(完整版)九年级数学下学期三角函数练习题
(完整版)九年级数学下锐角三角函数练习题

九年级数学下 锐角三角函数练习题一、选择题1.下列计算错误的是( )A .sin60sin30sin30︒-︒=︒ B .22sin 45cos 451︒+︒=C .sin 60cos60cos60︒︒=︒ D .cos30cos30sin 30︒︒=︒AD ECBF2、一人乘雪橇沿如上图1所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式 为210S t t =+,若滑到坡底的时间为2秒,则此人下滑的高度为( ) A.24米B.12米C.123米D.6米3.如上图2,在ABC ∆中30A ∠=︒,3tan 2B =, 23AC =,则AB 的长是( ) A .33+ B .223+ C .5 D .924.如上图3,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( ) A.34B.43C.35D.455、三角形在正方形网格纸中的位置如上图4所示,则sin α的值是( )A.34B.43 C.35D.456.如右图5,在直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在1A 处,已知3OA =,1AB =,则点1A 的坐标是( )A.3322⎛⎫ ⎪⎪⎝⎭, B.332⎛⎫⎪ ⎪⎝⎭,C.3322⎛⎫⎪ ⎪⎝⎭,D.1322⎛⎫⎪ ⎪⎝⎭,7.已知正三角形ABC ,一边上的中线长为a ,则此三角形的边长为( )A . 23aB .233a C .3a D . 33a α图4图58. 点()sin60,cos60M -︒︒关于x 轴对称的点的坐标是( ) A . 31,22⎛⎫ ⎪⎪⎝⎭ B . 31,22⎛⎫-- ⎪ ⎪⎝⎭ C .31,22⎛⎫- ⎪ ⎪⎝⎭ D . 13,22⎛⎫- ⎪ ⎪⎝⎭9.在ABC ∆中,A ∠、B ∠都是锐角,且1sin 2A =,3cos 2B =,则ABC ∆的形状是 ( ) A .直角三角形 B .钝角三角形 C .锐角三角形 D .不能确定 10.如图6,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5DBA ∠= ,则AD 的长为( )A .2B .2C .1D .22 二、填空题11.如图7,在坡度为1﹕2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是________米.12.如图8,Rt ABC ∆中,90C ∠=︒,D 是直角边AC 上的点,且2AD DB a ==,15A ∠=︒ ,则BC 边的长为 .13.如图9,在ABC ∆中,90C ∠=,2BC =,1sin 3A =, 则AB =______..14.如图10,在矩形ABCD 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若4tan 3AEH ∠=,四边形EFGH 的周长为40,则矩形ABCD 的面积为 ______.图7图9图8图6图10图11图1215.如图11所示,在高2米、坡角为30︒的楼梯表面铺地毯,地毯的长度至少需______米.(3 1.732≈,精确到0.1米)16.如图12所示,ABC ∆中,AB AC =,BD AC ⊥于D ,6BC =,12DC AD =,则cos C =____. 17.某山路的路面坡度1i =︰399,沿此山路向上前进了200m ,升高了______m . 18.等腰三角形的顶角是120︒,底边上的高为30,则三角形的周长是______.19.某人沿着山脚到山顶共走了1000m ,他上升的高度为500m ,这个山坡的坡度i 为____. 三、解答题 20.计算:(1)22sin30cos60tan 60tan30cos 45+-⋅+︒. (2)22sin 45cos30tan 45+-21.如图所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31︒的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45︒的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31°≈53,sin31°≈21)22.在一次公路改造的工作中,工程计划由A 点出发沿正西方向进行,在A点的南偏西60︒方向上有一所学校B,如图14 ,占地是以B为中心方圆100m的圆形,当工程进行了200m后到达C处,此时B在C南偏西30︒的方向上,请根据题中所提供的信息计算并分析一下,工程若继续进行下去是否会穿越学校.23.如图15,在某建筑物AC上,挂着宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为︒60,求宣传条幅BC 30,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为︒的长,(小明的身高不计,结果精确到0。
人教版初3数学9年级下册 第28章(锐角三角函数)正切函数专题练习(含答案)

人教版九年级数学下册第二十八章锐角三角函数之正切函数专题练习一、选择题1.如图,第一象限的点P的坐标是(a,b),则tan ∠POx等于( )A.abB.baC.aa2+b2D.ba2+b22.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=2,则t的值是( )A. 1B. 1.5C. 2D. 33.在直角坐标系xOy中,点P(4,y)在第四象限内,且OP与x轴正半轴的夹角的正切值是2,则y 的值是( )A. 2B. 8C.-2D.-84.正比例函数y=kx的图象经过点(3,2),则它与x轴所夹锐角的正切值是( )A.23B.32C.132D.1335.根据图中的信息,经过估算,下列数值与tanα值最接近的是( )A. 0.26B. 0.43C. 0.90D. 2.236.如图,在2×3的正方形网格中,tan ∠ACB的值为( )A.223B.2105C.12D. 27.如图,四个边长为1的小正方形拼成一个大正方形,A、B、O是小正方形顶点,⊙O的半径为1,P是⊙O上的点,且位于右上方的小正方形内,则tan ∠APB等于( )A. 1B.3C.33D.128.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tan B′的值为( )A.12B.13C.14D.249.在Rt△ABC中,∠C=90°,若AB=2,AC=1,则tan A的值为( )A.12B.32C.33D.310.如图,E在矩形ABCD的边CD上,AB=2BC,则tan ∠CBE+tan ∠DAE的值是( )A. 2B. 2+3C. 2-3D. 2+2311.在Rt△ABC中,∠A=90°,如果把这个直角三角形的各边长都扩大2倍,那么所得到的直角三角形中,∠B的正切值( )A.扩大2倍B.缩小2倍C.扩大4倍D.大小不变12.比较tan 20°,tan 50°,tan 70°的大小,下列不等式正确的是( )A. tan 70°<tan 50°<tan 20°B. tan 50°<tan 20°<tan 70°C. tan 20°<tan 50°<tan 70°D. tan 20°<tan 70°<tan 50°二、填空题13.如图,P(12,a)在反比例函数y=60图象上,PH⊥x轴于H,则tan ∠POH的值为__________.x14.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果2b=3a,则tan A=__________.15.在一个直角三角形中,如果各边的长度都扩大4倍,那么它的两个锐角的正切值__________.16.已知∠B是△ABC中最小的内角,则tan B的取值范围是____________.17.比较大小:tan 50°________tan 48°.三、解答题18.如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.求tan ∠BOA的值.19.如图,在△ABC中,AB=8,BC=6,S△ABC=12.试求tan B的值.答案解析1.【答案】B【解析】如图因为第一象限的点P的坐标是(a,b),所以tan ∠POx=ba.故选B.2.【答案】B【解析】如图,tanα=ABOB =2,即3t=2,解得t=1.5.故选B.3.【答案】D【解析】如图,∵点P(4,y)在第四象限内,∴OA=4,PA=-y又OP与x轴正半轴的夹角的正切值是2,∴tan ∠AOP=2,∴PAOA=2,∴-y=2×4,∴y=-8.故选D.4.【答案】A【解析】如图,过A作AB⊥x轴于B,∵A(3,2),∴AB=2,OB=3,∵正比例函数y=kx的图象经过点(3,2),∴它与x轴所夹锐角的正切值是tan ∠AOB=ABOB =23,故选A.5.【答案】B【解析】如图,AB≈2.6,OB=6,tanα=ABOB ≈2.66≈0.43.故选B.6.【答案】D【解析】如图,过A作AD⊥BC于D,设每个小正方形边长为1,在Rt△ACD中,AD=2,CD=1,则tan ∠ACB=ADCD=2,故选D.7.【答案】A【解析】∵A、B、O是小正方形顶点,∴∠AOB=90°,∴∠APB=12∠AOB=45°,∴tan ∠APB=1.故选A.8.【答案】B【解析】设每个小正方形边长为1,过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,CD=1,BD=3,故tan B=CDBD =13,则tan B′=tan B=13.故选B.9.【答案】D【解析】∵AB=2,AC=1,∴CB=22−12=3,∴tan A=BCAC=3,故选D.10.【答案】【解析】∵四边形ABCD是矩形,∴tan ∠CBE=CEBC ,tan ∠DAE=DEAD,∵AD=BC,CE+DE=CD=AB=2AD,∴tan ∠CBE+tan ∠DAE=CEBC +DEAD=CDAD=2ADAD=2.故选A.11.【答案】D【解析】把这个直角三角形的各边长都扩大2倍,那么所得到的直角三角形与原来的三角形相似,则∠B的大小不变,则∠B的正切值不变.故选D.12.【答案】C【解析】由锐角的正切值随角增大而增大,得tan 20°<tan 50°<tan 70°,故C符合题意,故选C.13.【答案】512【解析】∵P(12,a)在反比例函数y=60x图象上,∴a=6012=5,∵PH⊥x轴于H,∴PH=5,OH=12,∴tan ∠POH=512.14.【答案】23【解析】∵∠C=90°,a,b,c分别是∠A,∠B,∠C对边,∴tan A=ab,∵2b=3a,∴a b =23,∴tan A =a b =23.15.【答案】不变【解析】∵锐角的正切值是该角的对边与邻边的比,∴当各边都扩大为原来的4倍时,比值不变.16.【答案】0<tan B ≤3【解析】根据三角形的内角和定理,易知三角形的最小内角不大于60°.根据题意,知:0°<∠B ≤60°.又tan 60°=3,故0<tan B ≤3.17.【答案】>【解析】根据锐角三角函数的增减性:正切值随着角度的增大(或减小)而增大(或减小),∵50°>48°,∴tan 50°>tan 48°.18.【答案】解 tan ∠BOA =AB OA =24=12.【解析】19.【答案】解 如图,过点A 作AD ⊥BC 的延长线于D ,S △ABC =12BC ·AD =12×6×AD =12,解得AD =4,在Rt △ABD 中,BD =AB 2−AD 2=82−42=43,tan B =AD BD =443=33.【解析】过点A作AD⊥BC的延长线于D,利用三角形的面积求出AD,再利用勾股定理列式求出BD,然后根据锐角的正切值等于对边比邻边列式计算即可得解.。
初三数学三角函数(含答案)

则电线杆的高度为 ( A.9 米 B.28 米
)
C. 7 3米
D. 14 2 3 米
19、如图 6,两建筑物的水平距离为 am,从 A 点测得 D 点的俯角为 a,测得 C 点的
俯角为β,则较低建筑物 CD 的高为 ( )
A.a m
B.(a·tanα)m
C. a m tan
D.a(tanα-tanβ)m
24、已知 Rt△ABC 的斜边 AB 的长为 10cm , sinA、sinB 是方程 m(x2-2x)+5(x2+x)+12=0 的两根。 (1)求 m 的值 (2)求 Rt△ABC 的内切圆的面积
25、如图,△ABC 是等腰三角形,∠ACB=90°,过 BC 的中点 D 作 DE⊥AB,垂足为 E,连结 CE,求 sin∠ACE 的值.
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的 边和角。
依据:①边的关系: a2 b2 c2 ;②角的关系:A+B=90°;③边角关系:三角函
数的定义。(注意:尽量避免使用中间数据和除法)
2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
铅垂线
视线
A.(cosα,1)
B.(1,sinα) C.(sinα,cosα)
D.(cosα,sinα)
14、如图 4,在△ABC 中,∠C=90°,AC=8cm,AB 的垂直平分线 MN 交 AC 于 D,
连结 BD,若 cos∠BDC= 3 ,则 BC 的长是(
5
A、4cm
B、6cm C、8cm
) D、10cm
tan A cotB cot A tanB tan A 1 (倒数)
(word完整版)九年级数学下学期三角函数练习题

九年级数学下学期三角函数测试卷班级: 姓名: 座号: 成绩:一、选择题1.在Rt △ABC 中,∠C=90°,BC = 1,AB = 4 , 则sinA 的值是 A .1515 B .41 C .31 D .4152.当锐角α>30°时,则cosα的值是 A .大于12 B .小于12C 3D 33.如图,沿AC 方向开山修路,为了加快施工进度,要在山的另一边同时施工,现在从AC 上取一点B ,使得∠ABD =145°,BD =500米,∠D =55°,要使A 、C 、E 在一条直线上,那么开挖点E 离点D 的距离是A .500sin55°米B .500cos55°米C .500tan55°米;D .o55tan 500米4. 如图1,在Rt △ABC 中,ACB ∠90=o,CD ⊥AB 于D ,若3BC =,4AC =,则tan BCD ∠的值为 ( )A.34 B.43 C.35 D.455. 在△ABC 中,90C ∠=o,2B A ∠=∠,则cos A 等于()A.32B.123D.336. 如图2所示,旗杆AB 在C 处测得旗杆顶的仰角为30o, 向旗杆前进12m 到达D ,在D 处测得A 仰角为45o, 则旗杆的高AB 等于( )m . A.12 B.14C.16D.187. 在△ABC 中,90C ∠=o,12sin 13A =,周长为45,CD 是斜边AB 上的高,则CD 的长是( ) A.5613B.12613C.7613D.17128.△ABC 中,∠A ,∠B 均为锐角,且有2|tan 32sin 30B A +=(),则△ABC 是( )A .直角(不等腰)三角形B .等腰直角三角形C .等腰(不等边)三角形D .等边三角形ACDB图1ACDB图2CE二、填空题:(每小题3分,共30分)1. 如图3,将三角板的直角顶点放置在直线AB 上的点O 处,使斜边CD AB ∥.则α∠的余弦值为 2.已知:∠α是锐角,︒=36cos sin α,则α的度数是 。
初三下学期三角函数练习题

初三下学期三角函数练习题下面是一份关于初三下学期三角函数练习题的内容:在初三下学期的数学课程中,三角函数是一个重要的知识点。
为了帮助同学们更好地掌握三角函数的概念和运用,以下是一些练习题供大家练习。
1. 计算下列角的弧度值,并判断它们的象限:a) 60°b) -45°c) 180°2. 根据以下角的弧度值和象限,求其对应的角度:a) π/6,第一象限b) -π/4,第四象限c) 3π/2,第三象限3. 求下列角的正弦、余弦和正切值:a) 30°b) 45°c) 60°4. 如果sin(x) = 1/2,求角x的值,并判断它位于哪个象限?5. 求下列方程在指定范围内的解:a) sin(x) = 0,0° ≤ x ≤ 360°b) cos(x) = -1/2,0° ≤ x ≤ 360°6. 求下列方程的解:a) 2sin(x) - 1 = 0,0° ≤ x ≤ 360°b) cos(2x) = sin(x),0° ≤ x ≤ 360°7. 根据已知三角函数值的关系,求下列三角函数的值:a) sin(π - x)b) cos(π/2 - x)c) tan(π + x)以上是一些关于三角函数的练习题,通过解答这些题目可以帮助同学们巩固对三角函数的理解和运用。
希望大家能够认真完成这些练习,并在解答过程中发现和解决问题。
三角函数是数学中的一个重要概念,在实际生活中也有广泛的应用。
它不仅为几何和物理等学科提供了基础,还在工程、建筑、天文学等领域中扮演着重要角色。
因此,掌握好三角函数的知识对于同学们未来的学习和发展都至关重要。
希望以上的练习题能够帮助同学们加深对三角函数的理解和熟练应用。
如果在解答过程中遇到困难,可以向老师或同学寻求帮助。
多做练习,不断巩固和提升自己的数学水平。
苏科版九年级数学下册 7.3 特殊角的三角函数试题 (含答案详解)

7.3 特殊角的三角函数一.单选题1.点关于轴对称的点的坐标是 A .,B .,C .,D .,2.已知在中,,的值为 A .BCD3.当300≤a ≤600时,以下结论正确的是 【提示:】A .12<sin a≤32B .12<cos a ≤32C .33≤tan a ≤3 D .33≤cot a≤34.在中,,,,则的度数为 A .B .C.D .5.为锐角,当无意义时,的值为 A B C D 6.若菱形的两邻角之比为,那么此菱形的较短对角线与较长对角线之比为 A .B.C .D .7.因为,,所以;由此猜想、推理知:当为锐角时有,由此可知: A .B .C .D .8.如果三角形满足一个角是另一个角的4倍,那么我们称这个三角形为“实验三角形”,下列各组数据中,能作为一个“实验三角形”三边长的一组是 A .1,1B .1,1C .1,2D .1,2,39.某限高曲臂道路闸口如图所示,垂直地面于点,与水平线的夹角为,,若米,米,车辆的高度为(单位:米),不考虑闸口(sin 60,cos60)-︒︒y ()12(12(12-1(2-3)2-Rt ABC ∆90C ∠=︒sin B =cos A ()12()1cot tan αα=Rt ABC ∆4AB =AC =90C ∠=︒A ∠()30︒40︒45︒60︒α11tan α-sin(15)cos(15)αα+︒+-︒()1:2()1:21:321cos602︒=1cos 2402︒=-cos 240cos(18060)cos60︒=︒+︒=-︒αcos(180)cos αα︒+=-cos 210(︒=)12-()AB 1l A BE 2l (090)αα︒︒……12////EF l l 1.5AB =2BE =h与车辆的宽度:①当时,小于3.4米的车辆均可以通过该闸口;②当时,等于3.0米的车辆不可以通过该闸口;③当时,等于3.2米的车辆可以通过该闸口.上述说法正确的个数为 A .0个B .1个C .2个D .3个二.填空题10.如图,以为圆心,任意长为半径画弧,与射线交于点,再以为圆心,为半径画弧,两弧交于点,画射线,则的值等于 .11.已知是锐角,,则 .12.在中,,, .13.在中,若,,都是锐角,则是 三角形.14.如图,半径为的圆与地面相切于点,圆周上一点距地面高为,圆沿地面方向滚动,当点第一次接触地面时,圆在地面上滚动的距离为 .15.已知等腰三角形一条腰上的高与腰之比为度.90α=︒h 45α=︒h 60α=︒h ()O OM A A AO B OB sin AOB ∠αtan(90)0α︒--=α=︒Rt ABC ∆90C ∠=︒2AB =BC =sin 2A=ABC ∆21|sin (cos )02A B -+-=A ∠B ∠ABC ∆2cm O B A (2cm +O BC A O三.解答题16.(1)计算:.(2)计算:.17.求下列各式的值:(1); (2).18.计算:19.求满足下列条件的锐角:.201()(2020)60|3|2π--+-︒--102021202116cos 45()( 1.73)|5|4(0.25)3-︒++-+-+⨯-sin 45cos 454tan 30sin 60︒︒+︒︒222cos602sin 45tan 60sin 303︒-︒+︒-︒2602cos303tan 45tan ︒︒-+︒α2tan tan 20αα+-=20.求满足下列条件的锐角:.21.对于钝角,定义它的三角函数值如下:,,.(1)求,,的值;(2)若一个三角形的三个内角的比是,,是这个三角形的两个顶点,,是方程的两个不相等的实数根,求、的值及和的大小.22.一般地,当,为任意角时,,,与的值可以用下面的公式求得:;;;.例如:.α22cos 5tan 20αα-+=βsin sin(180)ββ=︒-cos cos(180)ββ=-︒-tan tan(180)ββ=-︒-sin120︒cos135︒tan150︒1:1:4A B sin A cos B 210ax bx --=a b A ∠B ∠αβsin()αβ+sin()αβ-cos()αβ+cos()αβ-sin()sin cos cos sin αβαβαβ+=⋅+⋅sin()sin cos cos sin αβαβαβ-=⋅-⋅cos()cos cos sin sin αβαβαβ+=⋅-⋅cos()cos cos sin sin αβαβαβ-=⋅+⋅11sin 90sin(6030)sin 60cos30cos60sin 30122︒=︒+︒=︒⨯︒+︒⨯︒=+⨯=类似地,求:(1)的值.(2)的值.(3)的值提示:对于钝角,定义它的三角函数值如下:,.23.如图,是等腰三角形,,以为直径的与交于点,,垂足为,的延长线与的延长线交于点.(1)求证:是的切线;(2)若的半径为2,,求的度数;(3)在(2)的条件下,求图形中阴影部分的面积.sin15︒cos75︒tan165︒[αsin sin(180)αα=︒-cos cos(180)]a α=-︒-ABC ∆AB AC =AC O e BC D DE AB ⊥E ED AC F DE O e O e 1BE =A ∠答案一.单选题1.【详解】解:,,,关于轴对称点的坐标是,.故本题选:.2.【详解】解:在中,,.故本题选:.3.【详解】解:、,,,∴12<sin a ≤32,故此选项正确;、,∴12<cos a ≤32故此选项错误;、,,∴33≤tan a ≤3,故此选项错误;、,∴33≤cot a≤3,故此选项错误.故本题选:.sin 60︒=1cos602︒=(sin 60∴-︒cos60)(︒=12y 1)2A Rt ABC ∆90C ∠=︒90AB ∴∠+∠=︒cos sin A B ∴==C A 3060α︒<︒ …1sin 302︒=sin 60︒=B cos30︒=1cos602︒=C tan 30︒=tan 60︒D cot 30︒= cot 60︒=A【详解】解:如图,在中,,,,则.故本题选:.5.【详解】解:无意义,,即,锐角,.故本题选:.6.【详解】解:如图,菱形的两邻角之比为,较小角为,,,,故本题选:.Rt ABC ∆4AB =AC =cos AC A AB ∴===45A ∠=︒C11tan α-1tan 0α∴-=tan 1α=∴45α=︒sin(15)cos(15)sin 60cos30αα∴+︒+-︒=︒+︒=+=A 1:2∴60︒30ABO ∴∠=︒tan OA ABO OB ∴=∠=2AC OA = 2BD OB =:3AC BD ∴==C【详解】解:,.故本题选:.8.【详解】解:、若三边为1,1,由于,则此三边构成一个等腰直角三角形,所以这个三角形不是“实验三角形”,所以选项错误;、由1,1,顶角为,所以这个三角形是“实验三角形”,所以选项正确;、若三边为1,2,则此三边构成直角三角形,最小角为,所以这个三角形不是“实验三角形”,所以选项错误;、由1,2,3不能构成三角形,所以选项错误.故本题选:.9.【详解】解:由题知,限高曲臂道路闸口高度为:,①当时,米,即米即可通过该闸口,故①错误;②当时,米,即米即可通过该闸口,等于3米的车辆不可以通过该闸口,故②正确;③当时,米,即米即可通过该闸口,,等于3.2米的车辆可以通过该闸口,故③正确.故本题选:.二.填空题10.【详解】解:如图,连接,cos(180)cos αα︒+=-cos 210cos(18030)cos30∴︒=︒+︒=-︒=C A 22211+=A B 30︒120︒B C 22212+=30︒C D D B 1.52sin α+⨯90α=︒(1.52)h <+ 3.5h <45α=︒(1.52h <+(1.5h <+3 1.5> h ∴60α=︒(1.52h <+(1.5h <+3.2 1.5<+ h ∴C AB以为圆心,任意长为半径画弧,与射线交于点,,以为圆心,长为半径画弧,两弧交于点,是等边三角形,,..11.【详解】解:,,,,故本题答案为:30.12.【详解】解:,.故本题答案为:.13.【详解】解:,,,,,是等边三角形.故本题答案为:等边.14.【详解】解:如图,作于,于,O OM A OA OB ∴= A AO B AOB ∴∆60AOB ∴∠=︒sin sin 60AOB ∴∠=︒=tan(90)0α︒-=tan(90)α∴︒-=9060α∴︒-=︒30α∴=︒sin BC A AB == 60A ∴∠=︒1sinsin 3022A ∴=︒=1221|sin (cos )02A B +-=sin A ∴=1cos 2B =60A ∴∠=︒60B ∠=︒ABC ∴∆AD BC ⊥D OE AD ⊥E则,又,,,,则的长为,则圆在地面上滚动的距离为.故本题答案为:.15.【详解】解:由题意知,分两种情况:(1)当腰上的高在三角形内部时,如下图,,,在直角三角形中,顶角;(2)当腰上的高在三角形外部部时,如上图,,,在直角三角形中,,顶角.故本题答案为:.三.解答题16.解:(1)22AE =+=2OA =sin AE AOEOA ∴∠==60AOE ∴∠=︒150AOB ∴∠=︒¶AB 150251803ππ⨯=O 53cm π53cm πAB AC =CD AB ⊥ADC sin CAD ∠==∴45CAD ∠=︒AB AC =CD AB ⊥ADC sin CD CAD AC ∠===45CAD ∴∠=︒180********CAB CAD ∠=︒-∠=︒-︒=︒45135︒︒或201()(2020)60|3|2π--+-︒--;(2)..17.解:(1)原式;(2)原式.18.解:原式19.解:(舍去),.20.解:原式413=+-4113=+--1=102021202116cos 45()( 1.73)|5|4(0.25)3-︒++-+-+⨯-20216315(40.25)=++--⨯3151=+++--8=4=+122=+52=221212232=-⨯+⨯-1121232232=-⨯+⨯-111222=-+-1=21=-11=+=(tan 2)(tan 1)0αα+-=tan 20α=-=tan 1α=45α=︒(2cos 1)(cos 2)0αα--=,(舍去).21.解:(1),,;(2)一个三角形的三个内角的比是,且三角形的内角和为,三角形的三个内角为30、30、120,①当、时,,,,是方程的两个不相等的实数根,,解得:,;②当、时,,,,是方程的两个不相等的实数根,,解得:,;③当、时,,此时,不满足题意.综上,当时,,、时,,.22.解:如图,连接,将阴影部分沿翻折,点的对应点为,过点作于1cos 2α=cos 2α=60α=︒3sin120sin(180120)sin 602︒=︒-︒=︒=cos135cos(180135)cos 45︒=-︒-︒=-︒=tan150tan(180150)tan 30︒=-︒-︒=-︒= 1:1:4180︒∴30A =︒30B =︒1sin 2A =cos B =sin A cos B 210ax bx --=∴12112b a a⎧+=⎪⎪⎨⎪=-⎪⎩a =2b =--30A =︒120B =︒1sin 2A =1cos 2B =-sin A cos B 210ax bx --=∴1122111()22b a a ⎧-=⎪⎪⎨⎪⨯-=-⎪⎩4a =0b =120A =︒30B =︒sin A =cos B =sin cos A B =30A B ==︒a =2b =-30A =︒120B =︒4a =0b =AO CE F M M MN CD ⊥点,为的直径,,,,,,垂足为,设的半径为,则,,解得:或(舍去),,即的半径是5;,由对称性可知,,,连接,则,,过点作于点,,即图中阴影部分的面积是:.故本题答案为:.23.解:如图,当点在点时,作出点关于的对称点,当点在点时,作出点的对称点,连接,,N CD O e AB CD ⊥8AB =142AG AB ∴==:3:5OG OC = AB CD ⊥G ∴O e 5k 3OG k =222(3)4(5)k k ∴+=1k =1k =-55k ∴=O e 15ECD ∠=︒ 30DCM ∠=︒CBM S S =阴影弓形OM 60MOD ∠=︒120MOC ∴∠=︒M MN CD ⊥N sin 605MN MO ∴=︒=g 12025253603OMC OMC S S S ππ∆⨯⨯∴=-==-阴影扇形253π253πP A C BP C 'P D CC ''C C ''BD点的运动轨迹是以点为圆心,以长为半径的圆弧,线段的扫过的区域面积为扇形的面积和△的面积之和,,,,,,,扇形的面积为:,过点作于点,,线段扫过的区域的面积为.故本题答案为:24.解:(1);(2)∴1C B BC C C '''∴1CC BC C '''BC C ''2AB=BC=tan CD DBC BC ∴∠==30DBC ∴∠=︒260C BC DBC ''∴∠=∠=︒120C BC '''∴∠=︒∴BC C '''22120143603BC πππ⋅⋅=⨯⨯=C ''C F BC ''⊥F sin sin 603C F BC C BC ''''''∴=∠=︒=11322C CB S BC C F ''''∴=⋅=⨯=V ∴1CC 4π+4π+sin15︒sin(4530)=︒-︒sin 45cos30cos 45sin 30=︒⋅︒-︒⋅︒12==cos75︒cos(4530)=︒+︒cos 45cos30sin 45sin 30=︒⋅︒-︒⋅︒;(3)...25.(1)证明:如图,连接、,是直径,,,是的中点,又是的中点,,,,12==sin165sin(18015)sin15tan165cos165cos(18015)cos15︒︒-︒︒︒===︒︒-︒-︒cos15︒cos(4530)=︒-︒cos 45cos30sin 45sin 30=︒⋅︒+︒⋅︒12==tan1652︒==-AD OD AC AD BC ∴⊥AB AC = D ∴BC O AC //DO AB ∴DE AB ⊥ DO DE ∴⊥又点在上,是的切线;(2)解:由(1)知,,,,,解得:,,,;(3)解:如上图,连接,,,是等边三角形,,同理可得:是的中位线,四边形是平行四边形,,,,,,,平行四边形的面积,. D O e DE ∴O e //DO AE FOD FAE ∴∆∆∽∴FO DO FA AE =∴FC OCDO FC AC AB BE +=+-∴22441FC FC +=+-2FC =6AF ∴=411cos 62AE AB BE A AF AF --∴====60A ∴∠=︒OM AB AC = 60A ∠=︒ABC ∴∆224OF OC CF =+=+=OM ABC ∆∴ODBM 60FOD ∴∠=︒60MOD ∠=︒120COM ∴∠=︒sin 604DF OF =︒==11222DOF S DO DF ∴==⨯⨯=V g 11222DB BC AC === ∴sin 602DE DB =︒==g 2120423603COM S ππ=⋅=扇形∴ODBM 2DO DE ===g 4433S ππ∴=-=-阴影。
2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022--2023学年人教版九年级数学下册《28.1锐角三角函数》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=2.三角函数sin30°、cos16°、cos43°之间的大小关系是()A.sin30°<cos16°<cos43°B.cos43°<sin30°<cos16°C.sin30°<cos43°<cos16°D.sin16°<cos30°<cos43°3.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于sin A 的是()A.B.C.D.4.如果锐角A的度数是25°,那么下列结论中正确的是()A.0<sin A<B.0<cos A<C.<tan A<1D.1<cot A<5.在Rt△ABC中,如果各边长度都扩大为原来的3倍,则锐角∠A的余弦值()A.扩大为原来的3倍B.没有变化C.缩小为原来的D.不能确定6.在Rt△ABC中,∠C=90°,AB=4,AC=2,则sin A的值为()A.B.C.D.7.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°8.在Rt△ABC中,∠B=90°,cos A=,则sin A=()A.B.C.D.9.若tan B=,则∠B的度数为()A.30°B.60°C.45°D.15°10.在Rt△ABC中,∠C=90°,AB=5,AC=4.下列四个选项,正确的是()A.tan B=0.75B.sin B=0.6C.sin B=0.8D.cos B=0.8 11.如图,△ABC的顶点是正方形网格的格点,则sin∠ABC的值为()A.B.C.D.二.填空题12.在Rt△ABC中,∠C=90°,若c=5,sin B=,则AC=.13.在△ABC中,∠C=90°,如果tan∠A=2,AC=3,那么BC=.14.如图,在Rt△ABC中,∠ACB=90°,D为AB上异于A,B的一点,AC≠BC.(1)若D为AB中点,且CD=2,则AB=.(2)当CD=AB时,∠A=α,要使点D必为AB的中点,则α的取值范围是.15.若∠A为锐角,且cos A=,则∠A的取值范围是.16.如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=.三.解答题17.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.18.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5.求sin A,cos A和tan A.19.(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinαcosα;若0°<α<45°,则sinαcosα;若45°<α<90°,sinαcosα.20.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a,b是关于x的一元二次方程x2﹣mx+2m﹣2=0的两个根,求Rt△ABC中较小锐角的正弦值.21.已知如图,A,B,C,D四点的坐标分别是(3,0),(0,4),(12,0),(0,9),探索∠OBA和∠OCD的大小关系,并说明理由.22.在△ABC中,BC=2AB=12,∠ABC=α,BD是∠ABC的角平分线,以BC为斜边在△ABC外作等腰直角△BEC,连接DE.(1)求证:CD=2AD;(2)当α=90°时,求DE的长;(3)当0°<α<180°时,求DE的最大值.参考答案一.选择题1.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.2.解:∵sin30°=cos60°,又16°<43°<60°,余弦值随着角度的增大而减小,∴cos16°>cos43°>sin30°.故选:C.3.解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=,故选:D.4.解:A.∵sin30°=,∴0<sin25°<,故A符合题意;B.∵cos30°=,∴cos25°>,故B不符合题意;C.∵tan30°=,∴tan25°<,故C不符合题意;D.∵cot30°=,∴cot25°>,故D不符合题意;故选:A.5.解:设原来三角形的各边分别为a,b,c,则cos A=,若把各边扩大为原来的3倍,则各边为3a,3b,3c,那么cos A==,所以余弦值不变.故选:B.6.解:在Rt△ABC中,∠C=90°,AB=4,AC=2,∴BC===2,∴sin A===,故选:D.7.解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.8.解:在Rt△ABC中,∠B=90°,cos A=,∴设AB=12k,AC=13k,∴BC===5k,∴sin A===,故选:A.10.解:∵tan B=,∴∠B=60°.故选:B.11.解:如图,∵∠C=90°,AB=5,AC=4,∴BC===3,A选项,原式==,故该选项不符合题意;B选项,原式===0.8,故该选项不符合题意;C选项,原式===0.8,故该选项符合题意;D选项,原式===0.6,故该选项不符合题意;故选:C.二.填空题12.解:在Rt△ABC中,∠C=90°,若c=5,sin B=,所以sin B===,所以AC=4,故答案为:4.13.解:在△ABC中,∠C=90°,tan∠A=2,AC=3,∴BC=AC tan∠A=3×2=6,故答案为:6.14.解:(1)∵∠ACB=90°,D为AB中点,∴AB=2CD=2×2=4;故答案为:4;(2)当以C点为圆心,CD为半径画弧与线段AB只有一个交点(点A、B除外),则点D必为AB的中点,∴CB≤CD或CA≤CD,∵CD=AB,∴CB≤AB或CA≤AB∵sin A=≤或sin B=≤,即sinα≤sin30°或sin B≤sin30°,∴α≤30或∠B≤30°,∴α≤30°或α≥60°,∴α的取值范围为0°<α≤30°或60°≤α<90°.故答案为:0°<α≤30°或45°或60°≤α<90°.15.解:∵0<<,又cos60°=,cos90°=0,锐角余弦函数值随角度的增大而减小,∴当cos A=时,60°<∠A<90°.故答案为:60°<∠A<90°.16.解:∵∠1=∠2,∴∠BAO=∠ACO,∵A(2,0),B(0,4),∴tan∠OCA=tan∠BAO==2.故答案为:2.三.解答题17.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.18.解:在Rt△ABC中,∠C=90°,AC=12,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.19.解:(1)在图中,令AB1=AB2=AB3,B1C1⊥AC于点C1,B2C2⊥AC于点C2,B3C3⊥AC 于点C3,显然有:B1C1>B2C2>B3C3,∠B1AC>∠B2AC>∠B3AC.∵sin∠B1AC=,sin∠B2AC=,sin∠B3AC=,而>>,∴sin∠B1AC>sin∠B2AC>sin∠B3AC.在图中,Rt△ACB3中,∠C=90°,cos∠B1AC=,cos∠B2AC=,cos∠B3AC=,∵AB3>AB2>AB1,∴>>.即cos∠B3AC<cos∠B2AC<cos∠B1AC;结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)可知:sin88°>sin62°>sin50°>sin34°>sin18°;cos88°<cos62°<cos50°<cos34°<cos18°.(3)若α=45°,则sinα=cosα;若0°<α<45°,则sinα<cosα;若45°<α<90°,则sinα>cosα.故答案为:=,<,>.20.解:∵a,b是方程x2﹣mx+2m﹣2=0的解,∴a+b=m,ab=2m﹣2,在Rt△ABC中,由勾股定理得,a2+b2=c2,而a2+b2=(a+b)2﹣2ab,c=5,∴a2+b2=(a+b)2﹣2ab=25,即:m2﹣2(2m﹣2)=25解得,m1=7,m2=﹣3,∵a,b是Rt△ABC的两条直角边的长.∴a+b=m>0,m=﹣3不合题意,舍去.∴m=7,当m=7时,原方程为x2﹣7x+12=0,解得,x1=3,x2=4,不妨设a=3,则sin A==,∴Rt△ABC中较小锐角的正弦值为21.解:∠OBA=∠OCD,理由如下:由勾股定理,得AB===5,CD===15,sin∠OBA==,sin∠OCD===,∠OBA=∠OCD.22.(1)证明:如图,过点D作DO∥BC交AB于点O,∴∠ODB=∠CBD,∵BD是角平分线,∴∠OBD=∠CBD,∴∠OBD=∠ODB,∴OB=OD,∵OD∥BC,∴=,△AOD∽△ABC,∴=,∴===,∴=,∴CD=2AD;解:(2)如图,过点D作DO∥BC交AB于点O,当α=90°时,BD平分∠ABC,∴∠DBC=∠OBD=45°,∠DOB=90°,∵△BEC为等腰直角三角形,BC=12,∴∠EBC=45°,BE=6,∴∠DBE=90°,由(1)可得AB=6,==,∴OB=4,∴BD=4,∴DE==2;(3)如图,过点D作DO∥BC交AB于点O,DE交BC于点F,设BC中点为点G,连接EG,∴BG=6,当α变化时,OB的长度不变,∴点O在以点B为圆心,半径为4的圆弧上,令圆弧与BC交于点F,∴BF=4,此时,点D在以点F为圆心,半径为4的圆弧上,当点D,E,F三点共线时,DE最大,∴GF=BG﹣BF=2,∴EF==2,∴DE的最大值=DF+FE=2+4.。
初三数学下册三角函数练习题

初三数学下册三角函数练习题一、填空题1. 在单位圆上,角度为60°的点的坐标是(_______,_______)。
2. sin45°的值是________。
3. cos30°的值是________。
4. tan60°的值是________。
5. 在直角三角形ABC中,边AC=5,边AB=3,cos∠B的值是________。
二、单选题1. 在单位圆的第一象限上,点P的坐标是(√2/2,√2/2)。
则∠P 的度数是:A. 30°B. 45°C. 60°D. 90°2. 三角函数tan(-120°)的值等于:A. tan(120°)B. tan(-60°)C. -tan(60°)D. -tan(-60°)3. sin30°的值等于:A. 1/2B. √3/2C. 1D. √2/24. 当sin∠A=1/2,∠A的值为:A. 30°B. 45°C. 60°D. 90°5. 在三角形ABC中,边AB=8,∠A=60°,则边AC的长度为:A. 4B. 4√3C. 6D. 8三、解答题1. 在单位圆上,角度为45°的点的坐标是多少?2. 求解下列三角函数的值:a) cos60°b) sin120°c) tan30°3. 在直角三角形ABC中,边AC=12,边AB=15,求cos∠B和sin∠B的值。
4. 已知三角形ABC中,∠A=45°,AB=6,BC=8,求sin∠B和tan∠B的值。
5. 解方程sinx=1/2,其中x∈[0,360]。
四、应用题1. 太阳抛物线是指一个物体在重力作用下沿抛物线运动。
已知抛物线的顶点坐标为(0, 4),抛物线与x轴交于点A,角度∠AOB为45°(O 为抛物线的焦点,B为顶点)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学下学期三角函数测试卷
班级: 姓名: 座号: 成绩:
一、选择题
1.在Rt △ABC 中,∠C=90°,BC = 1,AB = 4 , 则sinA 的值是 A .15
15 B .41 C .3
1 D .
4
15
2.当锐角α>30°时,则cosα的值是 A .大于
1
2 B .小于12
C 3
D 33.如图,沿AC 方向开山修路,为了加快施工进度,要在山的另一边同时施工,现在从AC 上取一点B ,使得∠ABD =145°,BD =500米,∠D =55°,要使A 、C 、
E 在一条直线上,那么开挖点E 离点D 的距离是
A .500sin55°米
B .500cos55°米
C .500tan55°米;
D .o
55tan 500米
4. 如图1,在Rt △ABC 中,ACB ∠90=o
,CD ⊥AB 于D ,若3BC =,4AC =,
则tan BCD ∠的值为 ( )
A.34 B.43 C.35 D.45
5. 在△ABC 中,90C ∠=o
,2B A ∠=∠,则cos A 等于(
)
A.
3
2
B.
12
3
D.
3
3
6. 如图2所示,旗杆AB 在C 处测得旗杆顶的仰角为30o
, 向旗杆前进12m 到达D ,在D 处测得A 仰角为45o
, 则旗杆的高AB 等于( )m . A.12 B.14
C.16
D.18
7. 在△ABC 中,90C ∠=o
,12
sin 13
A =,周长为45,CD 是斜边A
B 上的高,则CD 的长是( ) A.56
13
B.126
13
C.7
6
13
D.17
12
8.△ABC 中,∠A ,∠B 均为锐角,且有2
|tan 32sin 30B A +=(),则△ABC 是( )
A .直角(不等腰)三角形
B .等腰直角三角形
C .等腰(不等边)三角形
D .等边三角形
A
C
D
B
图1
A
C
D
B
图2
C
E
二、填空题:(每小题3
分,共30分)
1. 如图3,将三角板的直角顶点放置在直线AB 上的点O 处,使斜边CD AB ∥.则α∠的余弦值为 2.已知:∠α是锐角,︒=36cos sin α,则α的度数是 。
3. 如图4所示,某校课外活动小组测量旗杆的高度AD ,在离 旗杆3m 的E 处,测得旗杆顶的仰角为ο
30,测角仪CE 高
1.5m ,则AD =
.
4.已知∠A 是锐角,且______2
sin ,3tan ==A
A 则 。
5. 如图所示,铁路的路基横断面是等腰梯形,斜坡AB 的 坡度为1:AB 的水平宽度为,基面AD
宽为2m ,则AE = m ,α∠= ,BC =
m . 6.某山路的路面坡度ⅰ=1:399,沿此山路向前走200米,则人升高了___ __米.
7.在△ABC 中,若AC=3,则cosA=________.
8.学校为了筹备校园艺术节,要在通往舞台的台阶上铺上红色地毯.如果地毯的宽度恰好与台阶的宽度一致,台阶的侧面如图所示,台阶的坡角为30o
,90BCA ∠=o
,台阶的高BC 为2米,那么请你帮忙算一算需要 米长的地毯恰好能铺好台阶。
(结果精确到0.1m ,取
1.414= 1.732=
9.如图,在△ABC 中,∠C=90°,sinB=5
3,AD 分∠CAB ,那么sin ∠CAD=_________.
10.如图,D 是△ABC 的边AC 上一点,CD=2AD,AE⊥BC 于点E,若BD=8,sin∠CBD=4
3,
则AE 的长为_______ ___。
C
D
α
A
B
O
30
o
图3
A
图4
图5
B
第10题图
第9题图
河
水
B A
C
D 三、解答题:(共50分)
1.计算:(1)ο
ο
ο
ο
30cos 45sin 60tan 30sin 2
2
2
+-+ (2)0
00
045tan 30tan 145tan 30tan ⋅-+
2.学校校园内有一块如图所示的三角形空地,计划将这块空地建成一个花园,以美化校园环境,预计花园1m 2
造价30元,学校建这个花园需要投资多少钱?(精确到1元)?
3. 一条水渠的横断面是等腰梯形,坡角为ο
60,渠深为2m ,渠底宽3m ,求水渠的上口宽和横断面的面积(保留四个有效数字).
4.为了测量汉江某段河面的宽度,秋实同学设计了如下图所示的测量方案:先在河的北岸选一定点A ,再在河的南岸选定相距a 米的两点B 、C (如图),分别测得∠ABC =α,∠ACB =β,请你根据秋实同学测得的数据,计算出河宽AD.(结果用含a 和含α、β的三角函数表示)
C
3m
A
5、如图10,在电线杆上离地面高度5米的C点处引两根拉线固定电线杆.一根拉线AC和地面成60°角,另一根拉线BC与地面成45°角,试求两根拉线的长度.
6、如图11为住宅区内的两幢楼,它们的高AB=CD=30m,两楼间的距离AC=24m,现需了解甲楼对乙楼采光的影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?
7、如图,为测得峰顶A到河面B的高度h,当游船行至C处时测得峰顶A的仰角为α,前进m 米至D处时测得峰顶A的仰角为β(此时C、D、B三点在同一直线上).
(1)用含α、β和m的式子表示h ;
(2)当α=45°,β=60°,m=50米时,求h的值.
(精确到0.1m2≈1.413 1.73)
8.一艘轮船自西向东航行,在A处测得北偏东68.7°方向有一座小岛C,继续向东航行60海里到达B处,测得小岛C此时在轮船的北偏东26.5°方向上.之后,轮船继续向东航行多少海里,
距离小岛C最近?(参考数据:sin21.3°≈
9
25
,tan68.7°≈
2
5
,tan21.3°≈
2
5
,sin63.5°≈9
10
,tan26.5°≈
2
1
,tan63.5°≈2)
A B
C
北
东。