九年级数学三角函数全章知识点整理
【全】初中数学 三角函数知识点总结

锐角三角函数锐角三角函数锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边,余弦(cos)等于邻边比斜边正切(tan)等于对边比邻边;余切(cot)等于邻边比对边正割(sec)等于斜边比邻边余割(csc)等于斜边比对边正切与余切互为倒数互余角的三角函数间的关系。
sin(90°-α)=cosα, cos(90°-α)=sinα,tan(90°-α)=cotα, cot(90°-α)=tanα.同角三角函数间的关系平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)•积的关系:sinα=tanα•cosαcosα=cotα•sinαtanα=sinα•secαcotα=cosα•cscαsecα=tanα•cscαcscα=secα•cotα•倒数关系:tanα•cotα=1sinα•cscα=1cosα•secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,余切等于邻边比对边三角函数值(1)特殊角三角函数值(2)0°~90°的任意角的三角函数值,查三角函数表。
(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.特殊的三角函数值0° 30° 45° 60° 90°0 1/2 √2/2 √3/2 1 ←sinα1 √3/2 √2/2 1/2 0 ←cosα0 √3/3 1 √3 None ←tanαNone √3 1 √3/3 0 ←cotα解直角三角形勾股定理,只适用于直角三角形(外国叫“毕达哥拉斯定理”)a^2+b^2=c^2, 其中a和b分别为直角三角形两直角边,c为斜边。
九年级三角函数知识点整理

九年级三角函数知识点整理三角函数是数学中一个重要的概念,特别是在处理角度、弧度、三角形和圆等方面。
以下是九年级三角函数知识点整理:1. 锐角三角函数的定义:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin):等于对边比斜边,即sinA=a/c。
余弦(cos):等于邻边比斜边,即cosA=b/c。
正切(tan):等于对边比邻边,即tanA=a/b。
余切(cot):等于邻边比对边,即cotA=b/a。
正割(sec):等于斜边比邻边,即secA=c/b。
余割(csc):等于斜边比对边,即cscA=c/a。
2. 特殊角的三角函数值:对于一些特定的角度,三角函数有特定的值。
例如,当角度为30°、45°和60°时,正弦、余弦和正切的值分别是1/2、√2/2、√3/3等。
3. 互余角的关系:sin(π-α)=cosα,cos(π-α)=sinα,tan(π-α)=cotα,cot(π-α)=tanα。
4. 平方关系:sin^2(α)+cos^2(α)=1,tan^2(α)+1=sec^2(α),cot^2(α)+1=csc^2(α)。
5. 积的关系:sinα=tanα·cosα,cosα=cotα·sinα。
6. 诱导公式:对于角度的和差、倍角等运算,可以通过诱导公式简化计算。
例如,sin(A+B)和cos(A+B)可以通过诱导公式转化为sinAcosB+cosAsinB 和cosAcosB-sinAsinB。
7. 图像与性质:正弦、余弦和正切的图像是周期函数,具有对称性。
例如,正弦函数在y轴两侧对称,余弦函数在x轴上对称。
此外,三角函数的最大值和最小值以及对应的x值也是重要的知识点。
8. 应用:三角函数在日常生活和科学研究中有着广泛的应用。
例如,在测量、航海、工程、物理和数学等领域中,经常需要用到三角函数的知识。
九年级数学三角知识点归纳总结

九年级数学三角知识点归纳总结数学是一门基础性的学科,对于学生的思维能力和逻辑思维能力的培养有着重要的作用。
在九年级数学中,三角函数是一个重要的知识点。
它对于理解几何形状和解决问题具有重要的意义。
本文将对九年级数学中的三角知识点进行归纳总结,帮助同学们更好地理解和掌握这部分内容。
1. 正弦、余弦、正切正弦、余弦、正切是三角函数中最常见的三个函数。
在直角三角形中,对于一个锐角角度A,我们可以定义三角函数。
- 正弦函数:sin(A) = 对边/斜边- 余弦函数:cos(A) = 邻边/斜边- 正切函数:tan(A) = 对边/邻边这些函数可以表示角度和三角形边长之间的关系,帮助我们求解各种三角形问题。
在计算中,我们也经常用到它们的倒数函数:余切、余割、正割。
2. 弧度制与角度制角度可以用角度制和弧度制来表示。
在三角函数中,角度制的角度范围是0°到360°,而弧度制的角度范围是0到2π。
两者之间的换算关系是:角度 = 弧度× 180°/π。
在九年级的学习中,我们会经常遇到角度制和弧度制的转换问题。
因此,我们需要掌握这两种表示方法以及它们之间的关系。
3. 三角函数的基本性质三角函数有一些基本的性质,这些性质在解决问题中起到了重要的作用。
- 正弦函数的性质:在一个周期内,正弦函数是一个周期为360°(2π)的周期函数,其值域在[-1, 1]之间。
正弦函数的图像呈现出典型的波浪形。
- 余弦函数的性质:与正弦函数类似,余弦函数也是一个周期为360°(2π)的周期函数,其值域也在[-1, 1]之间。
余弦函数的图像也呈现出波浪形,但与正弦函数的图像相位相差90°。
- 正切函数的性质:正切函数是一个没有定义域的周期函数,在某些点上的值是无限大。
它的图像以45°(π/4)为中心,两侧呈现出分叉的形式。
正切函数的周期是180°(π)。
九年级数学三角函数定义及三角函数公式大全

三角函数是数学中的重要概念之一,它在几何、物理、工程等领域都有广泛的应用。
本文将介绍三角函数的定义、性质及常用公式,希望能够帮助九年级的同学们更好地理解和掌握三角函数。
一、三角函数的定义在直角三角形中,我们定义了三个基本三角函数:正弦、余弦和正切。
它们分别表示一个角的正弦值、余弦值和正切值。
角的正弦值等于对边与斜边的比值,余弦值等于邻边与斜边的比值,而正切值等于对边与邻边的比值。
二、三角函数的性质1.正弦函数的定义域是实数集,值域在[-1,1]之间;余弦函数的定义域是实数集,值域在[-1,1]之间;正切函数的定义域是所有不等于90度的实数集,值域是所有的实数。
2.正弦函数和余弦函数是周期函数,周期为360度或2π弧度;正切函数也是周期函数,周期为180度或π弧度。
3.正弦函数和余弦函数是奇函数,即满足f(-x)=-f(x);而正切函数是奇函数。
4.正弦函数是周期为2π的函数,图像是一条连续的正弦曲线;余弦函数也是周期为2π的函数,图像是一条连续的余弦曲线;正切函数的图像有水平渐进线,当角趋近于90度时,正切的值趋近于正无穷或负无穷。
1.三角函数的诱导公式正弦函数和余弦函数之间有一个重要的关系:sin(α ± β) =sinαcosβ ± cosαsinβ。
通过这一关系,我们可以推导出其他的三角函数公式,例如:- cos(α + β) = cosαcosβ - sinαsinβ- cos(α - β) = cosαcosβ + sinαsinβ- tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)等等。
2.三角函数的和差化积公式正弦函数和余弦函数的和差化积公式是:- sin(α + β) = sinαcosβ + cosαsinβ- sin(α - β) = sinαcosβ - cosαsinβ- cos(α + β) = cosαcosβ - sinαsinβ- cos(α - β) = cosαcosβ + sinαsinβ这些公式可以用于将一个角的三角函数表示为两个角的三角函数的乘积或差。
初三三角函数知识点归纳总结

初三三角函数知识点归纳总结
•三角函数基础知识:①三角函数的定义:三角函数是一类特殊的函数,可以通过一个角或一个角的弧度来描述。
②三角函数的公式:sinθ=opp/hyp;cosθ=adj/hyp;tanθ=opp/adj。
③三角函数的图形:三角函数的图形可以分为正弦图形和余弦图形。
•坐标变换:①极坐标系:极坐标系是一种坐标系,它由极点、极轴和极半径构成,用来表示曲线的位置。
②直角坐标系:直角坐标系是一种坐标系,它由原点、横坐标轴和纵坐标轴构成,用来表示点在空间中的位置。
•三角函数的性质:①正弦定理:sinα/a=sinβ/b=sinγ/c;②余弦定理:a^2=b^2+c^2-2bc*cosα;③正弦余弦定理:sinα/a=cosβ/b;④正切定理:tanα/a=tanβ/b;⑤正切余弦定理:tanα/a=cosβ/b;⑥正切正弦定理:tanα/a=sinβ/b。
九年级数学三角函数全章知识点整理

介绍:数学是一门重要的科学学科,其中的三角函数是数学学习中的重要内容之一、九年级数学的三角函数是高中数学的基础,掌握好这一章的知识点对于高中数学的学习是非常重要的。
下面将对九年级数学三角函数全章的知识点进行整理,以帮助同学们更好地掌握这一章的内容。
一、角的概念及角的度量:1.角的概念:角是由两条射线公共端点形成的图形。
2. 角的度量:常用的角度单位有度(°)和弧度(rad),其中360°=2π rad。
3.角的分类:按角的大小可以分为锐角、直角、钝角和平角。
4.角的度数转化:常用的度数转化公式有:弧度制转角度制:θ(度)=θ(弧度)×180°/π;角度制转弧度制:θ(弧度)=θ(度)×π/180°。
二、三角函数的定义及其关系:1. 弧度制中的三角函数:根据单位圆上点的坐标值定义三角函数。
正弦函数(sinθ)、余弦函数(cosθ)和正切函数(tanθ)。
2.角度制中的三角函数:将角度制下的三角函数定义转化为弧度制。
3.三角函数的关系:正切函数与正弦函数和余弦函数之间的关系,正切函数的定义域和值域等。
三、三角函数的图像:1.正弦函数的图像特点:周期为2π,函数值范围为[-1,1],在[0,2π]区间上是增函数。
2.余弦函数的图像特点:周期为2π,函数值范围为[-1,1],在[0,2π]区间上是减函数。
3.正切函数的图像特点:周期为π,函数值的定义域是除其奇数个π的整数倍点的集合,无界。
4.三角函数的平移和伸缩:对函数图像进行平移和伸缩操作。
四、基本三角函数的性质:1.三角函数的基本关系式:余弦函数与正弦函数、正切函数与余切函数的基本关系式。
2.三角函数的基本性质:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数,余切函数是奇函数。
3.三角函数的诱导公式:正弦函数与余弦函数之间的诱导公式。
五、三角函数的应用:1.三角函数的概念应用:角度的概念与问题的应用。
初三三角函数知识梳理

初三三角函数知识梳理三角函数是数学中一种重要的函数,它与三角形的各边以及角度之间的关系密切相关。
在初三阶段,学习三角函数是必不可少的内容之一。
下面将对初三三角函数的知识进行梳理,帮助大家系统地理解这一部分知识。
首先,我们来了解一下三角函数的基本概念。
在一个单位圆上,以圆心为原点,半径为1,任取一点P的坐标(x,y),则P点对应的角度为该点与x轴正方向的夹角θ。
根据三角函数的定义,我们可以得到三个基本的三角函数:正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)。
它们的定义如下:正弦函数:sinθ=y余弦函数:cosθ=x正切函数:tanθ=y/x接着,我们来了解一些与三角函数相关的重要公式和性质。
其中,最基本的公式就是勾股定理,即直角三角形中的两个直角边a、b和斜边c之间的关系:a²+b²=c²。
这个公式在解决三角形问题时经常用到。
此外,三角函数还有一些重要的性质需要注意。
其中,正弦函数和余弦函数的周期都为2π(或360°),即在每个周期内,它们的值会周期性地重复。
而正切函数的周期是π(或180°),即每个周期内正切函数的值会重复。
在应用三角函数解决问题时,我们通常会用到两个重要的角度:锐角和直角。
锐角是指介于0°和90°之间的角度,而直角则是指90°。
在解决三角函数问题时,我们需要了解不同角度对应的三角函数值,可以通过查表或用计算器来获取。
同时,我们也需要掌握如何利用已知角度的三角函数值求解其他未知角度的方法,例如利用反函数、特殊角的三角函数值等。
最后,我们需要了解如何应用三角函数来解决实际问题。
三角函数在几何、物理等领域中有广泛的应用。
例如,在解决三角形问题时,我们可以利用正弦定理、余弦定理、正切定理等来求解未知边长和角度。
在物理中,三角函数可以用来表示波动、振动等周期性的现象,例如用正弦函数来表示声音的波动、用余弦函数来表示机械振动等。
初三数学三角函数知识点整理

初三数学三角函数知识点整理
三角函数知识:
(一)基本概念:
1. 三角函数:三角函数是一类变化比较复杂的可以描述出来的函数,它们可以用来描述各种具有特殊的几何关系的函数关系。
2. 周期性特征:三角函数都具有周期性的特征,正弦函数的周期长度为2π,余弦、正切函数的周期有π。
3. 区间形态特征:三角函数的话,一个比较方便的办法是先分析函数图像的区间变化形态,分析一下函数的一般变化规律,进而猜测出变化规律。
(二)三角函数求值
1. 小角度求值法:小角度求值法是把角极限值和角转换为弧度来进行求解,这种方法的优点是可以把角的大小任意进行变量,从而实现任意角度的三角函数求值。
2. 单位圆三角等价:单位圆三角等价是把圆上的位置用三角函数来表示,其中圆心为(0,0),半径为1。
3. 唯一方程法:唯一方程法就是把三角函数问题变成一般代数方程来求解,这样就可以利用代数方法解决三角函数问题了。
(三)三角函数运算
1. 三角函数对数:三角函数对数可以得到两个三角函数的乘积,除法
或求幂的值。
2. 三角形关系:三角形关系是指把一个等腰三角形的一条边的长度按照给定的一定比例缩放得到另外两边的长度。
3. 余弦定理:余弦定理是指任意一个三角形的两边的长度乘积等于它的最短的三条边的三次方再乘以一个特别的常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中三角函数整理复习
二 特殊角的三角函数:sia 30\ cos45。
、tan60° 归纳结果
练习:求下列各式的值
(1) sia 30°+cos30°
(2) V2sia 45°-lcos30° ⑶ cosset +ta60Man30° 三•"籍角三角形主要依据
(1)勾股定理:a2+b2=C 2
(2)锐角之间的关系:zA+zB=90。
G)边角之间的关系:
4 ZA 的对边 sin A = —— -------- 斜边 厶的对边 tanA 二乙4的邻边
例题评析:
例1、在“ABC 中,zC 为直角,zA 、zB 、zC 所对的边分别为a 、b 、c , 且b 二血 二后,解这个三角形.
例2、在拦ABC 中,zC 为直角,zA. zB 、zC 所对的边分别为a 、b 、c ,且b= 20 Z^=35° ,解这个三角形(精确到0.1).
一 •三角函数定义。
siaA= ZA 的对边 斜边
f cosA= ZA 的邻边A _ZA 的对边 斜边' ZA 的邻边 cos A = ZA 的邻边
斜边
例3、在RtMBC中,a=104.0 , b二20.49 ,解这个三角形.
例4、在“ABC中,zC为直角,AC=6 , ZB4C的平分线AD二4巧,解此直角三
角形。
四•仰角、俯角
当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.
例1
如图(6-16),某飞机于空中A处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地平面控制点B的俯角c(二16。
31',求飞机A到控制点B距离(精确到1 米)
AC
解:在RfABC中sinB二乔
AC 1200
/. AB= = 0.2843 =4221(米)
答:飞机A到控制点B的距离约为4221米.
巩固练习:
1.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为,看这栋楼底部的俯角为60° ,热气球与高楼的水平距离为120m ,这栋高楼有多高(结果精确到
0.1m )
2如图6 J7某海岛上的观察所A发现海上某船只B并测得其俯角a二80。
141已知观察所A的标高(当水位为0m时的高度)为43.74m ,当时水位为+2.63m ,求观察所A到船只B的水平距离BC(精确到lm)
U 6-17
3如图6-19 ,已知A、B两点间的距离是160米,从A点看B点的仰角是11° , AC长为1.5米,求BD的高及水平距离CD .
例2 .如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处, 它
沿正南方向航行一段时间后,到达位于灯塔P的南东34"方向上的B处。
这时, 海轮所在的B处距离灯塔P有多远(精确到0.01海里)?
作业练习:
1.某一时刻,太线与地平面的夹角为78°,此时测得烟囱的影长为5米,求烟囱的高(精确到0.1米).
2 •在宽为30米的街道东西两旁各有一楼房,从东楼底望西楼顶仰角为45。
,从西楼顶望东楼顶,俯角为10。
,求西楼高(精确到0.1米).
例1、如图6-29 ,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m , 测得斜坡的倾斜角是24。
,求斜坡上相邻两树的坡面距离是多少(精确到0.1m).
将实际问题转化为数学问题画出图形(上图6-29(2)) •已知:RtMBC中上090° , AC 二5.5 , zA二24°,求AB.
答:斜坡上相邻两树间的坡面距离约是6.0米.
补充题:正午10点整,一渔轮在小岛0的北偏东30。
方向,距离等于10海里的A处,正以每小时10海里的速度向南偏东60°方向航行.那么渔轮到达小岛O的正向是什么时间?(精确到1分)•
补充题:如图6-32 ,海岛A的周围8海里有暗礁,鱼船跟踪鱼群由西向东航行, 在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A 位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?
用三角函数等知识解决问题.
利用解直角三角形的知识解决实际问题的一般过程是:
(1) 将实际问题抽象为数学问题(画岀平面图形,转化为解直角三角形的问题);
(2) 根据条件的特点,适当选用锐角三角函数等去解直角三角形;
(3) 得到数学问题的答案;
(4 )得到实际问题的答案。
五、坡度与坡角
图6-34 ,坡面的铅直高度h和水平宽度/的比叫做坡度(或叫做坡比),—般h_
用i表示。
即i二「
把坡面与水平面的夹角a叫做坡角•
练习:(1)—段坡面的坡角为60°,则坡度i二_____ : ______ 坡角& ______ 度.。