就不能够生活。在你渴望时,它前来给予详细指教,但是从不纠缠不休。书不仅是生活,而且是现在、过去和未来文化生活的源泉。蹩脚的 脚的读者只知道书的结局。书卷多情似故人,晨昏忧乐每相亲。立志宜思真品格,读书须尽苦功夫。光阴给我们经验,读书给我们知识。业精于勤,荒于嬉;行成于思,毁 中浏览一番。——这不是读书。阅览和死记。——也不是读书。读书要有感受,要有审美感,对他人的金玉良言,要能融会贯通,并使之付诸实现。书籍是伟大的天才留给 书用两只眼睛,一只眼睛看到纸面上的话,另一只眼睛看到纸的背面。黑发不知勤学早,白首方悔读书迟。己所不欲,勿施于人。读者方面,从一字一句阅读开始,通过读 学的过程。每一本书都是一个用黑字印在白纸上的灵魂,只要我的眼睛、我的理智接触了它,它就活起来了。三人行,必有我师也。择其善者而从之,其不善者而改之。要 读书百遍,其义自现。和书籍生活在一起,永远不会叹气。书籍是青年人不可分离的生命伴侣和导师。1、读书无疑者,须教有疑,有疑者,却

整式ppt课件

整式ppt课件

05
整式的应用
在数学中的应用
代数运算
整式作为代数的基本元素,可用于进行各种代数运算,如加法、 减法、乘法和除法等。
函数表达式
整式可以表示多种函数,如线性函数、二次函数、幂函数等,从 而用于研究函数的性质和图像。
数学证明
整式在数学证明中也有广泛应用,如代数基本定理的证明。
在物理中的应用
01
力学方程
幂的运算
在数学中,幂运算是一种基本的 算术运算,用于表示底数和指数
的乘积。
幂的性质
幂的性质包括交换律、结合律、 分配律等,这些性质在数学中非 常重要,是解决复杂数学问题的
关键。
幂的性质
交换律
a^m^n = a^(m*n),即底数和指数可以交换位 置。
结合律
(a^m)^n = a^(m*n),即先进行底数的乘方,再 进行指数的乘方。
在进行加法和减法运算时,同样应从左到右依次进行。
混合运算的实例
例如
计算表达式 (2x + 3y - 4z + 5) 的值。
首先进行乘法运算
(2x times 1 = 2x),(3y times 1 = 3y), (4z times 1 = 4z),(5 times 1 = 5)。
然后进行加法和减法运算
最后得出结果
(2x + 3y - 4z + 5 = (2x + 3y - 4z) + 5 = (2x - 4z) + (3y + 5))。
(2x + 3y - 4z + 5 = (2x - 4z) + (3y + 5) = -2x + 3y + z + 5)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例3:计算
1 4 2 6 3 (1) a5 a3 a5 a3 a5 3 8a5 a a a a 2

3



5
5 1 3 3 2 2 2 2 2 1 (2) xy 2 x y xy xy x y 4 x y xy 6 2 4 3
(1) 4
2n1
22n2
(2) 2
3m 3
8
1 m
例5:化简求值
1 3a 1a 1 2a aa 1 2
其中
2
1 a 4
3x y a 3 a 5 求下列各式的值 例6:已知
(1) 109 x
4a
6x
(2) a
复习内容
本章学习了哪些运算法则?
(1) 同底数的乘法、幂的乘方、积的乘方Βιβλιοθήκη (2) 单项式乘以单项式法则
(3) 单项式乘以多项式法则 (4) 多项式乘以多项式法则——>乘法公式 (5) 同底数幂的除法 (6) 单项式除以单项式 (7) 多项式除以单项式
知识间的内在联系
a m a n a m n
m n n
a
ab
a mn a b
n n
单项式×单项式—>单项式×多 项式—>多项式×多项式—>乘法 公式
a m a n a mn a0 1 a
p
1 p a
单项式÷单项式—>多项式÷单 项式
例1:说明下列各题中两个式子是什 么关系,为什么?
(1) (2) (3)
2x y 2
y 2x2
a b
2
a b
y 2x3
2
2x y
3
(4)
a b
3
a b
3
例2:指出下列计算中的错误,并加以纠正。
(1) (2) (3)
a a a
6 3
18
a6 a3 a 2
a
3
3 3
a6
3
(4)
a a 0
6 x 2 y
(3) (4)
a b a b
2
2
a 2 b2 a 2 b2


2

x y 2x y 2 x y 2x y 2
2xx 3x 3 x x 2 2x 5x 1
(5)


例4:计算
相关文档
最新文档