新北师大版八年级的数学下第一章三角形单元测试题.doc

合集下载

北师大版八下数学《三角形的证明》单元测试1(含答案)

北师大版八下数学《三角形的证明》单元测试1(含答案)

第一章三角形的证明单元测试一、填空题1.一个等腰三角形有一角是70°,则其余两角分别为_________.2.一个等腰三角形的两边长为5和8,则此三角形的周长为_________.3.如图1,△ABC中,∠C=90°,AM平分∠CAB,CM=20 cm,则点M到AB 的距离是_________.图1 图24.如图2,等边△ABC中,F是AB中点,EF⊥AC于E,若△ABC的边长为10,则AE=_________,AE∶EC=_________.5.如图3,△ABC中,DE垂直平分BC,垂足为E,交AB于D,若AB=10 cm,AC=6 cm,则△ACD的周长为_________.图3 图46.如图4,∠C=90°,∠ABC=75°,∠CDB=30°,若BC=3 cm,则AD=___ cm.7.如图5,B在AC上,D在CE上,AD=BD=BC,∠ACE=25°,∠ADE=_________.图5图68.等腰直角三角形一条边长是1 cm ,那么它斜边上的高是_________ cm. 9.如图6,在∠AOB 的两边OA 、OB 上分别取OQ =OP ,OT =OS ,PT 和QS 相交于点C ,则图中共有_________对全等三角形.10.等腰三角形两腰上的高相等,这个命题的逆命题是________________,这个逆命题是_________命题.11.三角形三边分别为a 、b 、c ,且a 2-bc =a (b -c ),则这个三角形(按边分类)一定是_________三角形.二、选择题12.等边三角形的高为23,则它的边长为( ) A.4B.3C.2D.513.等腰三角形的顶角是n °,那么它的一腰上的高与底边的夹角等于( )A.290 nB.90-2nC.2n D.90°-n °14.下列由线段a 、b 、c 组成的三角形,不是直角三角形的是( ) A.a =3,b =4,c =5 B.a =1,b =34,c =35 C.a =9,b =12,c =15D.a =3,b =2,c =515.直角三角形的三边长为连续自然数,则它的面积为( ) A.6B.7.5C.10D.1216.△ABC 中,∠A ∶∠B ∶∠C =1∶2∶3,最小边BC =4 cm ,最长边AB 的长是( )A.5 cmB.6 cmC.5 cmD.8 cm17.如图7,△ABC 中,AB =AC ,BC =BD ,AD =DE =EB ,则∠A 的度数为( )图7A.55°B.45°C.36°D.30°18.等腰△ABC 中,AC =2BC ,周长为60,则BC 的长为( ) A.15B.12C.15或12D.以上都不正确19.直角三角形两直角边分别是5 cm 、12 cm ,其斜边上的高是( ) A.13 cmB.1330cmC.1360cmD.9 cm20.直角三角形中,以直角边为边长的两个正方形的面积分别为30和20,则以斜边为边长的正方形的面积为( )A.25B.50C.100D.6021.等腰三角形的底边为a ,顶角是底角的4倍,则腰上的高是( ) A.23a B.33 a C.63a D.21a 22.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形一定是( )A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形23.等腰三角形ABC 中,∠A =120°,BC 中点为D ,过D 作DE ⊥AB 于E ,AE =4cm,则AD等于()A.8 cmB.7 cmC.6 cmD.4 cm24.下列说法中,正确的是()A.两边及一对角对应相等的两个三角形全等B.有一边对应相等的两个等腰三角形全等C.两边及其中一边上的中线对应相等的两个三角形全等D.两边及其中一边上的高对应相等的两个三角形全等25.如图8,AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8,BE=3,那么AC长为()图8A.8B.5C.3D.3426.将两个全等的有一个角为30°的直角三角形拼成下图9,其中两条长直角边在同一直线上,则图中等腰三角形的个数是()图9A.4B.3C.2D.127.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等*28.已知一个直角三角形的周长是4+26,斜边上中线长为2,则这个三角形的面积为( )A.5B.2C.45D.1三、解答题29.已知:如图10,AB =AC ,DE ∥AC ,求证:△DBE 是等腰三角形.图1030.已知:如图11,在Rt △ABC 中,∠C =90°,∠BAD =21∠BAC ,过点D 作DE ⊥AB ,DE 恰好是∠ADB 的平分线,求证:CD =21DB .图1131.已知三角形的三边分别是n 2+n ,n +21和n 2+n +21(n >0),求证:这个三角形是直角三角形.32.如图12,△ABC 中,AB =AC ,∠1=∠2,求证:AD 平分∠BA C.图1233.如图13,以等腰直角三角形ABC的斜边AB与边面内作等边△ABD,连结DC,以DC当边作等边△DCE,B、E在C、D的同侧,若AB=2,求BE的长.图13*34.①在△ABC中,AB=AC,AB的垂直平分线交AC于N,交BC的延长线于M,∠A=30°,求∠NMB的大小.②如果将①中的∠A的度数改为70°,其余条件不变,再求∠NMB的大小.③你感到存在什么样的规律性?试证明.(请同学们自己画图)④将①中的∠A改为钝角,对这个问题规律性的认识是否需要加以修改?参考答案一、1.55°,55°或70°,40° 2.18或21 3.20 cm 4.251∶3 5.16 cm 6.6 7.75° 8.22或219.4 10.如果一个三角形两边上的高相等,那么这个三角形是等腰三角形 真 11.等腰二、12.A 13.C 14.D 15.A 16.D 17.B 18.B 19.C 20.B 21.D 22.D 23.A 24.C 25.D 26.B 27.D 28.B三、29.略 30.略 31.略 32.略 33.134.①15° ②35° ③AB 的垂直平分线与底边BC 所夹的锐角等于∠A 的一半 ④不需要修改。

北师大版八年级数学下册第一章三角形的证明单元测试题(答案及解析)

北师大版八年级数学下册第一章三角形的证明单元测试题(答案及解析)

北师大版八年级下册第一章三角形的证明测试题一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°2.一个等腰三角形的两边长分别为3,6,则它的周长为()A.9 B.12 C.15 D.12或153.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.37.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm²,则S阴影等于()A.2cm²B.1cm²C.cm²D.cm²二.填空题(共5小题)11.等边三角形是一个轴对称图形,它有______条对称轴.12.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为______.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为______.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为______.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为______.三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?北师大版八年级下册第一章三角形的证明测试题参考答案与试题解析一.选择题(共10小题)1、等腰三角形的一个角是80°,则它顶角的度数是()【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选B.2.一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选C.3.如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5°D.52.5°【解答】解:∵AC=CD=BD=BE,∠A=50°,∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=50°,∴∠B=25°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣25°)=77.5°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故选D.4.一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【解答】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C5.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【解答】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.6.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.7.如图,∠B=∠C,∠1=∠3,则∠1与∠2之间的关系是()A.∠1=2∠2 B.3∠1﹣∠2=180°C.∠1+3∠2=180° D.2∠1+∠2=180°【解答】解:∵∠1=∠3,∠B=∠C,∠1+∠B+∠3=180°,∴2∠1+∠C=180°,∴2∠1+∠1﹣∠2=180°,∴3∠1﹣∠2=180°.故选B.8.如图在等腰△ABC中,其中AB=AC,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC等于()A.110°B.120°C.130°D.140°【解答】解:∵∠A=40°,∴∠ACB+∠ABC=180°﹣40°=140°,又∵∠ABC=∠ACB,∠1=∠2,∴∠PBA=∠PCB,∴∠1+∠ABP=∠PCB+∠2=140°×=70°,∴∠BPC=180°﹣70°=110°.故选A.9.如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF=()A.55°B.60°C.65°D.70°【解答】解:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,∴△DBE≌△ECF(SAS),∴∠EFC=∠DEB,∵∠A=50°,∴∠C=(180°﹣50°)÷2=65°,∴∠CFE+∠FEC=180°﹣65°=115°,∴∠DEB+∠FEC=115°,∴∠DEF=180°﹣115°=65°.故选:C.10.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A.2cm2 B.1cm2 C.cm2 D.cm2【解答】解:根据三角形的面积公式,知:等底等高的两个三角形的面积相等.即有:S阴影=S△BCE=S△ABC=1cm2.故选:B.二.填空题(共10小题)11.等边三角形是一个轴对称图形,它有 3 条对称轴【解答】解:等边三角形是轴对称图像,它有三个顶点,所以对应3条对称轴故答案为:312.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为69°或21°.【解答】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.13.在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为16或8.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.14.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【解答】解:在△ABC中,AB=AC,①当∠A=70°时,则∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣55°=35°;②当∠C=70°时,∵BD⊥AC,∴∠DBC=90°﹣70°=20°;故答案为:35°或20°.15.如图,已知:∠MON=30°,点A1、A2、A3 在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=a,则△A6B6A7的边长为32a .【解答】解:∵△A1B1A2是等边三角形∴∠B1A1A2=60°,A1B1=B1A2=A1A2∵∠MON=30°∴∠OB1A1=30°(三角形的一个外角等于和它不相邻的两个外角和∠OB1A1=∠B1A1A2-∠MON)∴OA1=A1B1(等边对等角)∴OA1=A1A2=a同理,根据∠MON=∠OB2A2,可得:A2A3=A2B2=OA1+A1A2=2A1A2=2a同理,可推出:A3A4=2A2A3=4a同理,可推出:A4A5=2A3A4=8a同理,可推出:A5A6=2A4A5=16a同理,可推出:A6A7=2A5A6=32a 即题目所求另外我们不难发现,第n个(△A1B1A2为第一个)等边三角形的边长为AnAn+1=(2^n-1)a 注:2的n-1次方倍的a三.解答题(共8小题)16.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE⊥BE于点E,且BE=.求证:AB平分∠EAD.【解答】证明:∵AB=AC,AD是BC边上的中线,∴BD=BC,AD⊥BC,∵BE=BC,∴BD=BE,∵AE⊥BE,∴AB平分∠EAD.17.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△OAB是等腰三角形.【解答】证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°,在Rt△ABD和Rt△BAC中,,∴Rt△ABD≌Rt△BAC(HL),∴∠DBA=∠CAB,∴OA=OB,即△OAB是等腰三角形.另外一种证法:证明:∵AC⊥BC,BD⊥AD∴∠D=∠C=90°在Rt△ABD和Rt△BAC中∴Rt△ABD≌Rt△BAC(HL)∴AD=BC,在△AOD和△BOC中,∴△AOD≌△BOC(AAS),∴OA=OB,即△OAB是等腰三角形.18.如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【解答】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.19.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现∠A与∠NMB有什么关系,试证明之.【解答】解:(1)∵在△ABC中,AB=AC,∠A=40°,∴∠ABC=∠ACB=70°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=20°;(2)∵在△ABC中,AB=AC,∠A=70°,∴∠ABC=∠ACB=55°,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=35°;(3)∠NMB=∠A.理由:∵在△ABC中,AB=AC,∴∠ABC=∠ACB=,∵AB的垂直平分线交AB于点N,交BC的延长线于点M,∴MN⊥AB,∴∠NMB=90°﹣∠ABC=∠A.20.如图,在△ABC中,AD平分∠BAC,BD⊥AD,垂足为D,过D作DE∥AC,交AB于E.求证:△BDE是等腰三角形.【解答】解:(1)∵AD平分∠BAC,DE∥AC,∴∠EAD=∠CAD,∠EDA=∠CAD,∴∠EAD=∠EDA,∵BD⊥AD,∴∠EBD+∠EAD=∠BDE+∠EDA∴∠EBD=∠BDE,∴DE=BE,∴△BDE是等腰三角形.21.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF ⊥AC于点F.求证:△ABC是等腰三角形.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HF),∴∠B=∠C,∴△ABC为等腰三角形.22.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.23.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当D点在BC的什么位置时,DE=DF?并证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明:(3)若D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?【解答】解:(1)当点D在BC的中点时,DE=DF,理由如下:∵D为BC中点,∴BD=CD,∵AB=AC,∴∠B=∠C,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,在△BED和△CFD中,∴△BED≌△CFD(AAS),∴DE=DF.(2)DE+DF=CG.证明:连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF,∵AB=AC,∴CG=DE+DF.(3)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.理由:连接AD,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.同理当D点在CB的延长线上时,则有DE﹣DF=CG,说明方法同上.。

北师大版八年级下册数学第一章三角形测试题

北师大版八年级下册数学第一章三角形测试题

启用前绝密2021—2021 学年度第二学期阶段性测试题八年级下册数学〔第一章〕出题人:分数:本卷须知1.本试卷总分值 150 分,考试时间 120 分钟。

2.请将密封线内的工程填写清楚。

3.请在密封线外答题。

题号一二三总分得分一、选择题〔每题 3 分,共 36 分〕1、如图,在△ ABC和△ DEF中, AC=DF,BC=EF,要使△ ABC≌△DEF,还需要的条件是〔〕A. ∠A=∠ DB.∠ACB=∠FC.∠B=∠DEFD. ∠ACB=∠D2、如图,△ ABC中, AB=AC,点 D 在 AC边上,且 BD=BC=AD,那么∠ A的度数为〔〕°°°°3、如图,△ ABC≌△ AEF,AB=AE,∠ B=∠ E,那么关于结论①AC=AF;②∠FAB=∠ EAB;③EF=BC;④∠ EAB=∠ FAC,此中正确结论的个数是〔〕个个个个第1题第3题第 2 题4、等腰三角形的两边长分别为 5 ㎝、 2 ㎝,那么该等腰三角形的周长是〔〕A.7㎝B.9㎝C.12㎝或许9㎝D.12㎝5、一个等腰三角形的顶角是40°,那么它的底角是〔〕A.40°B.50°C.60°D.70°6、到三角形三个极点的距离相等的点是三角形〔〕的交点.A. 三个内角均分线B. 三边垂直均分线C. 三条中线D. 三条高7、△ ABC中, AB = AC,BD均分∠ ABC交 AC边于点 D,∠ BDC= 75°,那么∠A的度数为〔〕A35°B40 8、如图,在△° C70 ° D110 ° ABC中,AB=AC,D为 BC上的一点BE=CD,CF=BD,那么∠ EDF等于〔〕A. 90°-∠A°-1 ∠A2°-1∠A°-∠A29、如图,等边△ ABC中,BD=CE,AD与 BE订交于点 P,那么∠ APE的度数是〔〕A45°B55°C60°D75°10、如图, AB=CD,AE⊥BD于 E,CF⊥BD于 F,AE=CF,那么以下结论错误的是〔〕A. BC=AD且 BC∥ADB. AB ∥CD =DE D. △ABD≌△ CDB11、如图, AB∥CD,AD⊥CD于 D,AE⊥BC于 E,∠DAC=35°,AD=AE,那么∠ B=〔〕°°°°12、如图,等边△ ABC中, BD=CE, AD与 BE订交于点 P,那么∠ APE的度数是〔〕A45°B55°C60°D75°二、填空题。

2020-2021学年北师大版八年级下册数学 第一章 三角形的证明 单元测试(含解析)

2020-2021学年北师大版八年级下册数学 第一章 三角形的证明 单元测试(含解析)

第一章三角形的证明单元测试一.选择题1.在等腰△ABC中,∠A=70°,则∠C的度数不可能是()A.40°B.55°C.65°D.70°2.如图,在等腰三角形△ABC中,AC=BC,AC边上的垂直平分线分别交AC,BC于点D 和点E,若∠BAE=45°,DE=2,则AE的长度为()A.2B.3C.3.5D.43.如图,△ABC是等边三角形,点D是AC的中点,DE⊥BC,CE=3,则AB等于()A.11B.12C.13D.144.如图,△ABC中,BC=10,AC﹣AB=4,AD是∠BAC的角平分线,CD⊥AD,则S△BDC 的最大值为()A.40B.28C.20D.105.如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个6.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,则AB等于()A.2B.3C.4D.67.如图,在Rt△ABC中,∠BAC=90°,点D在BC上,过D作DF⊥BC交BA的延长线于F,连接AD,CF,若∠CFE=32°,∠ADB=45°,则∠B的大小是()A.32°B.64°C.77°D.87°8.如图,DE是△ABC中AC边的垂直平分线,若BC=4cm,AB=5cm,则△EBC的周长为()A.8cm B.9cm C.10cm D.11cm9.如图,在△ABC中,∠B=15o,∠C=30o,MN是AB的中垂线,PQ是AC的中垂线,已知BC的长为,则阴影部分的面积为()A.B.C.3D.10.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,BE是AC边的中线,CF是∠ACB的角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠F AG=∠FCB;③AF=AG;④BH=CH.A.①②③④B.①②③C.②④D.①③二.填空题11.如图,已知△ABC中,AB=AC,BD⊥AC于D,∠A=50°,则∠DBC的度数是.12.等腰三角形ABC中,∠A=4∠B.若∠A为底角,则∠C=°.13.如图,在△ABC中,AB=AC.AD是BC边上的中线,点E在边AB上,且BD=BE.若∠BAC=100°,则∠ADE的大小为度.14.如图,在Rt△ABC中,∠ABC=90°,CD⊥AB,垂足为点D,∠DCB=30°,BD=1,则AB的长为.15.如图,在Rt△ABC中,∠A=90°,∠B=30°,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为.16.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上.若AB=5cm,BC=6cm,则AC=,DE=.17.如图所示,在△ABC中,DE、MN是边AB、AC的垂直平分线,其垂足分别为D、M,分别交BC于E、N,且DE和MN交于点F.(1)若∠B=20°,则∠BAE=;(2)若∠EAN=40°,则∠F=;(3)若AB=8,AC=9,设△AEN周长为m,则m的取值范围为.18.如图,在△ABC中AB的垂直平分线交AB于点D,交线段BC于点E.BC=6,AC=5,则△ACE的周长是.19.如图,AD垂直平分BC于点D,EF垂直平分AB于点F,点E在AC上,BE+CE=20cm,则AB=.20.如图,Rt△ABC中,∠C=90°,∠BAC的角平分线AE与AC的中线BD交于点F,P 为CE中点,连结PF,若CP=2,S△BFP=15,则AB的长度为.三.解答题21.如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=40°.求:(1)∠ADC的大小;(2)∠BAD的大小.22.如图,△ABC中,∠ABC=∠ACB,点D、E分别在AB、AC上,DE∥BC,BE,CD 交于点F.(1)求证:DC=EB;(2)在不添加任何辅助线的情况下,请直接写出图中所有的等腰三角形.23.如图,已知Rt△ABC中,∠ACB=90°,∠A=30°,AC边上的垂直平分线DE交AB 于点D,交AC于E.求:(1)∠BCD的度数;(2)若DE=3,求AB的长.24.如图,在Rt△ABC中,∠ACB=90°,∠CAB=2∠B,AD平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DB=DE.25.如图,在△ABC中,∠ACB为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AC=20,求△ABC的两锐角及AD、DE、EB各为多少?26.(1)如图1,求证:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等;(2)如图2,若∠ABC的平分线与∠ACB外角∠ACD的平分线相交于点P,连接AP,若∠BAC=62°,则∠P AC是度.27.如图,已知四边形ABCD中,∠ABC与∠BCD的平分线交于点O,作OE⊥AB于点E,OF⊥CD于点F.求证:OE=OF.28.如图(1)将三角板ABC与∠DAE摆放在一起,射线AE与AC重合,射线AD在三角形ABC外部,其中∠ACB=30°,∠B=60°,∠BAC=90°,∠DAE=45°.固定三角板ABC,将∠DAE绕点A按顺时针方向旋转,如图(2),记旋转角∠CAE=α.(1)当α为60°时,在备用图(1)中画出图形,并判断AE与BC的位置关系,并说明理由;(2)在旋转过程中,当0°<α<180°,∠DAE的一边与BC平行时,求旋转角α的值;(3)在旋转过程中,当0°<α≤90°时,探究∠CAD与∠BAE之间的关系.(温馨提示:对于任意△ABC,都有∠A+∠B+∠C=180°)参考答案一.选择题1.解:当∠A=∠C时,∠C=70°;当∠A=∠B=70°时,∠C=180°﹣∠A﹣∠B=40°;当∠B=∠C时,∠C=∠B=(180°﹣∠A)=55°;即∠C的度数可以是70°或40°或55°,故选:C.2.解:设∠C=x.∵DE垂直平分线段AC,∴EA=EC,∴∠EAC=∠C=x,∴∠AEB=∠EAC+∠C=2x,∵CA=CB,∴∠B=∠CAB=45°+x,在△ABE中,∵∠BAE+∠B+∠AEB=180°,∴45°+45°+x+2x=180°,∴x=30°,∵∠EDC=90°,DE=2,∴AE=EC=2DE=4,故选:D.3.解:∵△ABC是等边三角形,∴AB=AC,∠C=60°,∵DE⊥BC,∴∠DEC=90°,∴CD=2CE=6,∵点D是AC的中点,∴AC=2CD=12,∴AB=AC=12,故选:B.4.解:如图:延长AB,CD交于点E,∵AD平分∠BAC,∴∠CAD=∠EAD,∵CD⊥AD,∴∠ADC=∠ADE=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴AC=AE,DE=CD;∵AC﹣AB=4,∴AE﹣AB=4,即BE=4;∵DE=DC,∴S△BDC=S△BEC,∴当BE⊥BC时,S△BDC最大,即S△BDC最大=××10×4=10.故选:D.5.解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.6.解:∵在Rt△ABC中,∠A=30°,BC=2,∴AB=2CB=4,故选:C.7.解:如图,取CF的中点T,连接DT,AT.∵∠BAC=90°,FD⊥BC,∴∠CAF=∠CDF=90°,∴AT=DT=CF,∴TD=TC=TA,∴∠TDA=∠TAD,∠TDC=∠TCD,∵∠ADB=45°,∴∠ADT+∠TDC=135°,∴∠ATC=360°﹣2×135°=90°,∴AT⊥CF,∵CT=TF,∴AC=AF,∴∠AFC=45°,∴∠BFD=45°﹣32°=13°,∵∠BDF=90°,∴∠B=90°﹣∠BFD=77°,故选:C.8.解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=AB=5cm,∴△EBC的周长=BC+BE+CE=5+4=9(cm).故选:B.9.解:∵MN是AB的中垂线,PQ是AC的中垂线,AN=BN,AQ=CQ,∴∠BAN=∠B=15°,∠CAQ=∠C=30°,∴∠ANQ=∠B+∠BAN=30°,∠AQN=∠C+∠CAQ=60°,∴∠NAQ=90°,∴BN=AN=NQ,AQ=CQ=NQ,∵BC=,∴NQ+NQ+NQ=3+,∴NQ=2,∴AN=,AQ=1,∴阴影部分的面积=AN•AQ==,故选:B.10.解:∵BE是AC边的中线,∴AE=CE,∵△ABE的面积=,△BCE的面积=AB,∴△ABE的面积=△BCE的面积,故①正确;∵AD是BC边上的高,∴∠ADC=90°,∵∠BAC=90°,∴∠DAC+∠ACB=90°,∠F AG+∠DAC=90°,∴∠F AG=∠ACB,∵CF是∠ACB的角平分线,∴∠ACF=∠FCB,∠ACB=2∠FCB,∴∠F AG=2∠FCB,故②错误;∵在△ACF和△DGC中,∠BAC=∠ADC=90°,∠ACF=∠FCB,∴∠AFG=180°﹣∠BAC﹣∠ACF,∠AGF=∠DGC=180°﹣∠ADC﹣∠FCB,∴∠AFG=∠AGF,∴AF=AG,故③正确;根据已知不能推出∠HBC=∠HCB,即不能推出HB=HC,故④错误;即正确的为①③,故选:D.二.填空题11.解:∵AB=AC,∴∠C=∠ABC,∵∠A=50°.∴∠C=∠ABC===65°,∵BD⊥AC,∴∠BDC=90°,∴∠DBC=90°﹣∠C=90°﹣65°=25°.故答案为:25°.12.解:设∠B=x°,当∠A是底角时,∠A=∠C=4∠B=4x°,∵∠A+∠B+∠C=180°,∴4x+x+4x=180,解得x=20,∴∠C=80°故答案为:80.13.解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣∠BAC)=40°,∵BD=BE,∴∠BDE=∠BED=(180°﹣∠B)=70°,∵AB=AC,AD⊥BC,∴∠ADB=90°,∴∠ADE=∠ADB﹣∠BDE=90°﹣70°=20°,故答案为:20.14.解:在Rt△ABC中,∠ABC=90°,∠DCB=30°,∴2BD=BC,∵CD⊥AB,∴∠A=∠DCB=30°,∴2BC=AB,∴AB=4BD,∵BD=1,∴AB=4.故答案为:4.15.解:在Rt△ABC中,∠A=90°,∠B=30°,∴∠ACB=60°,∵MN∥BC,∴∠AMN=∠B=30°,∵∠A=90°,AN=1,∴MN=2AN=2,∵MN平分∠AMC,∠AMN=30°,∴∠AMC=∠NMC=60°,∵CM平分∠ACB,∠ACB=60°,∴∠ACM=ACB=30°,∴∠ACM=∠NMC,∴MNCN=2,∴AC=AN+CN=1+2=3,∵在Rt△ABC中,∠A=90°,∠B=30°,∴BC=2AC=2×3=6,16.解:∵BC=6cm,∴BD=DC=3(cm),∵AD⊥BC,BD=DC,AB=5cm,∴AC=AB=5(cm),∵点C在AE的垂直平分线上,∴EC=AC=5(cm),∴DE=DC+EC=8(cm),故答案为:5cm;8cm.17.解:(1)∵DE是线段AB的垂直平分线,∴EA=EB,∴∠BAE=∠B=20°;(2))∵DE、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴∠BAE=∠B,∠CAN=∠C,∵∠EAN=40°,∠B+∠BAE+∠EAN+∠CAN+∠C=180°,∴∠BAE+∠CAN=70°,∴∠BAC=∠BAE+∠CAN+∠EAN=110°,∵∠ADF=∠AMF=90°,∴∠F=360°﹣∠ADF﹣∠AMF﹣∠BAC=360°﹣90°﹣90°﹣110°=70°;(3)∵DE、MN是边AB、AC的垂直平分线,∴AE=BE,AN=CN,∴△AEN的周长=AE+EN+AN=BE+EN+CN=BC,在△ABC中,AB=8,AC=9,∴9﹣8<BC<9+8,∴1<m<17.故答案为:(1)20°;(2)70°;(3)1<m<17.18.解:∵DE是AB的垂直平分线,∴EA=EB,∴△ACE的周长=AC+CE+EA=AC+CE+EB=AC+CB=11,19.解:∵EF垂直平分AB于点F,∴AE=BE,∵BE+CE=20cm,∴AE+CE=20cm,即AC=20cm,∵AD垂直平分BC于点D,∴AB=AC=20cm,故答案为:20cm.20.解:过E作EG⊥AB于G,连接CF,∵P为CE中点,∵S△EFP=S△CFP,设S△EFP=S△CFP=y,∵BD是AC边上的中线,∴设S△CDF=S△AFD=z,∵S△BFP=15,∴S△BCD=15+y+z,∴S△ABC=2S△BCD=30+2y+2z,∵S△ACE=S△ACF+S△CEF=2y+2z,∴S△ABE=S△ABC﹣S△ACE=30+2y+2z﹣(2y+2z)=30,∵AE是∠CAB的角平分线,∴EG=CE=2CP=4,∴S△ABE=AB•EG=30,∴AB=15,故答案为:15.三.解答题21.解:(1)∵AB=AC,D是BC边上的中点,∴AD⊥BC,即∠ADC=90°;(2)∵∠B=40°,∴∠BAD=50°.22.(1)证明:∵∠ABC=∠ACB,∴AB=AC,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴AB=AD=AC=AE,即BD=CE,在△DBC和△ECB中,,∴△DBC≌△ECB(SAS),∴DC=EB;(2)解:图中所有的等腰三角形为△ABC、△ADE、△DEF、△BCF,理由如下:由(1)得:AB=AC,AD=AE,△DBC≌△ECB,∴△ABC、△ADE是等腰三角形,∠BCD=∠CBE,∴△BCF是等腰三角形,BF=CF,∵DE∥BC,∴∠FDE=∠BCD,∠FED=∠CBE,∴∠FDE=∠FED,∴△DEF是等腰三角形,FE=FD.23.解:(1)∵AC边上的垂直平分线是DE,∴CD=AD,DE⊥AC,∴∠A=∠DCA=30°,∵∠ACB=90°,∴∠BCD=∠ACB﹣∠DCA=90°﹣30°=60°,(2)∵∠B=60°∴∠BCD=∠B=60°∴BD=CD,∴BD=CD=AD=AB,∵DE=3,DE⊥AC,∠A=30°,∴AD=2DE=6,∴AB=2AD=12.24.证明:(1)∵∠ACB=90°,∴∠CAB+∠B=90°,又∵∠CAB=2∠B,∴∠B=30°,∠CAB=60°,∵AD平分∠CAB,∴∠CAD=∠DAB=30°;(2)∵∠DAB=30°=∠B,∴AD=DB,∵AC=EC,∠ACB=90°,∴AD=DE,∴DE=DB.25.解:∵△ABC中,∠C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,∴∠ACD=∠DCE=∠ECB=30°,又∵CD⊥AB,AC=20,∴∠A=60°,AD=10,∵∠ACB为直角,∴∠B=30°∵AC=20,∴AB=40,∵CE是△ABC中线,∴AE=BE=20,∴DE=10.26.解:(1)已知:△ABC.求证:∠ABC、∠BCA、∠ACB三个角的平分线相交于点F,且点F到三边的距离相等.证明:如图,作∠ABC的角平分线FB,作∠BCA的角平分线FC,两条线相交于点F,作FG⊥AB于点G,FD⊥BC边于点D,FE⊥AC于点E,∵点F是∠ABC平分线上的一点,∴FG=FD,同理可得,FD=FE,∴FG=FD=FE(等量代换),∴点F在∠BAC的平分线上,∴三角形的三条角平分线相交于一点,并且这一点到三边的距离相等;(2)解:延长BA,作PN⊥BD于N,PF⊥BA于F,PM⊥AC于M,∵CP平分∠ACD,∴∠ACP=∠PCD,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,∴∠F AP=∠P AC,∴∠F AC=2∠P AC,∵∠F AC+∠BAC=180°,∴2∠P AC+∠BAC=180°,∴∠P AC=(180°﹣∠BAC)=(180°﹣62°)=59°.故答案为:59.27.证明:作OG⊥BC,∵∠ABC的平分线,OE⊥AB,OG⊥BC,∴OE=OG,∵∠BCD的平分线,OF⊥CD,OG⊥BC,∴OF=OG,∴OE=OF.28.解:(1)当α为60°时,AE⊥BC,如图(1),设AE与BC交于点F,∵∠CAE=α=60°,∠ACB=30°,∴∠AFC=90°,∴AE⊥BC;(2)当AD∥BC时,如图(2),∠DAC=∠C=30°,∵∠DAE=45°,∴∠CAE=α=15°;当AE∥BC时,如图(3),∠B=∠EAB=60°,∴∠CAE=α=∠BAC+∠EAB=150°,故旋转角α的值为15°或150°;(3)①如(2),当α≤45°时,α+∠BAE=90°,α+∠CAD=45°,∴∠BAE﹣∠CAD=45°;②如图(1),当45°<α<90°时,∵∠DAE+∠CAD+∠BAE=90°,∠DAE=45°,∴∠CAD+∠BAE=45°.。

北师大版八年级数学下册 第1章 三角形的证明 单元测试卷(含答案)

北师大版八年级数学下册  第1章 三角形的证明  单元测试卷(含答案)

北师大版八年级数学下册第1章三角形的证明单元测试卷(时间:120分钟满分:150分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.如图,若∠B=30°,∠C=90°,AC=20,则AB=( )A.25B.30C.20 3D.402.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是( )A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是( )A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是( )A.2,3,4B.1,2, 3C.4,5,6D.2,2,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是( )A.HLB.ASAC.AASD.SAS6.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠CAD的度数为( )A.35°B.45°C.55°D.60°7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.30°B.45°C.60°D.75°8.如图,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β,若α=10°,则β的度数是( )A.40°B.50°C.60°D.不能确定9.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为( )A.1.5B.3C.6D.910.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个直角三角形中( )A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是( )A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是( )A.1B.2C.3D.413.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E.如果∠BAC=60°,∠ACE=24°,那么∠BCE 的大小是( )A.24°B.30°C.32°D.36°14.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE∶S△BDE =( )A.2∶5B.14∶25C.16∶25D.4∶2115.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是( )A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共5个小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是.17.如图,某失联客机从A地起飞,飞行1 000 km到达B地,再折返飞行1 000 km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为km.18.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.19.如图,已知△ABC的周长是22,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,△ABC的面积是.20.如图,在等腰△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,点C沿EF 折叠后与点O重合,则∠OEC的度数是.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)一个机器零件的形状如图所示,在Rt△ABC中,∠BAC=30°,BC=2.5 cm,BD=13 cm,AD=12 cm,求△ABD的面积.22.(本题8分)在加快城镇建设中,有两条公路OA和OB交会于O点,在∠AOB的内部有蔬菜基地C和D,现要修建一个蔬菜转运站P,使转运站P到两条公路OA,OB的距离相等,且到两个蔬菜基地C,D的距离也相等,用尺规作出蔬菜转运站P的位置.(要求:不写作法,保留作图痕迹.)23.(本题10分)如图,点P为△ABC的BC边上一点,且PC=2PB,∠ABC=45°,∠APC=60°,CD⊥AP,连接BD,求∠ABD的度数.24.(本题12分)如图,∠AOB=60°,OC平分∠AOB,C为角平分线上一点,过点C作CD⊥OC,垂足为C,交OB于点D,CE∥OA交OB于点E.(1)判断△CED的形状,并说明理由;(2)若OC=3,求CD的长.25.(本题12分)如图,△ABC的外角∠DAC的平分线交BC边的垂直平分线于点P,PD⊥AB于D,PE⊥AC于E.(1)求证:BD=CE;(2)若AB=6 cm,AC=10 cm,求AD的长.26.(本题14分)如图,在△ABC中,MP,NO分别垂直平分AB,AC.(1)若BC=10 cm,试求出△PAO的周长;(2)若AB=AC,∠BAC=110°,试求∠PAO的度数;(3)在(2)中,若无AB=AC的条件,你能求出∠PAO的度数吗?若能,请求出来;若不能,请说明理由.27.(本题16分)如图,△ABC中,AB=BC=AC=12 cm,现有两点M,N分别从点A,B同时出发,沿三角形的边运动,已知点M的速度为1 cm/s,点N的速度为2 cm/s.当点N第一次到达点B时,M,N同时停止运动.(1)点M,N运动几秒后,M,N两点重合?(2)点M,N运动几秒后,可得到等边三角形△AMN?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.参考答案一、选择题(本大题共15个小题,每小题3分,共45分.在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填在相应的答题框内)1.如图,若∠B=30°,∠C=90°,AC=20,则AB=(D)A.25B.30C.20 3D.402.如图,已知DE∥BC,AB=AC,∠1=55°,则∠C的度数是(A)A.55°B.45°C.35°D.65°3.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是(C)A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°4.以下各组数为三角形的三条边长,其中是直角三角形的三条边长的是(B)A.2,3,4B.1,2, 3C.4,5,6D.2,2,45.如图,∠A=∠D=90°,AC=DB,则△ABC≌△DCB的理由是(A)A.HLB.ASAC.AASD.SAS6.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠CAD的度数为(A)A.35°B.45°C.55°D.60°7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为(C)A.30°B.45°C.60°D.75°8.如图,D是Rt△ABC的斜边BC上一点,AB=AD,记∠CAD=α,∠ABC=β,若α=10°,则β的度数是(B)A.40°B.50°C.60°D.不能确定9.如图,在Rt△ABC中,∠C=90°,∠CAB=60°,AD平分∠CAB,DE⊥AB,CD=3,则BD的长为(C)A.1.5B.3C.6D.910.用反证法证明“直角三角形中的两个锐角不能都大于45°”,第一步应假设这个直角三角形中(D)A.每一个锐角都小于45°B.有一个锐角大于45°C.有一个锐角小于45°D.每一个锐角都大于45°11.如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,那么下列各条件中,不能使Rt△ABC≌Rt△A′B′C′的是(B)A.AB=A′B′=5,BC=B′C′=3B.AB=B′C′=5,∠A=∠B′=40°C.AC=A′C′=5,BC=B′C′=3D.AC=A′C′=5,∠A=∠A′=40°12.观察下列命题的逆命题:①有两边相等的三角形是等腰三角形;②到角的两边的距离相等的点在这个角的平分线上;③直角三角形的两个锐角互余;④全等三角形的面积相等.其中逆命题为假命题的个数是(A)A.1B.2C.3D.413.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E.如果∠BAC=60°,∠ACE=24°,那么∠BCE 的大小是(C)A.24°B.30°C.32°D.36°14.如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE∶S△BDE =(B)A.2∶5B.14∶25C.16∶25D.4∶2115.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是(D)A.△BPQ是等边三角形B.△PCQ是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共5个小题,每小题5分,共25分)16.在直角三角形中,其中一个锐角是22°,则另外一个锐角是68__°.17.如图,某失联客机从A地起飞,飞行1 000 km到达B地,再折返飞行1 000 km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为1__000km.18.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M19.如图,已知△ABC 的周长是22,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =3,△ABC 的面积是33.20.如图,在等腰△ABC 中,AB =AC ,∠BAC =54°,∠BAC 的平分线与AB 的垂直平分线交于点O ,点C 沿EF 折叠后与点O 重合,则∠OEC 的度数是108__°.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(本题8分)一个机器零件的形状如图所示,在Rt △ABC 中,∠BAC =30°,BC =2.5 cm ,BD =13 cm ,AD =12 cm ,求△ABD 的面积.解:∵Rt △ABC 中,∠BAC =30°,BC =2.5 cm , ∴AB =2BC =5 cm.∵52+122=132,即AB 2+AD 2=BD 2, ∴△ABD 是直角三角形.∴S △ABD =12AB·AD =12×5×12=30(cm 2).22.(本题8分)在加快城镇建设中,有两条公路OA 和OB 交会于O 点,在图中∠AOB 的内部有蔬菜基地C 和D ,现要修建一个蔬菜转运站P ,使转运站P 到两条公路OA ,OB 的距离相等,且到两个蔬菜基地C ,D 的距离也相等,用尺规作出蔬菜转运站P 的位置.(要求:不写作法,保留作图痕迹.)解:如图所示.23.(本题10分)如图,点P 为△ABC 的BC 边上一点,且PC =2PB ,∠ABC =45°,∠APC =60°,CD ⊥AP ,连接BD ,求∠ABD 的度数.解:∵∠APC =60 °,CD ⊥AP , ∴∠PCD =90 °-∠APC =90 °-60 °=30 °. ∴PC =2PD.∵PC =2PB ,∴PB =PD. ∴∠PBD =∠PDB.又∵∠APC =∠PBD +∠PDB ,∴∠PBD =12∠APC =12×60 °=30 °.∵∠ABC =45 °,∴∠ABD =∠ABC -∠PBD =45 °-30 °=15 °.24.(本题12分)如图,∠AOB =60°,OC 平分∠AOB ,C 为角平分线上一点,过点C 作CD ⊥OC ,垂足为C ,交OB 于点D ,CE ∥OA 交OB 于点E.(1)判断△CED 的形状,并说明理由; (2)若OC =3,求CD 的长.解:(1)△CED 是等边三角形.理由如下: ∵OC 平分∠AOB ,∠AOB =60 °,∴∠AOC =∠COE =30 °. ∵CE ∥OA ,∴∠AOC =∠COE =∠OCE =30 °,∠CED =60 °. ∵CD ⊥OC ,∴∠OCD =90 °. ∴∠EDC =60 °.∴△CED 是等边三角形.(2)∵△CED 是等边三角形,∴CD =CE =ED. 又∵∠COE =∠OCE ,∴OE =EC. ∴CD =ED =OE.设CD =x ,则OD =2x.在Rt △OCD 中,根据勾股定理得:x 2+9=4x 2,解得x = 3. 则CD = 3.25.(本题12分)如图,△ABC 的外角∠DAC 的平分线交BC 边的垂直平分线于点P ,PD ⊥AB 于D ,PE ⊥AC 于E. (1)求证:BD =CE ;(2)若AB =6 cm ,AC =10 cm ,求AD 的长.解:(1)证明:连接BP ,CP.∵点P 在BC 的垂直平分线上,∴BP =CP. ∵AP 是∠DAC 的平分线,∴DP =EP ,在Rt △BDP 和Rt △CEP 中,⎩⎪⎨⎪⎧BP =CP ,DP =EP ,∴Rt △BDP ≌Rt △CEP (HL ),∴BD =CE.(2)在Rt △ADP 和Rt △AEP 中,⎩⎪⎨⎪⎧AP =AP ,DP =EP ,∴Rt △ADP ≌Rt △AEP (HL ),∴AD =AE.∵AB =6 cm ,AC =10 cm ,∴6+AD =10-AE , 即6+AD =10-AD.解得AD =2 cm.26.(本题14分)如图,在△ABC 中,MP ,NO 分别垂直平分AB ,AC.(1)若BC =10 cm ,试求出△PAO 的周长; (2)若AB =AC ,∠BAC =110°,试求∠PAO 的度数;(3)在(2)中,若无AB =AC 的条件,你能求出∠PAO 的度数吗?若能,请求出来;若不能,请说明理由.解:(1)∵MP ,NO 分别垂直平分AB ,AC , ∴AP =BP ,AO =CO.∴△PAO 的周长为AP +PO +AO =BO +PO +OC =BC. ∵BC =10 cm ,∴△PAO 的周长为10 cm.(2)∵AB =AC ,∠BAC =110 °,∴∠B =∠C =12×(180 °-110 °)=35 °.由(1)知AP =BP ,AO =CO. ∴∠BAP =∠B =35 °,∠CAO =∠C =35 °. ∴∠PAO =∠BAC -∠BAP -∠CAO =110 °-35 °-35 °=40 °. (3)能.理由如下: ∵∠BAC =110 °,∴∠B +∠C =180 °-110 °=70 °.由(1)知AP =BP ,AO =CO.∴∠BAP =∠B ,∠CAO =∠C.∴∠PAO =∠BAC -∠BAP -∠CAO =∠BAC -(∠B +∠C )=110 °-70 °=40 °.27.(本题16分)如图,△ABC 中,AB =BC =AC =12 cm ,现有两点M ,N 分别从点A ,B 同时出发,沿三角形的边运动,已知点M 的速度为1 cm /s ,点N 的速度为2 cm /s .当点N 第一次到达点B 时,M ,N 同时停止运动.(1)点M ,N 运动几秒后,M ,N 两点重合?(2)点M ,N 运动几秒后,可得到等边三角形△AMN?(3)当点M ,N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形AMN ?如存在,请求出此时M ,N 运动的时间.解:(1)设点M ,N 运动x 秒后,M ,N 两点重合,x ×1+12=2x ,解得x =12.(2)设点M ,N 运动t 秒后,可得到等边三角形△AMN ,如图1,AM =t ×1=t ,AN =AB -BN =12-2t.∵三角形△AMN 是等边三角形,∴t =12-2t ,解得t =4.∴点M ,N 运动4秒后,可得到等边三角形△AMN.(3)当点M ,N 在BC 边上运动时,可以得到以MN 为底边的等腰三角形.由(1)知,12秒时M ,N 两点重合,恰好在C 处.如图2,假设△AMN 是以MN 为底边的等腰三角形,∴AN =AM.∴∠AMN =∠ANM.∴∠AMC =∠ANB.∵AB =BC =AC ,∴△ACB 是等边三角形.∴∠C =∠B.在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C =∠B ,∠AMC =∠ANB ,AC =AB , ∴△ACM ≌△ABN (AAS ).∴CM =BN.设当点M ,N 在BC 边上运动时,M ,N 运动的时间y 秒时,△AMN 是等腰三角形.∴CM =y -12,NB =36-2y ,由CM =NB ,得y -12=36-2y ,解得y =16.故假设成立.∴当点M ,N 在BC 边上运动时,能得到以MN 为底边的等腰三角形AMN ,此时M ,N 运动的时间为16秒.。

北师大版八年级数学下册《第一章三角形的证明易错题》单元综合测评

北师大版八年级数学下册《第一章三角形的证明易错题》单元综合测评

北师大版八年级数学下册《第一章三角形的证明易错题》单元综合测评(附答案)1.如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cm B.9cm C.9cm或12cm D.12cm2.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.2条B.3条C.4条D.5条3.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为1cm2,则△PBC的面积为()A.0.4cm2B.0.5cm2C.0.6cm2D.不能确定4.如图,△ABC中,BC=10,AC﹣AB=4,AD是∠BAC的角平分线,CD⊥AD,则S△BDC 的最大值为()A.40B.28C.20D.105.如图,△ABC中,AD⊥BC交BC于D,AE平分∠BAC交BC于E,F为BC的延长线上一点,FG⊥AE交AD的延长线于G,AC的延长线交FG于H,连接BG,下列结论:①∠DAE=∠F;②∠DAE=(∠ABD﹣∠ACE);③S△AEB:S△AEC=AB:AC;④∠AGH=∠BAE+∠ACB,其中正确的结论有()个.A.1B.2C.3D.46.如图,在△ABC中,AC=BC,点D在AC边上,点E在CB的延长线上,DE与AB相交于点F,若∠C=50°,∠E=25°,则∠BFD的度数为()A.100°B.120°C.140°D.150°7.如图,在Rt△ABC中,∠ACB=90°,∠CAB=36°,以C为原点,AC所在直线为y 轴,BC所在直线为x轴建立平面直角坐标系,在坐标轴上取一点M使△MAB为等腰三角形,符合条件的M点有()A.6个B.7个C.8个D.9个8.如图,在四边形ABCD中,∠A=90°,AD=3,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为()A.1B.6C.3D.129.如图,在△ABC中,BD、CE分别是∠ABC和∠ACB的平分线,AM⊥CE于P,交BC 于M,AN⊥BD于Q,交BC于N,∠BAC=110°,AB=6,AC=5,MN=2,结论①AP =MP;②BC=9;③∠MAN=35°;④AM=AN.其中不正确的有()A.4个B.3个C.2个D.1个10.如图,边长为3的等边△ABC中,BD=AB,BE=BC,DF⊥AC于点F,G为DF 的中点,连接EG,则EG的长为()A.B.C.D.211.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为.12.如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线分别交AC和AB于点D 和E,那么∠DBC=度.13.在等腰三角形ABC中,BC边上的高恰好等于BC边长的一半,则∠BAC等于.14.如图,四边形ABCD中,AB⊥AD,点E是BC边的中点,DA平分对角线BD与CD边延长线的夹角,若BD=5,CD=7,则AE=.15.如图,在△ABC中,BA=BC,∠ABC=120°,BD⊥BC交AC于点D,BD=1,则AC 的长.16.如图,六边形ABCDEF的六个内角都等于120°,若AB=BC=CD=3cm,DE=2cm,则这个六边形的周长等于cm.17.如图,P是边长为4的等边三角形ABC内一点,PD,PE,PF分别垂直于BC,AC,AB,垂足为D,E,F.若PD=BD=1,则PE+PF=,CE+AF=.18.如图,在四边形ABCD中,AB=AC,BC=BD,若∠ABC=∠BAD=α,则∠BCD=(用含α的代数式表示).19.如图,在△ABC中,AB=AC,点P为边AC上一动点,过点P作PD⊥BC,垂足为点D,延长DP交BA的延长线于点E,若AC=10,设CP长为x,BE长为y,则y关于x 的函数关系式为.(不需写出x的取值范围)20.如图,在正△ABC中,点D在边AB上,点E在边AC上,将△ADE折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=.21.如图,△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠P AQ的度数.(2)若△APQ周长为12,BC长为8,求PQ的长.22.如图,在平面直角坐标系中,已知等边△ABO的顶点A(2,0),经过点A的直线垂直于OB,交OB点C,交y轴于点E.(1)求线段OC的长度;(2)求点E的坐标;(3)确定直线AE的解析式.23.如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC 上,且ED=EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.24.小明在学习了“等边三角形”后,激发了他的学习和探究的兴趣,就想考考他的朋友小崔,小明作了一个等边△ABC,如图,并在边AC上任意取了一点F(点F不与点A、点C重合),过点F作FH⊥AB交AB于点H,延长CB到G,使得BG=AF,连接FG交AB于点I.(1)若AC=10,求HI的长度;(2)延长BC到D,再延长BA到E,使得AE=BD,连接ED,EC,求证:∠ECD=∠EDC.25.如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.26.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C 重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.27.如图:已知在△ABC中,AD⊥BC于D,E是AB的中点,(1)求证:E点一定在AD的垂直平分线上;(2)如果CD=9cm,AC=15cm,F点在AC边上从A点向C点运动速度是3cm/s,求当运动几秒钟时.△ADF是等腰三角形?参考答案1.解:当三边是2cm,2cm,5cm时,不符合三角形的三边关系;当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,此时周长是5+5+2=12cm.故选:D.2.解:如图所示,当AB=AF=3,BA=BD=3,AB=AE=3,BG=AG时,都能得到符合题意的等腰三角形.故选:C.3.解:如图,延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×1=0.5(cm2),故选:B.4.解:如图:延长AB,CD交于点E,∵AD平分∠BAC,∴∠CAD=∠EAD,∵CD⊥AD,∴∠ADC=∠ADE=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴AC=AE,DE=CD;∵AC﹣AB=4,∴AE﹣AB=4,即BE=4;∵DE=DC,∴S△BDC=S△BEC,∴当BE⊥BC时,S△BDC最大,即S△BDC最大=××10×4=10.故选:D.5.解:如图,AE交GF于M,①∵AD⊥BC,FG⊥AE,∴∠ADE=∠AMF=90°,∵∠AED=∠MEF,∴∠DAE=∠F;故①正确;②∵AE平分∠BAC交BC于E,∴∠EAC=,∠DAE=90°﹣∠AED,=90°﹣(∠ACE+∠EAC),=90°﹣(∠ACE+),=(180°﹣2∠ACE﹣∠BAC),=(∠ABD﹣∠ACE),故②正确;③∵AE平分∠BAC交BC于E,∴点E到AB和AC的距离相等,∴S△AEB:S△AEC=AB:CA;故③正确,④∵∠DAE=∠F,∠FDG=∠FME=90°,∴∠AGH=∠MEF,∵∠MEF=∠CAE+∠ACB,∴∠AGH=∠CAE+∠ACB,∴∠AGH=∠BAE+∠ACB;故④正确;故选:D.6.解:∵△ABC中,AC=BC,∠C=50°,∴∠ABC=(180°﹣50°)=65°,∵∠ABC是△BEF的外角,∴∠BFE=∠ABC﹣∠E=65°﹣25°=40°,∴∠BFD=180°﹣40°=140°,故选:C.7.解:如图,①以A为圆心,AB为半径画圆,交直线AC有二点M1,M2,交BC有一点M3,(此时AB=AM);②以B为圆心,BA为半径画圆,交直线BC有二点M5,M4,交AC有一点M6(此时BM=BA).③AB的垂直平分线交AC一点M7(MA=MB),交直线BC于点M8;∴符合条件的点有8个.故选:C.8.解:过点D作DH⊥BC交BC于点H,如图所示:∵BD⊥CD,∴∠BDC=90°,又∵∠C+∠BDC+∠DBC=180°,∠ADB+∠A+∠ABD=180°∠ADB=∠C,∠A=90°,∴∠ABD=∠CBD,∴BD是∠ABC的角平分线,又∵AD⊥AB,DH⊥BC,∴AD=DH,又∵AD=3,∴DH=3,又∴点D是直线BC外一点,∴当点P在BC上运动时,点P运动到与点H重合时DP最短,其长度为DH长等于3,即DP长的最小值为3.故选:C.9.解:①∵CE平分∠ACE,∴∠ACP=∠MCP,∵AM⊥CE,∴∠APC=∠MPC=90°,∴∠CAM=∠CMA,∴AC=CM,∴AP=PM,①正确;②同理得:BN=AB=6,∵CM=AC=5,∴BC=BN+CM﹣MN=6+5﹣2=9,②正确;③∵∠BAC=∠MAC+∠BAN﹣∠MAN=110°,由①知:∠CMA=∠CAM,∠BNA=∠BAN,△AMN中,∠CMA+∠BNA=180°﹣∠MAN=∠BAN+∠MAC,∴180°﹣∠MAN﹣∠MAN=110°,∴∠MAN=35°,③正确;④当∠AMN=∠ANM时,AM=AN,∵AB=6≠AC=5∴∠ABC≠∠ACB,∴∠AMN≠∠ANM,则AM与AN不相等,④不正确;所以本题不正确的有④,故选:D.10.解:如图,连接DE,∵△ABC是等边三角形,∴∠A=∠B=60,AB=BC=3,∴BD=AB=1,BE=BC=1,∴△BDE是等边三角形,∴∠BDE=60°,DE=BD=BE=1,∵DF⊥AC,∴∠AFD=90°,∴∠ADF=30°,∴∠EDG=90°,∵AD=AB﹣BD=2,∵∠ADF=30°,∴AF=1,∴DF=,∵G为DF的中点,∴DG=DF=,∴在Rt△DEG中,根据勾股定理,得EG===.故选:A.11.解:当为锐角时,如图∵∠ADE=40°,∠AED=90°,∴∠A=50°,当为钝角时,如图∠ADE=40°,∠DAE=50°,∴顶角∠BAC=180°﹣50°=130°.故答案为:50°或130°.12.解:∵AB=AC,∠A=50°,∴∠ABC=∠C=65°,∵DE是AB的垂直平分线,∴DA=DB,∴∠ABD=∠A=50°,∴∠DBC=∠ABC﹣∠ABD=15°.故答案为:15.13.解:如下图,分三种情况:①如图1,AB=BC,AD⊥BC,AD在三角形的内部,由题意知,AD=BC=AB,∵sin∠B==,∴∠B=30°,∠C=(180°﹣∠B)=75°,∴∠BAC=∠C=75°;②如图2,AC=BC,AD⊥BC,AD在三角形的外部,由题意知,AD=BC=AC,∴sin∠ACD==,∴∠ACD=30°=∠B+∠CAB,∵∠B=∠CAB,∴∠BAC=∠ACD=15°;③如图3,AC=AB,AD⊥BC,BC边为等腰三角形的底边,由等腰三角形的底边上的高与底边上中线,顶角的平分线重合,可得点D为BC的中点,由题意知,AD=BC=CD=BD,∴△ABD,△ADC均为等腰直角三角形,∴∠BAD=∠CAD=45°,∴∠BAC=90°,∴∠BAC的度数为90°或75°或15°,故答案为:90°或75°或15°.14.解:如图,取BD中点H,连AH、EH,∵AB⊥AD,∴AH=DH=BH=BD=2.5,∴∠HDA=∠HAD,∵DA平分∠FDB,∴∠FDA=∠HDA,∴∠FDA=∠HAD,∴AH∥DF,∵点E是BC边的中点,点H是BD的中点,∴EH∥CD,EH=CD=3.5,∴A、H、E三点共线,∴AE=AH+EH=2.5+3.5=6.故答案为:6.15.解:∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵DB⊥BC,∴∠DBC=90°,∴∠ABD=∠ABC﹣∠DBC=30°,∴∠A=∠ABD,∵BD=1,∴AD=BD=1,∵CD=2BD=2,∴AC=AD+DC=1+2=3,故答案为3.16.解:分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P,如图所示:∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°,∴△APF、△BGC、△DHE、△GHP都是等边三角形,∴GC=BC=3cm,DH=DE=EH=2cm,∴GH=3+3+2=8(cm),F A=P A=PG﹣AB﹣BG=8﹣3﹣3=2(cm),EF=PH﹣PF﹣EH=8﹣2﹣2=4(cm).∴六边形的周长为2+3+3+3+2+4=17(cm);故答案为:17.17.解:过A作AG⊥BC于G,∵△ABC是等边三角形,∴CG=BC=2,∴AG=2,连接P A、PB、PC,∵PD,PE,PF分别垂直于BC,AC,AB,∴S△ABC=S△APB+S△PBC+S△APC,+,AB=AB(PE+1+PF),∴PE+PF=2﹣1,延长DP交AB于H,∵PF⊥AB,PD⊥BC,∴∠BFP=∠BDP=90°,∵∠ABC=60°,∴∠HFP=60°,∴∠BHD=30°,∵BD=1,∴BH=2,DH=,∵PD=1,∴PH=﹣1,Rt△PFH中,PF=,∴FH==,∴BF=BH﹣FH=2﹣=,∴AF=4﹣BF=,∵PE+PF=2﹣1,∴PE=2﹣1﹣=,Rt△PDC中,PC===,∴CE====,∴CE+AF==5故答案为:2﹣1,518.解:延长DA至M,使AM=AB,连接BM,∵AB=AC,∴AM=AB=AC,∠ABC=∠ACB=α,∴∠BAC=180°﹣2α,∵∠BAD=2α,∴∠MAB=180°﹣∠BAD=180°﹣2α,∴∠BAC=∠MAB,在△MAB和△CAB中,∵,∴△MAB≌△CAB(SAS),∴∠M=∠ACB=α,BC=BM,∴∠CAD=180°﹣2∠BAC=4α﹣180°,∵BM=BC=BD,∴∠M=∠ADB=∠ACB=α,∴∠DBC=∠DAC=4α﹣180°,∴∠BCD==90°﹣∠DBC=90°﹣=180°﹣2α,故答案为:180°﹣2α.19.解:∵AB=AC=10,∴∠B=∠C,∵PD⊥BC,∴∠BDE=∠CDP=90°,∴∠E=∠CPD=∠APE,∴AE=AP,∵CP=x,∴AE=AP=10﹣x,∵BE=y=AB+AE,∴y=10+10﹣x=﹣x+20,故答案为:y=﹣x+20.20.解:∵△ABC为正三角形∴∠A=∠B=∠C=60°∵折叠∴△ADE≌△FDE∴∠DFE=∠A=60°∵∠B+∠BDF+∠BFD=180°,∠DFE+∠BFD+∠CFE=180°∴∠BDF+∠BFD=120°,∠BFD+∠CFE=120°∴∠BDF=∠CFE∵∠CFE+∠CEF+∠C=180°∴∠CFE+∠CEF=120°∴∠BDF+∠CEF=120°故答案为:120°.21.解:(1)设∠P AQ=x,∠CAP=y,∠BAQ=z,∵MP和NQ分别垂直平分AB和AC,∴AP=PB,AQ=CQ,∴∠B=∠BAP=x+z,∠C=∠CAQ=x+y,∵∠BAC=80°,∴∠B+∠C=100°,即x+y+z=80°,x+z+x+y=100°,∴x=20°,∴∠P AQ=20°;(2)∵△APQ周长为12,∴AQ+PQ+AP=12,∵AQ=CQ,AP=PB,∴CQ+PQ+PB=12,即CQ+BQ+2PQ=12,BC+2PQ=12,∵BC=8,∴PQ=2.22.解:(1)∵A(2,0),∴OA=2,∵△ABO是等边三角形,∴OB=OA=2,∠AOB=60°,∴∠COE=30°,∵AE⊥OB,∴OC=OB=1;(2)∵AE⊥OB,∠COE=30°,∴CE=OC=,OE=2CE=,∴点E的坐标为(0,);(3)设直线AE的解析式为y=kx+b,由题意得:,解得:,∴直线AE的解析式为y=﹣x+.23.解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠BCE=30°,BE=AE,∵ED=EC,∴∠EDB=∠BCE=30°,∵∠ABD=120°,∴∠DEB=30°,∴DB=EB,∴AE=DB;(2)如图1,∵AB=2,AE=1,∴点E是AB的中点,由(1)知,BD=AE=1,∴CD=BC+BD=3;如图2,过A作AM⊥BC于M,过E作EN⊥BC于N,∵AB=AC,DE=CE,∴BM=BC=3,CD=2CN,∵AM⊥BC,EN⊥BC,∴AM∥EN,∴=,∴=,∴BN=,∴CN=BC﹣BN=,∴CD=1,综上所述,CD的长为1或3.24.(1)解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,如图1,过F作FQ∥AB,交BC于Q,过F作FN∥BC,交AC于N,∴∠FQC=∠ABC=60°,∴∠FQC=∠ACB=∠CFQ=60°,∴△CQF是等边三角形,∴CQ=CF,∵AC=BC,∴AF=BQ,∵BG=AF,∴BQ=BG,∵BI∥QF,∴GI=FI,∵FN∥BG,∴∠FNI=∠GBI,在△FNI和△GBI中,∵,∴△FNI≌△GBI(AAS),∴NI=BI,FN=BG,∴FN=AF,∵FH⊥AB,∴AH=HN,∴HI=HN+NI=AB=×10=5;(2)证明:解法一:如图2,延长CD至P,使BC=DP,连接AP、EP,∴BD=CP,∵AE=BD,∴AE=CP,在△ACP和△CAE中,∵,∴△ACP≌△CAE(SAS),∴AP=CE,∵BE=AB+AE,BP=BC+CP,∴BE=BP,∵∠ABC=60°,∴△EBP是等边三角形,∴BP=EP,∠EPD=60°,∴∠EPD=∠ABC,在△ABP和△DPE中,∵,∴△ABP≌△DPE(SAS),∴AP=ED=EC,∴∠ECD=∠EDC.解法二:如图3,延长CD至P,使BC=DP,连接EP,∴BD=PC=AE,∵BE=AB+AE,BP=BC+CP,∴BE=BP,∵∠ABC=60°,∴△EBP是等边三角形,∴EB=EP,∠EPD=60°,∴∠EPD=∠ABC,在△EBC和△EPD中,∵,∴△EBC≌△EPD(SAS)∴EC=ED,∴∠ECD=∠EDC.25.证明:(1)∵AB=AC,∠BAC=36°,∴∠ABC=72°,又∵BD是∠ABC的平分线,∴∠ABD=36°,∴∠BAD=∠ABD,∴AD=BD,又∵E是AB的中点,∴DE⊥AB,即FE⊥AB;(2)∵FE⊥AB,AE=BE,∴FE垂直平分AB,∴AF=BF,∴∠BAF=∠ABF,又∵∠ABD=∠BAD,∴∠F AD=∠FBD=36°,又∵∠ACB=72°,∴∠AFC=∠ACB﹣∠CAF=36°,∴∠CAF=∠AFC=36°,∴AC=CF,即△ACF为等腰三角形.26.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2∵∠EDC+∠EDA=∠DAB+∠B,∠B=∠EDA=40°,∴∠EDC=∠DAB.,∵∠B=∠C,∴当DC=AB=2时,△ABD≌△DCE,(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.27.(1)证明:∵AD⊥BC,∴∠ADB=90°,∵E是AB的中点,∴AE=DE,∴E点一定在AD的垂直平分线上;(2)解:∵AD⊥BC,∴AD===12(cm),当F A=AD=12cm时,t===4s,当F A=FD时,则∠F AD=∠ADF,又∵∠F AD+∠C=∠ADF+∠FDC=90°,∴∠C=∠FDC,∴FD=FC,∴F A=FC=AC=cm,∴t===s,当DF=AD时,点F不存在,综上所述,当点F运动4s或s时,△ADF是等腰三角形.。

北师大版八年级数学下册第一章 三角形的证明 单元测试训练卷(word版 含答案)

北师大版八年级数学下册第一章 三角形的证明  单元测试训练卷(word版 含答案)

北师大版八年级数学下册第一章三角形的证明单元测试训练卷一、选择题(共10小题,每小题4分,共40分)1.如图,在△ABC和△DCB中,∠A=∠D=72°,∠ACB=∠DBC=36°,则图中等腰三角形的个数是( )A.2 B.3 C.4 D.52.在等腰三角形ABC中,AB=AC,那么下列说法中不正确的是( )A.BC边上的高和中线互相重合B.AB和AC边上的中线相等C.三角形中顶点为B和顶点为C的角平分线相等D.AB,BC边上的高相等3.如图,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线AF与AB的垂直平分线DF交于点F,连接CF,BF,则∠BCF的度数为( )A.30° B.40° C.50° D.45°4.下列条件中,不能得到等边三角形的是( )A.有两个内角是60°的三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个外角相等的等腰三角形5.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A.4 B.5 C.6 D.76.有A,B,C三个社区(不在同一直线上),现准备修建一座公园,使该公园到三个社区的距离相等,那么公园应建在下列哪个位置上?()A .△ABC 三条角平分线的交点处B .△ABC 三条中线的交点处C .△ABC 三条高的交点处D .△ABC 三边垂直平分线的交点处7. 如图,在已知的△ABC 中,按以下步骤作图:①分别以点B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N ; ②作直线MN 交AB 于点D,连接CD.若CD =AC,∠A =50°,则∠ACB 的度数为( )A .90°B .95°C .100°D .105°8. 等腰三角形的底角为40°,两腰的垂直平分线交于点P,则( )A .点P 在三角形内B .点P 在三角形外C .点P 在三角形底边上D .点P 的位置与三角形的边长有关9. 下列说法:①斜边和一条直角边分别相等的两个直角三角形全等;②两个锐角分别相等的两个直角三角形全等;③有一个角和底边分别相等的两个等腰三角形全等;④一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.其中正确的有( )A .1个B .2个C .3个D .4个10. 在△ABC 中,∠ACB =90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC,OE ⊥AC,OF ⊥AB,点D,E,F 是垂足,且AB =5,BC =4,AC =3,则点O 到三边AB,AC,BC 的距离分别是( )A .1,1,1B .2,2,2C .1,1.5,2D .无法确定二.填空题(共6小题,每小题4分,共24分)11. 命题:“三角形中至多有两个角大于60度”,用反证法证明时第一步需要假设_________________________.12. 如图,在Rt △ABC 中,∠C =90°,点D 为AB 的中点,DE ⊥AC 于点E,∠A =30°,AB =12,则DE 的长度是____.13. 如图,点P 是∠AOB 的平分线上一点,过点P 作PC ∥OA 交OB 于点C,若∠AOB =60°,OC =4,则点P 到OA 的距离PD 等于____.14. 如图,在Rt △ABC 中,∠B =90°,以顶点C 为圆心,适当长为半径画弧,分别交AC,BC 于点E,F,再分别以点E,F 为圆心,大于12EF 的长为半径画弧,两弧交于点P,作射线CP 交AB 于点D.若BD =3,AC =10,则△ACD 的面积是__________.15. 如图,△ABC 中,BC 的垂直平分线DP 与∠BAC 的角平分线相交于点D,垂足为点P,若∠BAC =85°,则∠BDC =____.16. 在△ABC 中,AB =2 2 ,BC =1,∠ABC =45°,以AB 为边作等腰直角三角形ABD,使∠ABD =90°,连接CD,则线段CD 的长为__ __.三.解答题(共6小题, 56分)17.(6分) 如图,在四边形ABCD 中,∠C =90°,BD 平分∠ABC,AD =3,E 为AB 上一点,AE =4,ED =5,求CD 的长.18.(8分) 如图,已知AD =BC,AC =BD.(1)求证:△ADB≌△BCA;(2)OA与OB相等吗?若相等,请说明理由.19.(8分) 如图,四边形ABCD是正方形,△EBC是等边三角形.(1)求证:△ABE≌△DCE;(2)求∠AED的度数.20.(10分) 如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.21.(12分) 如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A,C之间选择一点B(A,B,C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40 m.(1)求点B到AD的距离;(2)求塔高CD.(结果用根号表示)22.(12分) 如图,△ABC是等边三角形,D是边BC上(除B,C外)的任意一点,∠ADE=60°,且DE交△ABC的外角∠ACF的平分线CE于点E.求证:(1)∠1=∠2;(2)AD=DE.参考答案1-5DDBDB 6-10DDBBA11.三个内角都大于60度12.313.2314.1515.96°16. 5 或1317.解:∵AD =3,AE =4,ED =5,∴AD 2+AE 2=ED 2,∴∠A =90°.∵∠C =90°,BD 平分∠ABC,∴DC =AD.∵AD =3,∴CD =3.18.解:(1)证明:在△ADB 和△BCA 中,⎩⎪⎨⎪⎧AD =BC ,AB =BA ,BD =AC ,∴△ADB ≌△BCA(SSS)(2)相等.理由:∵△ADB ≌△BCA,∴∠ABD =∠BAC,∴OA =OB19.(1)证明:∵四边形ABCD 是正方形,∴AB =BC =CD,∠ABC =∠DCB =90°.∵△EBC 是等边三角形,∴EB =BC =EC,∠EBC =∠ECB =∠BEC =60°.∴∠EBA =∠ECD =30°.在△ABE 和△DCE 中,⎩⎪⎨⎪⎧AB =DC ,∠EBA =∠ECD ,EB =EC ,∴△ABE ≌△DCE(SAS).(2)解:由(1)可知,AB =BE,∠ABE =30°,∴∠BAE =∠BEA =75°.同理,∠CDE =∠CED =75°.∴∠AED =360°-75°-75°-60°=150°.20.解:(1)证明:∵BE ⊥AC,AD ⊥BC,∴∠ADC =∠BEC =90°,∠DAC +∠ACD =∠DBF +∠DCA =90°,∴∠DAC =∠DBE,又∵∠BAD =45°,∴∠BAD =∠DBA,∴AD =BD,∴△ADC ≌△BDF(ASA),∴BF =AC,又∵AB =BC,BE ⊥AC,∴AE =CE,∴AC =2AE,∴BF =2AE.(2)∵△BFD ≌△ACD,∴FD =CD =2,∴FC =(2)2+(2)2=2,又∵AE =CE,FE ⊥AC,∴FC =AF,∴AF =2,∴AD =AF +FD =2+ 2.21.解:(1)过点B 作BE ⊥AD,垂足为E,∴∠AEB =90°,又∵∠A =30°,∴BE =12AB =12×40=20 m(2)AE =AB 2-BE 2=203,∵∠A +∠ADB =∠DBC =75°,∴∠ADB =75°-∠A =45°,∵BE ⊥AD,∴∠BED =90°,∴∠DBE =∠ADB =45°,∴DE =BE =20,∴AD =AE +DE =203+20,∵CD ⊥AC,∴∠C =90°,又∵∠A =30°,∴CD =12AD =12(203+20)=(103+10) m 22.证明:(1)∵△ABC 是等边三角形,∠ADE =60°,∴∠ADE =∠B =60°.又∵∠ADC =∠2+∠ADE =∠1+∠B,∴∠1=∠2.(2)如图,在AB 上取一点M,使BM =BD,连接MD,则∠BMD =∠BDM.∵△ABC 是等边三角形,∴∠B =∠ACB =60°,AB =BC.∴∠BMD =60°.∴∠AMD =120°.∵∠ACB =60°,∴∠ACF =120°.∵CE 是∠ACF 的平分线,∴∠ECA =∠ECF =60°.∴∠DCE =120°.∴∠AMD =∠DCE.∵BA -BM =BC -BD,∴MA =CD.在△AMD 和△DCE 中,⎩⎪⎨⎪⎧∠1=∠2,AM =DC ,∠AMD =∠DCE ,∴△AMD ≌△DCE(ASA).∴AD =DE.。

北师大版数学八年级下册 第一章三角形的证明 综合测试卷(含答案)

北师大版数学八年级下册 第一章三角形的证明 综合测试卷(含答案)

第一章三角形的证明综合测试卷一、选择题。

01如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35º,则∠C的度数为 ( )A.35º B.45º C.55º D.60º02若等腰三角形的周长为10 cm,其中一边长为2 cm,则该等腰三角形的底边长为( )A.2 cm B.4 cm C.6 cm D.8 cm03如图,在△ABC中,∠ACB=90º,BE平分∠ABC,ED⊥AB于D.如果∠A=30º,AE=6 cm,那么CE等于 ( )A .3 cmB .2 cm C.3 cm D.4 cm04如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC 的长为半径作弧,两弧相交于M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50º,则∠ACB的度数为 ( )A.90º B.95º C 100º D.105º05如图,AD是△ABC中∠BAC的平分线,DE⊥AB,垂足为点E,DE=4,AC=6,则△ACD 的面积为 ( )A.8 B 10 C.12 D.2406如图,∠A=50º,P是等腰△ABC内一点,且∠PBC=∠PCA,则∠BPC为 ( )A.100º B.140º C.130º D.115º07如图,在Rt△ABC中,∠ACB=60º,DE是斜边AC的垂直平分线,分别交AB,AC 于D,E两点,若BD=2,则AC的长是 ( )A.4 B.43 C.8 D.8308 将一个有45º角的直角三角尺的直角顶点C放在一张宽为3 cm的纸带边沿上,另一个顶点A在纸带的另一边沿上,测得三角尺的一边AC与纸带的一边所在的直线成30º角,如图,则三角尺的最长边的长为 ( )A.6 cm B.2 cm C.2 cm D.209如图,∠ACB=90º,AC=BC,AE⊥CE,垂足为点E,BD⊥CE,交CE的延长线于点D,AE=5 cm,BD=2 cm,则DE的长是( )A.8 cm B.5 cm C.3 cm D.2 cm10如图,AD⊥BC于D,且DB=DC,有下列结论:①△ABD≌△ACD;②∠B=∠C;③AD 是∠BAC的平分线;④△ABC为等边三角形.其中正确的有 ( )A.1个 B.2个 C.3个 D.4个11如图,∠A=15º,AB=BC=CD=DE=EF,则∠DEF等于( )A.90º B.75º C.70º D.60º12如图,在△ABC中,BC=10,DH,EF分别为AB、AC的垂直平分线,则△ADE的周长是 ( )A.6 B.8 C.10 D.12二、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
第一章新北师版《三角形证明》单元测试题
班级姓名
一、填空题(每小题 3 分)
1.直角三角形两直角边长分别为 6 和 8 ,则斜边上的高为_________.
2.在 Rt △ABC中,∠C=90 °,∠B=30 °,b =10 ,则c=_________.则a∶b∶c=_________.
11 .如图, ED 为△ABC 的 AC 边的垂直平分线,且 AB=5 ,△BCE 的周长为8,则
BC=.
(第 11 题图)(第 12 题图)
12 .如图,在△ ABC 中,∠C= 90 °,∠B=15 °,AB 的垂直平分线交BC 于 D,交 AB
于 E,若 DB = 10 cm,则 AC =.
二、选择题(每小题 3 分)
13 .以下各组数为三角形的三条边长,其中能作成直角三角形的是()
A. 2,3,4B.4,5,6C.1, 2 ,3D.2, 2 ,4
14 .如图,△ ABC 与△BDE 都是等边三角形,AB<BD .若△ABC 不动,将△ BDC 绕 B
点旋转,则在旋转过程中,AE 与 CD 的大小关系为() A. AE= CD B. AE>CD C AE<CD D .无法确定
(第 14 题图)(第 15 题图)
15 .如图,△ ABC 中, AC = BC,直线l经过点 C,则( )
A.l垂直 AB B.l 平分 AB C.l垂直平分 AB D .不能确定
17 .已知△ABC 中, A B= AC , AB 的垂直平分线交AC 于 D ,△ABC 和△DBC 的周长分别是 60 cm 和38 cm ,则△ABC的腰和底边长分别为( )
A.24 cm 和12 cm B.16 cm 和22 cm C.20 cm 和16 cm D .22 cm 和 16 cm
18. 在 Rt △ABC中,∠ACB=90 °,AC = CB,CD是斜边AB的中线,若AB=22,则
点 D 到 BC 的距离为()A.1 B. 2 C.2
2 D.
2
三、解答题
22.折叠矩形纸片 ABCD ,先折出折痕(对角线) BD,再折叠 AD 边与对角线 BD 重合,得折痕DG ,如图所示,若 AB=2, BC=1,求 AG 的长.(8分)
24.已知,如图,⊿ABC 中,∠A = 90 ,AB =AC ,D 是 BC 边上的中点, E、F 分别是 AB 、AC 上的点,且 BE = AF ,求证: ED⊥ FD (10 分)
A
F
E
B
C D
1.等腰三角形
一、主要知识点
1、证明三角形全等的判定方法(SSS,SAS,ASA,AAS, 证直角三角形全等除上述外还有
HL) 及全等三角形的性质是对应边相等,对应角相等。

2、等腰三角形的有关知识点。

等边对等角;等角对等边;等腰三角形顶角的平分线、底边上的中线、底边上的高
互相重合。

(三线合一)
3、等边三角形的有关知识点。

判定:有一个角等于60 °的等腰三角形是等边三角形;
三条边都相等的三角形是等边三角形;
三个角都是60 °的三角形是等边三角形;
有两个叫是60 °的三角形是等边三角形。

性质:等边三角形的三边相等,三个角都是60 °。

4 、反证法:先假设命题的结论不成立,然后推导出与定义、公理、已证定理或已知
条件相矛盾的结果,从而证明命题的结论一定成立。

这种证明方法称为反证法二、重点例题分析
例 1: 如下图,在△ABC中,∠B=90 °,M是AC上任意一点(M与A不重合)MD⊥BC,交∠ABC 的平分线于点 D,求证: MD = MA .
例 4 如图 1 、图 2 ,△AOB ,△COD 均是等腰直角三角形,∠AOB =∠COD = 90 o ,( 1)在图 1 中, AC 与 BD 相等吗?请说明理由
( 2)若△COD 绕点 O 顺时针旋转一定角度后,到达力 2 的位置,请问 AC 与 BD 还相
B B
等吗?为什么?
C
D
D
A CO A O
图 1 图 2
例 5 如图,在△ABC 中,AB=AC 、D 是 AB 上一点, E 是 AC 延长线上一点,且 CE=BD ,连结 DE 交 BC 于 F。

( 1)猜想 DF 与 EF 的大小关系;( 2 )请证明你的猜想。

例 6 证明:在一个三角形中至少有两个角是锐角.
2.直角三角形
一、主要知识点
1、直角三角形的有关知识。

直角三角形两条直角边的平方和等于斜边的平方;
如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;
在直角三角形中,如果一个锐角等于 30 °,那么它所对的直角边等于斜边的一半;在
直角三角形中,斜边上的中线等于斜边的一半。

2 、互逆命题、互逆定理
在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.
如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.
二、典型例题分析
例 5 :如图 2-5 所示.在等边三角形ABC 中, AE=CD ,AD , BE 交于 P 点, BQ ⊥ AD 于Q.求证: BP=2PQ .
3.线段的垂直平分线
4. 角平分线
一、主要知识点
1、线段的垂直平分线。

线段垂直平分线上的点到这条线段两个端点的距离相等;
到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

2、角平分线。

角平分线上的点到这个角的两边的距离相等。

在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。

三角形三条角平分线相交于一点,并且这一点到三条边的距离相等。

例 5::如图所示,Rt △ABC 中,, D 是 AB 上一点, BD=BC ,过 D 作 AB 的垂线交AC 于
点 E, CD 交 BE 于点 F。

求证: BE 垂直平分CD。

C
E
F
A D
B 例 6::在⊿AB
C 中,点 O 是 AC 边上一动点,过点O 作直线 MN ∥BC,与∠ACB 的角平分线交于点E,与∠ACB 的外角平分线交于点F,求证: OE=OF
A
M E O
FN
B C
1、如图,△ABC 中,AD 为∠BAC 的平分线, AD 的垂直平分线EF 交 BC 的延长线于点F,
连接 AF。

求证:∠ B= ∠CAF A
E
B D
C F。

相关文档
最新文档