九年级数学下册1_3三角函数的计算如何运用三角函数解决实际问题素材新版北师大版

合集下载

1.3三角函数的计算- 九年级数学下册课件(北师大版)

1.3三角函数的计算-  九年级数学下册课件(北师大版)

∴sin∠EBP=
PE BP
=sin
40°,sin
∠FBP=
PF BP
=sin
20°.
又∵sin 40°>sin 20°,∴
PE BP
PF BP
.
∴PE>PF.
(2)∵α,β 都是锐角,且α>β,
∴sin α>sin β.
又∵sin∠EBP= PE =sin α,sin∠FBP= PF =sin β,
例1 用计算器计算:(结果精确到万分位) (1)sin 26°≈ 0.4384 ; (2) sin82°48′15″≈___0_._9_9__2_1__.
导引:已知锐角求三角函数值,按照正确的按键顺序按键,将屏 幕显示的结果按要求取近似值即可.
总结
(1)依次按sin2 6=键,得到数据再精确到万分位即可; (2)依次按sin8 2 °’ ” 48°’ ”15°’ ”=键,得到数据再
(2)先按 SHIFT cos 0.2187=键,显示:77.367 310 78,再
按°’”键,显示77°22′2.32″,所以∠A≈77°22′.
(3)先按 SHIFT tan 3.527=键,显示:74.170 530 81,再
按°’”键,显示74°10′13.91″,所以∠A≈74°10′.
端离墙壁2.5 m,求梯子与地面所成锐角的度数.
解:设梯子与地面所成的锐角为∠α,
则cos α=2.5 = 5 =0.625. 48
∴∠α≈51°19′4″. 所以,梯子与地面所成的锐角的度数约为51°19′4″.
3 已知sin α= 1 ,求α,若用科学计算器计算且结果以
2 “度、分、秒”为单位,最后按键( D )

PE PB

北师大版九年级数学下册:1.5《三角函数的应用》教案

北师大版九年级数学下册:1.5《三角函数的应用》教案

北师大版九年级数学下册:1.5《三角函数的应用》教案一. 教材分析北师大版九年级数学下册第1.5节《三角函数的应用》主要介绍了正弦、余弦函数在实际问题中的应用。

通过本节课的学习,使学生了解三角函数在实际生活中的重要性,培养学生运用数学知识解决实际问题的能力。

二. 学情分析九年级的学生已经学习了三角函数的基本知识,对正弦、余弦函数有一定的了解。

但学生在应用三角函数解决实际问题方面还比较薄弱,需要通过本节课的学习,提高学生运用三角函数解决实际问题的能力。

三. 教学目标1.使学生掌握正弦、余弦函数在实际问题中的应用。

2.培养学生运用数学知识解决实际问题的能力。

3.提高学生对三角函数的兴趣,培养学生的创新意识。

四. 教学重难点1.重点:正弦、余弦函数在实际问题中的应用。

2.难点:如何运用三角函数解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究三角函数在实际问题中的应用。

2.利用案例分析法,分析实际问题中三角函数的运用。

3.采用小组合作讨论法,培养学生的团队协作能力。

六. 教学准备1.准备相关的实际问题案例。

2.准备三角函数的图像和公式。

3.准备投影仪和教学课件。

七. 教学过程1.导入(5分钟)利用投影仪展示一些实际问题,如测量高度、角度等,引导学生思考如何利用三角函数解决这些问题。

2.呈现(10分钟)呈现三角函数的图像和公式,让学生了解三角函数的基本性质。

同时,结合实际问题案例,讲解如何运用三角函数解决实际问题。

3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,运用三角函数进行解决。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)选取几组实际问题,让学生独立解决。

教师及时给予反馈,巩固学生对三角函数应用的掌握。

5.拓展(10分钟)引导学生思考如何将三角函数应用于其他领域,如工程、物理等。

让学生举例说明,培养学生的创新意识。

6.小结(5分钟)总结本节课所学内容,强调三角函数在实际问题中的应用。

三角函数的计算-九年级数学下册课件(北师大版)

三角函数的计算-九年级数学下册课件(北师大版)
8
1
shift
6
=
cos-1
0
.
8
30.60473007
cosB=0.8607
6
tanC=56.78
shift
7
=
tan-1
5
6
.
88.99102049
7
还可以利用
0
8
=
键,进一步得到以“度、分、秒”显示的结果
课堂基础练
例1 用计算器求下列各式的值(精确到0.0001):
(1)tan47°;
(3)sin25°18′;
随堂测试
6.利用计算器求下列各角(精确到1′).
(1)sinA=0.75,求∠A的度数;
(2)cosB=0.888 9,求∠B的度数;
(3)tanC=45.43,求∠C的度数;
(4)tanD=0.974 2,求∠D的度数.
【详解】解:(1)∵sinA=0.75,
∴∠A≈48.59°≈48°35′24″≈48°35′;
例2 根据下列条件求锐角A的度数:(结果精确到1′)
(1)sin A=0.732 1;(2)cos A=0.218 7;(3)tan A=3.527.
解:(1)先按SHIFT sin 0.7321=键,显示:47.062 734 57,
再按°’”键,即可显示47°3′45.84″,所以∠A≈47°4′.
(5) 若cosα = 0.3145,则 α ≈
71.7°
(精确到 0.1°).
随堂测试
5.求满足下列条件的锐角θ的度数(精确到0.1°):
(1)sinθ=0.1426;
(2)cosθ=0.7845.
解:(1)∵sinθ=0.1426,∴∠θ≈8.2°;

北师大版九年级数学下册三角函数的计算课件

北师大版九年级数学下册三角函数的计算课件
在Rt△ABC中,sin A = BC = 10 = 1 , AC 40 4
那么∠A是多少度呢?
新课讲授
问题2:sin A = BC = 1 ,可是求不出∠A.你能探索 AB 4
出求∠A的方法吗?
思考讨论:我们知道,给定一个锐角的度数,这 个锐角的三角函数值都唯一确定.给定一个锐角的三角 函数值,这个锐角的大小也唯一确定吗?为什么?
新课讲授
C
40 m 10 m
A
B
我们曾经学习过直角三角形的判定定理——HL定 理.在上图中,斜边AC和直角边BC是定值,根据HL定 理可知这样的直角三角形形状和大小是唯一确定的, 当然∠A的大小也是唯一确定的.因此,可以借助计算器 求出∠A的大小.
新课讲授
如何用计算器由锐角三角函数值求相应锐角的大小?
解: ①sin 56°≈0.829; ②sin 15˚49′ ≈ 0.273; ③cos 20° ≈0.940; ④tan 29° ≈0.554; ⑤tan 44˚59′59″ ≈1.000; ⑥sin 15°+cos 61°+tan 76° ≈4.754.
新课讲授
问题1:随着人民生活水平的提高,小轿车越来越 多,为了交通安全,某市政府要修建10 m高的天桥,为 了方便行人推车过天桥,需在天桥两端修建40 m长的斜 道.这条斜道的倾斜角是多少?
我们可以借助科学计算器求锐角的三角函数值.怎 样用科学计算器求三角函数值呢?
看一下我们的计算器,上面的键有哪些与我们学 过的三角函数有关呢?
sin
cos
tan
sin-1
cos-1
tan-1
如何利用计算器来计算出sin 16°?
sin 1 6 = 0.275 637 355

北师大版九年级数学下册第一章3三角函数的计算

北师大版九年级数学下册第一章3三角函数的计算
∴OA=OPtan α.在Rt△BOP中,tan∠BPO= OB ,∠BPO=∠β,∴OB=OPtan β.
OP
∴AB=OB-OA=OP(tan β-tan α). ∵OP=a m,∴AB=a(tan β-tan α)m.
正解 ∵PC∥OA,∴∠PAO=∠APC=∠α.
在Rt△AOP中, OP =tan∠PAO,∴OA= OP .
知识点二 已知三角函数值,用计算器求锐角
5.(独家原创试题)世界上有一条被载入吉尼斯世界纪录的斜坡路.在这条
路上,上坡犹如登山一般难走,有时候人们上坡甚至要靠爬.它就是位于新
西兰的达尼丁的鲍德温街,鲍德温街是一条短而直的街道,总长约350米,街
道开端的海拔约为30米,而街道终端的海拔为100米.图1-3-2②是鲍德温街
知识点一 利用计算器求任意锐角的三角函数值
1.(2017山东威海中考)为了方便行人推车过某天桥,市政府在10 m高的天 桥一侧修建了40 m长的斜道(如图1-3-1所示),我们可以借助科学计算器求 这条斜道倾斜角的度数,具体按键顺序是 ( )
A.2ndF sin 0 ·2 5 =
B.sin 2ndF 0 ·2 5 =
初中数学(北师大版)
九年级 下册
第一章 直角三角形的边角关系
知识点一 利用计算器求任意锐角的三角函数值 1.求整数度数的锐角三角函数值 操作流程如下: 使计算器面板出现DEG→按sincostan这三个键之一→输入整数度数→按键=. 2.求非整数度数的锐角三角函数值 (1)求以“度”为单位的锐角的三角函数值 可直接按键求出,例如:求tan 16.52°的值可按如下操作: 按键tan→依次按16·52→按键=. (2)求用“度、分、秒”表示的锐角的三角函数值 操作流程如下: 按sincostan这三个键之一→度D°M'S分D°M'S秒D°M'S→按键=.

第1章1.3三角函数的计算(教案)2023-2024学年九年级下册数学(教案)(北师大版)

第1章1.3三角函数的计算(教案)2023-2024学年九年级下册数学(教案)(北师大版)
3.三角函数的计算公式:介绍正弦、余弦、正切的计算公式及其应用。
4.三角函数的值域:让学生了解正弦、余弦函数的值域,并能解决相关问题。
5.解决实际问题:运用三角函数知识解决生活中的实际问题,如测量物体的高度等。
二、核心素养目标
《第1章1.3三角函数的计算》核心素养目标如下:
1.培养学生的逻辑推理能力,通过三角函数定义、性质及计算方法的推导,使学生在解决问题的过程中形成严密的逻辑思维。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对三角函数任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在这次《三角函数的计算》的教学中,我发现学生们对三角函数的概念和应用有了初步的认识,但在实际操作和深入理解上还存在一些问题。让我来谈谈我在教学过程中的体会和反思。
(3)角度制与弧度制的转换:在实际应用中,角度制与弧度制的转换是学生容易混淆的地方。
举例:在计算三角函数值时,如何将角度制转换为弧度制,以及如何将弧度制转换为角度制。
(4)三角函数的复合应用:在解决复杂问题时,学生可能难以将多个三角函数综合运用。
举例:在求解多边形内角和或复杂图形的面积时,如何运用多个三角函数知识进行求解。
(2)三角函数的计算公式:熟练掌握正弦、余弦、正切的计算公式,并能运用这些公式解决相关问题。
举例:如sin30°=1/2,cos45°=√2/2等特殊角的三角函数值,以及利用计算公式求解一般角度的三角函数值。
(3)三角函数的值域:了解正弦、余弦函数的值域,并能应用于实际问题。
举例:正弦、余弦函数的值域均为[-1,1],解释在实际问题中,如物体运动、波形图等,这些值域的意义。

北师大版九年级数学下册:第一章 1.3《三角函数的计算》精品教学设计

北师大版九年级数学下册:第一章 1.3《三角函数的计算》精品教学设计

北师大版九年级数学下册:第一章 1.3《三角函数的计算》精品教学设计一. 教材分析北师大版九年级数学下册第一章《三角函数的计算》的内容包括正弦、余弦、正切函数的定义,三角函数的图像和性质,以及三角函数在实际问题中的应用。

本节课的重点是让学生掌握三角函数的定义和计算方法,理解三角函数的图像和性质,能够运用三角函数解决实际问题。

二. 学情分析九年级的学生已经学习了初中阶段的代数和几何知识,对函数的概念和性质有一定的了解。

但是,三角函数作为一种新的函数类型,对学生来说还是相对陌生的。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握三角函数的概念和性质。

三. 教学目标1.了解三角函数的定义,掌握正弦、余弦、正切函数的计算方法。

2.理解三角函数的图像和性质,能够运用三角函数解决实际问题。

3.培养学生的逻辑思维能力和创新能力,提高学生的数学素养。

四. 教学重难点1.三角函数的定义和计算方法。

2.三角函数的图像和性质。

五. 教学方法1.情境教学法:通过实际问题引入三角函数的概念,让学生在解决问题的过程中理解和掌握三角函数的性质。

2.数形结合法:通过绘制三角函数的图像,让学生直观地理解三角函数的性质。

3.小组合作学习:引导学生分组讨论和探究,培养学生的团队合作能力和创新能力。

六. 教学准备1.教学课件:制作三角函数的图像和性质的课件,以便在课堂上进行展示和讲解。

2.练习题:准备一些有关三角函数计算和应用的练习题,以便在课堂上进行巩固和拓展。

七. 教学过程1.导入(5分钟)通过一个实际问题引入三角函数的概念,如在直角三角形中,边长为a、b、c的三角形的面积可以表示为S=1/2ab sinC,让学生思考sinC的定义和计算方法。

2.呈现(15分钟)讲解三角函数的定义,引导学生从已有的知识出发,理解三角函数的概念。

然后,通过绘制三角函数的图像,让学生直观地理解三角函数的性质。

3.操练(15分钟)让学生分组讨论和探究,运用三角函数的性质解决实际问题。

1.3 三角函数的计算(教案)-北师大版数九年级下册

1.3 三角函数的计算(教案)-北师大版数九年级下册

第3节三角函数的计算1.经历用计算器由已知锐角求三角函数值及由三角函数值求相应的锐角的过程,进一步体会三角函数的意义.2.能够运用计算器进行有关三角函数的计算.3.能够运用计算器辅助解决含三角函数计算的实际问题.1.借助计算器,解决含三角函数的实际问题,提高用现代工具解决实际问题的能力.2.发现实际问题中的边角关系,提高学生有条理地思考和表达的能力.1.通过积极参与数学活动,体会解决问题后的快乐.2.感悟计算器的计算功能和三角函数的应用价值.【重点】1.用计算器由已知锐角求三角函数值.2.能够用计算器辅助解决含三角函数计算的实际问题.【难点】用计算器辅助解决含三角函数计算的实际问题.【教师准备】多媒体课件.【学生准备】1.科学计算器.2.复习三角函数的计算方法.导入一:同学们小的时候都玩过跷跷板吧?如图所示,跷跷板AB的一端B碰到地面时,AB与地面的夹角为15°,且OA=OB=3m.你能求出此时另一端A离地面的高度吗?【问题】要求A离地面的高度,实际上就是求直角三角形的直角边,所以只要求出sin B的值即可,但是15°不是特殊角怎么办呢?可以使用计算器进行解决.[设计意图]用多媒体演示学生熟悉的现实生活中的问题,进而引出非特殊角的三角函数值,自然地引出本节课的课题.导入二:如图所示,已知一商场自动扶梯的长l为13m,高度h为5m,自动扶梯与地面所成的夹角为θ,你能求出夹角θ的度数吗?【教师活动】要求学生注意观察夹角θ,l,h三者之间的关系,确定夹角θ的三角函数.【学生活动】通过观察发现sinθ==,由于不是特殊角的三角函数值,尝试使用科学计算器求夹角θ的方法.[设计意图]通过对非特殊角的三角函数值的分析,让学生初步感知非特殊角的三角函数的计算方法——使用科学计算器,在引出课题的同时,又引导学生初步掌握了利用三角函数值求角度的方法.[过渡语]日常生活中我们经常会遇到含有角度的运算,并且有些角度并非我们上节课所学的30°,45°,60°角等特殊角,对于非特殊角我们如何求出它们的三角函数值呢?一、用计算器计算非特殊角的三角函数值课件出示:如图所示,当登山缆车的吊箱经过点A到达点B时,它走过了200m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?(结果精确到0.01m)教师引导学生回答:1.缆车垂直上升的距离是线段.2.本题的已知条件是,需要求出的条件是.3.这三个量之间的关系是.学生思考并反馈:1.缆车垂直上升的距离是线段BC.2.已知条件是∠α=16°,AB=200m,需要求出的是线段BC的长.3.这三个量之间的关系为sinα=.根据学生分析,师课件出示解题过程:解:在Rt△ABC中,∠α=16°,AB=200m,根据正弦的定义,得sin16°==,∴BC=AB sin16°=200·sin16°.想一想:200·sin16°中的“sin16°”是多少呢?我们需借助于科学计算器求出这个锐角的三角函数值,怎样用科学计算器求三角函数值呢?用科学计算器求三角函数值时,需要用到sin,cos键和tan键.【教师活动】例如,求sin16°,cos72°38'25″,tan85°的按键顺序如下表所示.(课件演示操作步骤)【学生活动】同学们用自己的计算器按上述按键顺序计算sin16°,cos72°38'25″,tan 85°.看显示的结果是否和表中显示的结果相同.【教师强调】1.不同的计算器按键方式可能不同,所以同学们可以利用自己所使用的计算器探索计算三角函数值的具体步骤,也可以和其他同学互相交流其他计算器计算三角函数值的方法.2.用计算器求三角函数值时,计算结果一般精确到万分位.【做一做】下面就请同学们利用计算器求出本节刚开始提出的问题.生得出:BC=200sin16°≈55.12(m).[设计意图]引导学生利用计算器求三角函数值的具体步骤,并注意在使用计算器求值的过程中出现的问题.[知识拓展]用计算器求三角函数值的按键顺序:第一步:按相应的三角函数键,即按下“sin,cos或tan”键;第二步:按下角度;第三步:按“=”键得到相应的三角函数值.【议一议】在本节一开始的问题中,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面的夹角为∠β=42°,由此你还能算出什么?【教师活动】留出时间和空间让学生思考问题如何解决,不要代替学生思考,进而培养学生的思维能力.【学生活动】生独立思考后,小组交流,代表发言:思路一缆车从A→B→D上升的垂直高度:在Rt△DBE中,∠β=42°,BD=200m,所以缆车上升的垂直高度DE=BD sin42°=200sin42°≈133.83(m),所以缆车从A→B→D上升的垂直高度为BC+DE≈55.12+133.83=188.95(m).思路二缆车从A→B→D移动的水平距离:在Rt△ABC中,∠α=16°,AB=200m,AC=AB cos16°≈192.25(m).在Rt△DBE中,∠β=42°,BD=200m,BE=BD·cos42°≈148.63(m).所以缆车从A→B→D水平移动的距离为AC+BE≈192.25+148.63=340.88(m).[设计意图]让学生学会从数学角度提出问题、分析问题,并能综合运用所学知识解决问题,发展学生的应用意识,让学生进一步体会在实际问题中用计算器求锐角三角函数值的过程.三、利用计算器根据三角函数值求锐角的度数[过渡语]同学们已经掌握了用计算器计算一个锐角的三角函数值.如果知道了一个角的三角函数值,那么我们如何运用计算器求出这个角度呢?道(如图所示).这条斜道的倾斜角是多少?【教师活动】由已知条件如何求出倾斜角∠A的度数?【学生活动】生思考后,展示:解:如图所示,在Rt△ABC中,BC=10m,AC=40m,∴sin A===.【议一议】我们知道,给定一个锐角的度数,这个锐角的三角函数值都唯一确定.给定一个锐角的三角函数值,这个锐角的大小也唯一确定吗?为什么?【教师总结】我们曾学习过两个直角三角形的判定定理——HL定理.在上图中,斜边AC和直角边BC是定值,根据HL定理可知这样的直角三角形形状和大小是唯一确定的,当然∠A的大小也是唯一确定的.【教师点拨】和第一部分探究活动一样,如果已知三角函数值我们同样可以利用计算器求角度.【师生活动】.已知三角函数值求角度,要用到sin,cos,tan键的第二功能“sin-1,cos-1,tan-1”和2ndf键.例如,已知sin A,cos B,tan C,.学生根据课本和说明书,自己探究计算器的操作方法:给学生充分交流的时间和空间,及时引导学生根据自己使用的计算器,探索具体操作步骤.学生按照教师展示的按键顺序,进行练习.【教师强调】1.显示结果是以“度”为单位的.再按°'″键即可显示以“度、分、秒”为单位的结果.2.,计算结果精确到1″即可.【做一做】你能求出上图中∠A的大小吗?【学生展示】sin A==0.25.按键顺序为:2ndf sin0·25=,sin-10.25=14.47751219,再按°'″键可显示14°28'39.04″,即∠A≈14°28'39″.[设计意图]相信学生完全可以通过自学、互助,求出锐角的度数,可由学生讲解调动其主动性,尤其让那些动手能力强的来做这项工作.然后再总结利用计算器由三角函数值求角度的按键顺序,让学生学会及时总结规律,为进一步的学习与应用做好基础.[知识拓展]用计算器根据三角函数值求角度的按键顺序:第一步:按2ndf键;第二步:,即按下“sin,cos或tan”键;第三步:按已知的三角函数值;第四步:;第五步:按°'″键即可显示以“度、分、秒”为单位的结果.1.运用计算器求锐角的三角函数值及根据三角函数值求角度的方法.2.运用三角函数解决实际问题的方法.1.四位学生用计算器求sin62°20'的值正确的是(小数点后保留四位)()A.0.8857B.0.8856C.0.8852D.0.8851解析:根据科学计算器给出的结果进行判断,sin62°20'≈0.8857.故选A.2.在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27°,此时旗杆在水平地面上的影子的长度为24m,则旗杆的高度约为()A.24mB.20mC.16mD.12m解析:如图所示,∵AB⊥BC,BC=24m,∠ACB=27°,∴AB=BC·tan27°,把BC=24,tan27°≈0.51代入,得AB≈24×0.51≈12(m).故选D.3.利用计算器求下列各角(精确到1').(1)sin A=0.75,求∠A;(2)cos B=0.8889,求∠B;(3)tan C=45.43,求∠C;解:(1)∵sin A=0.75,∴∠A≈48°35'.(2)∵cos B=0.8889,∴∠B≈27°16'.(3)∵tan C=45.43,∴∠C≈88°44'.4.有人说,数学家就是不用爬树或者把树砍倒就能够知道树高的人.小敏想知道校园内一棵大树的高,如图所示,她测得BC=10m,∠ACB=50°,请你帮助她算出树高AB约为多少米?(注:①树垂直于地面;②供选用数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)解:在Rt△ABC中,BC=10,∠ACB=50°,则AB=BC×tan50°≈12,即树高约为12m.3三角函数的计算1.用计算器求锐角的三角函数值2.用计算器根据三角函数值求锐角的度数一、教材作业【必做题】1.教材第14页随堂练习第1~4题.2.教材第15页习题1.4第1~3题.【选做题】教材第15页习题1.4第4,5,6题.二、课后作业【基础巩固】1.(2015·威海中考)如图所示,在△ABC中,∠ACB=90°,∠ABC=26°,BC=5,若用科学计算器求边AC的长,则下列按键顺序正确的是()2.用计算器求sin20°+tan54°33'的结果等于(结果精确到0.01)()A.2.25B.1.55C.1.73D.1.753.(2014·陕西中考)用科学计算器计算:+3tan56°≈.(结果精确到0.01)4.如图所示,为测量旗杆AB的高度,在与B距离为8m的C处测得旗杆顶端A的仰角为56°,那么旗杆的高度约是m(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)【能力提升】5.在Rt△ABC中,∠C=90°,BC∶AC=3∶4,运用计算器计算,则∠A的度数是(精确到1°)()A.30°B.37°C.38°D.39°6.(2015·南昌中考)如下左图所示的是小志同学书桌上的一个电子相框,将其侧面抽象为如下右图所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为cm.(参考数据:sin 20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器)7.用计算器求下列各式的值(结果精确到0.0001):(1)sin47°;(2)cos25°18';(3)tan44°59'59″.8.如图所示,在△ABC中,AB=8,AC=9,∠A=48°.求:(1)AB边上的高;(精确到0.01)(2)∠B的度数.(精确到1')9.如图所示,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0m,∠PAB=38.5°,∠PBA=26.5°.请帮助小张求出小桥PD的长并确定小桥在小道AB上的位置(以A,B为参照点,结果精确到0.1m).(参考数据:sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)【答案与解析】1.D(解析:由tan B=,得AC=BC·tan B=5×tan26°.故选D.)2.D(解析:sin20°+tan54°33'≈0.3420+1.4045=1.7465≈1.75.故选D.)3.10.02(解析:≈5.5678,tan56°≈1.4826,则+3tan56°≈5.5678+3×1.4826≈10.02.故填10.02.)4.12(解析:由题意知BC=8,∠C=56°,故AB=BC·tan56°≈8×1.483≈12(m).故填12.)5.B(解析:∵BC∶AC=3∶4,∴设BC=3x,则AC=4x,由勾股定理得AB=5x,∴sin A===0.6,运用科学计算器得∠A≈37°.故选B.)6.14.1(解析:如图所示,作BE⊥CD于E,∵BC=BD,∠CBD=40°,∴∠CBE=20°.在Rt△CBE中,cos∠CBE=,∴BE=BC·cos∠CBE≈15×0.940=14.1(cm).故填14.1.)7.解:(1)sin47°≈0.7314.(2)cos25°18'≈0.9041.(3)tan44°59'59″≈1.0000.8.解:(1)如图所示,过C作AB边上的垂线CH,垂足为H,∵在Rt△ACH中,sin A=,∴CH=AC·sin A=9sin 48°≈6.69.(2)∵在Rt△ACH中,cos A=,∴AH=AC·cos A=9cos48°,∴在Rt△BCH中,tan B===≈3.382,∴∠B≈73°32'.9.解:设PD=x,∵PD⊥AB,∴∠ADP=∠BDP=90°,在Rt△PAD中,tan∠PAD=,∴AD=≈=x,在Rt△PBD中,tan ∠PBD=,∴DB=≈=2x.又∵AB=80.0,∴x+2x=80.0,解得x≈24.6,即PD≈24.6m,∴DB≈2x=49.2(m).答:小桥PD的长度约为24.6m,小桥位于AB上距B点约49.2m处.本节是学习用计算器求三角函数值并加以实际应用的内容,通过本节的学习,使学生充分认识了三角函数知识在现实世界中有着广泛的应用.虽然本节课的知识点不是很多,但是学生通过积极参与课堂活动,提高了分析问题和解决问题的能力,并且在意志力、自信心和理性思维等方面得到了良好的发展.教学时把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度.对于新知的应用,由于学生缺乏经验和思考能力,容易产生困惑,所以教师要恰当地利用好信息技术,既有利于及时点拨和调控,又有利于学生的“直接体验”,增加学生空间想象能力以及解题能力,有利于学生突破难点、提高学习效率,更有助于减轻学生的压力,进而改善教学的效果.由于学生使用的科学计算器型号不统一,所以按键的顺序不一样,这样就给教学工作带来了麻烦,要分别给学生说明,耽误了一些时间,造成后面的教学环节处理得稍显紧张.第一,力争使用型号统一的科学计算器;第二,对于计算器的使用,再多给学生一些练习的时间,使学生对计算器的操作达到熟练的程度.随堂练习(教材第14页)1.(1)0.8290(2)0.9367(3)1.0000(4)4.75442.∠θ≈56°1″3.山高约242.8m.4.约为51°19'4″习题1.4(教材第15页)1.(1)0.6249(2)0.9097(3)0.8844(4)0.82912.(1)1.5087(2)-0.24323.(1)71°30'2″(2)23°18'35″(3)38°16'46″(4)41°53'54″4.解:如图所示,在Rt△ADB中,BD=AD tan45°=60×1=60(m).在Rt△ADC中,DC=AD tan37°≈60×0.7536≈45.22(m),∴BC=BD+DC≈105.2(m).答:大厦的高度约为105.2m.5.约2°51'58″6.甲、乙两地间的坡角为5°8'34″.本节课学生学习的重点是熟练掌握利用计算器求三角函数值和根据三角函数值求角度的操作步骤,在学习的过程中,一定要通过对计算器的实际操作,体会其操作步骤,并进行及时总结,力求做到熟练运用;在利用非特殊角的三角函数值解决实际问题时,要掌握分析问题的基本步骤和选用合适的三角函数求未知量的方法,锻炼综合分析问题的能力.(2014·荆门中考)钓鱼岛自古以来就是中国的领土.如图所示,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B 处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B 处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20n mile/h,18n mile/h,试估算哪艘船先赶到C处.(参考数据:cos59°≈0.52,cos44°≈0.72)〔解析〕过点C作CD⊥AB于点D,如图所示,由题意得∠ACD=59°,∠DCB=44°,设CD的长为a n mile,分别在Rt△ACD中和Rt△BCD中,用a表示出AC和BC,然后除以速度即可求得时间,比较即可确定答案.解:如图所示,过点C作CD⊥AB于点D,由题意得∠ACD=59°,∠DCB=44°.设CD的长为a n mile,∵在Rt△ACD中,cos∠ACD=,∴AC=≈≈1.92a.∵在Rt△BCD中,cos∠BCD=,∴BC=≈≈1.39a.∵其平均速度分别是20n mile/h,18n mile/h,∴1.92a÷20=0.096a,1.39a÷18≈0.077a.∵a>0,∴0.096a>0.077a,∴乙船先到达C处.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档