初三数学三角函数
中考数学考试知识点分析:三角函数

中考数学考试知识点分析:三角函数中考数学考试知识点分析:三角函数以下是小编带来的中考数学考试知识点分析:三角函数,欢迎阅读。
锐角三角函数定义锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin)等于对边比斜边;sinA=a/c余弦(cos)等于邻边比斜边;cosA=b/c正切(tan)等于对边比邻边;tanA=a/b余切(cot)等于邻边比对边;cotA=b/a正割(sec)等于斜边比邻边;secA=c/b余割(csc)等于斜边比对边。
cscA=c/a互余角的三角函数间的关系sin(90°-α)=cosα, cos(90°-α)=sinα,tan(90°-α)=cotα, cot(90°-α)=tanα.平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)积的关系:sinα=tanα·cosαcosα=cotα·sinαtanα=sinα·secαcotα=cosα·cscαsecα=tanα·cscαcscα=secα·cotα倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1锐角三角函数公式两角和与差的三角函数:sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinB ?cos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)三角和的'三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]ta nα=2tan(α/2)/[1-tan^2(α/2)]积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]推导公式:tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+c os[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0函数名正弦余弦正切余切正割余割在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为θ,设OP=r,P点的坐标为(x,y)有正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y正弦(sin):角α的对边比上斜边余弦(cos):角α的邻边比上斜边正切(tan):角α的对边比上邻边余切(cot):角α的邻边比上对边正割(sec):角α的斜边比上邻边余割(csc):角α的斜边比上对边三角函数万能公式万能公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC万能公式为:设tan(A/2)=tsinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k∈Z)就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.三角函数关系倒数关系tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系sin^2(α)+cos^2(α)=11+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
九年级三角函数知识点整理

九年级三角函数知识点整理三角函数是数学中一个重要的概念,特别是在处理角度、弧度、三角形和圆等方面。
以下是九年级三角函数知识点整理:1. 锐角三角函数的定义:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin):等于对边比斜边,即sinA=a/c。
余弦(cos):等于邻边比斜边,即cosA=b/c。
正切(tan):等于对边比邻边,即tanA=a/b。
余切(cot):等于邻边比对边,即cotA=b/a。
正割(sec):等于斜边比邻边,即secA=c/b。
余割(csc):等于斜边比对边,即cscA=c/a。
2. 特殊角的三角函数值:对于一些特定的角度,三角函数有特定的值。
例如,当角度为30°、45°和60°时,正弦、余弦和正切的值分别是1/2、√2/2、√3/3等。
3. 互余角的关系:sin(π-α)=cosα,cos(π-α)=sinα,tan(π-α)=cotα,cot(π-α)=tanα。
4. 平方关系:sin^2(α)+cos^2(α)=1,tan^2(α)+1=sec^2(α),cot^2(α)+1=csc^2(α)。
5. 积的关系:sinα=tanα·cosα,cosα=cotα·sinα。
6. 诱导公式:对于角度的和差、倍角等运算,可以通过诱导公式简化计算。
例如,sin(A+B)和cos(A+B)可以通过诱导公式转化为sinAcosB+cosAsinB 和cosAcosB-sinAsinB。
7. 图像与性质:正弦、余弦和正切的图像是周期函数,具有对称性。
例如,正弦函数在y轴两侧对称,余弦函数在x轴上对称。
此外,三角函数的最大值和最小值以及对应的x值也是重要的知识点。
8. 应用:三角函数在日常生活和科学研究中有着广泛的应用。
例如,在测量、航海、工程、物理和数学等领域中,经常需要用到三角函数的知识。
中考数学三角函数公式汇总与解析

中考数学三角函数公式汇总与解析1.锐角三角函数锐角三角函数定义:锐角角A的正弦(si n),余弦(c o s)和正切(t a n),余切(c o t)以及正割(se c),余割(c sc)都叫做角A的锐角三角函数。
正弦(si n):对边比斜边,即si n A=a/c余弦(c o s):邻边比斜边,即c o sA=b/c正切(t a n):对边比邻边,即t a n A=a/b余切(c o t):邻边比对边,即c o t A=b/a正割(se c):斜边比邻边,即se c A=c/b余割(c sc):斜边比对边,即c s c A=c/a2.3.互余角的关系s i n(π-α)=c o sα,c o s(π-α)=si nα,t a n(π-α)=c o tα,c o t(π-α)=t a nα.4.平方关系sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)5.积的关系s i nα=t a nα·c o sαc o sα=c o tα·si nαt a nα=si nα·se cαc o tα=c o sα·c s cαs e cα=t a nα·c scαc s cα=se cα·c o tα6.倒数关系t a nα·c o tα=1s i nα·c scα=1c o sα·se cα=17.诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:s i n(2kπ+α)=si nαk∈zc o s(2kπ+α)=c o sαk∈zt a n(2kπ+α)=t a nαk∈zc o t(2kπ+α)=c o tαk∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:s i n(π+α)=-si nαc o s(π+α)=-c o sαt a n(π+α)=t a nα8.两角和差公式(1)si n(A+B)=si n A c o sB+c o sA si n B(2)si n(A-B)=si n A c o s B-si n B c o sA(3)c o s(A+B)=c o sA c o sB-si n A si n B(4)c o s(A-B)=c o sA c o sB+si n A si n B(5)t a n(A+B)=(t a n A+t a n B)/(1-t a n A t a n B)(6)t a n(A-B)=(t a n A-t a n B)/(1+t a n A t a n B)(7)c o t(A+B)=(c o t A c o t B-1)/(c o t B+c o t A)(8)c o t(A-B)=(c o t A c o t B+1)/(c o t B-c o t A)除了以上常考的三角函数公式外,掌握下面半角公式,积化和差和万能公式有利于快速解决选择题,达到事半功倍的效果哦!1.半角公式注:正负由α/2所在的象限决定。
初中数学三角函数公式

初中数学三角函数公式三角函数是数学中重要的一部分,它在几何、物理等领域有广泛的应用。
在初中数学中,我们主要学习正弦函数、余弦函数和正切函数,以及它们之间的关系。
本文将详细介绍这些三角函数的定义、性质和常用公式。
一、正弦函数正弦函数是最基本的三角函数之一,它反映了角度和边长之间的关系。
定义:设角A的终边与单位圆交于点P(x,y),则角A的正弦值sinA定义为点P的纵坐标y。
即sinA=y。
性质:1. sin(90°)=1,即sinA的最大值为1;2. sin(-A)=-sinA,即正弦函数具有奇对称性;3. sin(180°+A)=-sinA,即正弦函数具有周期性。
常用公式:1. 三角恒等式:sin(A±B)=sinAcosB±cosAsinB;2. 万能公式:sin2A=2sinAcosA;3. 正弦的平方:sin²A+cos²A=1二、余弦函数余弦函数与正弦函数相似,也是描述角度和边长之间关系的函数。
定义:设角A的终边与单位圆交于点P(x,y),则角A的余弦值cosA定义为点P的横坐标x。
即cosA=x。
性质:1. cos(0°)=1,即cosA的最大值为1;2. cos(-A)=cosA,即余弦函数具有偶对称性;3. cos(180°+A)=-cosA,即余弦函数具有周期性。
常用公式:1. 三角恒等式:cos(A±B)=cosAcosB∓sinAsinB;2. 万能公式:cos2A=cos²A-sin²A;3. 余弦的平方:sin²A+cos²A=1三、正切函数正切函数是正弦函数和余弦函数的比值,它在三角函数中也是重要的一员。
定义:设角A的终边与单位圆交于点P(x,y),且x≠0,则角A的正切值tanA定义为y/x。
即tanA=y/x。
性质:1. tan(0°)=0,即tanA的最小值为0;2. tan(-A)=-tanA,即正切函数具有奇对称性;3. tan(180°+A)=tanA,即正切函数具有周期性。
初三三角函数知识点归纳总结

初三三角函数知识点归纳总结
•三角函数基础知识:①三角函数的定义:三角函数是一类特殊的函数,可以通过一个角或一个角的弧度来描述。
②三角函数的公式:sinθ=opp/hyp;cosθ=adj/hyp;tanθ=opp/adj。
③三角函数的图形:三角函数的图形可以分为正弦图形和余弦图形。
•坐标变换:①极坐标系:极坐标系是一种坐标系,它由极点、极轴和极半径构成,用来表示曲线的位置。
②直角坐标系:直角坐标系是一种坐标系,它由原点、横坐标轴和纵坐标轴构成,用来表示点在空间中的位置。
•三角函数的性质:①正弦定理:sinα/a=sinβ/b=sinγ/c;②余弦定理:a^2=b^2+c^2-2bc*cosα;③正弦余弦定理:sinα/a=cosβ/b;④正切定理:tanα/a=tanβ/b;⑤正切余弦定理:tanα/a=cosβ/b;⑥正切正弦定理:tanα/a=sinβ/b。
九年级数学:三角函数定义及三角函数公式大全(1)

斜边 cba a 2 +b 2 =c 2三角函数定义及三角函数公式大全一:初中三角函数公式及其定理1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在 Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成 ∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余B角的正弦值。
由∠A + ∠B = 90︒得∠B = 90︒ - ∠AAC邻边4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余 角的正切值。
由∠A + ∠B = 90︒得∠B = 90︒ - ∠A5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)sin A = cos Bcos A = sin Bsin A = cos(90︒ - A ) cos A = sin(90︒ - A ) tan A = cot B cot A = tan Btan A = cot(90︒ - A )cot A = tan(90︒ - A )对边sin α 0 1 22 23 21 cos α 1 32 2 21 20 tan α 03 313 - cot α-313 3当 0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性:当 0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知 的边和角。
依据:①边的关系: a 2 + b 2 = c 2 ;②角的关系:A+B=90°;③边角关系: 三角函数的定义。
(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
九年级三角函数公式大全

九年级三角函数公式大全1二倍角公式正弦形式:sin2α=2sinαcosα正切形式:tan2α=2tanα/(1-tan^2(α))余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)2、三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)3、四倍角公式sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)2半角公式1、正弦sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)2、余弦cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)3、正切tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))3积化和差sina*cosb=[sin(a+b)+sin(a-b)]/2 cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=[cos(a-b)-cos(a+b)]/24和差化积sina+sinb=2sin[(a+b)/2]cos[(a-b)/2] sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]5诱导公式1、任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα3、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαtan(π-α)=-tanαcot(π-α)=-cotα4、设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)5、利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα6、π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα。
初三数学三角函数值计算公式推导详解

初三数学三角函数值计算公式推导详解三角函数是数学中的重要概念,它在解决各种几何、物理问题中起到至关重要的作用。
在初三数学学习中,我们需要掌握三角函数的计算公式,能够熟练地计算各种角度的三角函数值。
本文将详解三角函数值计算公式的推导过程,帮助初三学生更好地理解和掌握这个知识点。
1. 正弦函数的计算公式推导正弦函数是三角函数中的一种,它的计算公式是:sinθ = 对边/斜边。
我们先来看一个直角三角形ABC,其中∠C为直角,AB为斜边,BC为对边,AC为邻边。
根据勾股定理可知,斜边AB的长度为√(BC²+AC²)。
设∠BAC的度数为θ,则根据正弦函数的定义,我们可以得到:sinθ = BC/AB (1)将AB用勾股定理的结果代入(1)式,可得:sinθ = BC/√(BC²+AC²) (2)由于∠C为直角三角形,我们可以利用三角恒等式sin²θ + cos²θ = 1将上述式子进行变换:sinθ = BC/AB = BC/√(BC²+AC²) = √(1 - cos²θ) (3)由此,我们推导出了正弦函数的计算公式sinθ = √(1 - cos²θ)。
2. 余弦函数的计算公式推导余弦函数是三角函数中的另一种,它的计算公式是:cosθ = 邻边/斜边。
继续以直角三角形ABC为例,根据勾股定理可知,斜边AB的长度为√(BC²+AC²)。
根据余弦函数的定义,我们可以得到:cosθ = AC/AB (4)将AB用勾股定理的结果代入(4)式,可得:cosθ = AC/√(BC²+AC²) (5)由于∠C为直角三角形,我们可以利用三角恒等式sin²θ + cos²θ = 1将上述式子进行变换:cosθ = AC/AB = AC/√(BC²+AC²) = √(1 - sin²θ) (6)由此,我们推导出了余弦函数的计算公式cosθ = √(1 - sin²θ)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学三角函数
初三数学中,三角函数是一个重要的概念。
以下是初三数学中涉及到的一些三角函数的基本内容:
1.正弦函数(sine
function):用sin表示,表示一个角的对边与斜边的比值。
在直角三角形中,sinθ = 对边 / 斜边。
2.余弦函数(cosine
function):用cos表示,表示一个角的邻边与斜边的比值。
在直角三角形中,cosθ = 邻边 / 斜边。
3.正切函数(tangent
function):用tan表示,表示一个角的对边与邻边的比值。
在直角三角形中,tanθ = 对边 / 邻边。
4.正割函数(secant
function):用sec表示,表示一个角的斜边与邻边的比值。
在直角三角形中,secθ = 斜边 / 邻边。
5.余割函数(cosecant
function):用csc表示,表示一个角的斜边与对边的比值。
在直角三角形中,cscθ = 斜边 / 对边。
6.切割函数(cotangent
function):用cot表示,表示一个角的邻边与对边的比值。
在直角三角形中,cotθ = 邻边 / 对边。
初三数学中,学生通常会学习三角函数的定义、性质、基本关系和应用等方面的知识。
这些知识对于理解几何图形、求解三角形问题以及日后学习高中数学和物理等学科都具有重要作用。