【步步高】2015高考数学(广东专用,理)一轮题库:第12章 第2讲 直接证明与间接证明]

合集下载

2015年广东高考理科数学_Word版含标准答案

2015年广东高考理科数学_Word版含标准答案

2015年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.1.若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =A .∅B .{}1,4--C .{}0D .{}1,4 2.若复数z=i ( 3 – 2 i ) ( i 是虚数单位 ),则z =A .3-2iB .3+2iC .2+3iD .2-3i 3.下列函数中,既不是奇函数,也不是偶函数的是A .xe x y += B .x x y 1+= C .x xy 212+= D .21x y += 4.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球。

从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为 A .1 B.2111 C. 2110 D. 215 5.平行于直线012=++y x 且与圆522=+y x 相切的直线的方程是A .052=+-y x 或052=--y x B. 052=++y x 或052=-+y x C. 052=+-y x 或052=--y x D. 052=++y x 或052=-+y x6.若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为A .531 B. 6 C. 523 D. 4 7.已知双曲线C :12222=-by a x 的离心率e =45,且其右焦点F 2( 5 , 0 ),则双曲线C 的方程为A .13422=-y x B. 191622=-y x C. 116922=-y x D. 14322=-y x 8.若空间中n 个不同的点两两距离都相等,则正整数n 的取值A .大于5 B. 等于5 C. 至多等于4 D. 至多等于3 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9-13题)9.在4)1(-x 的展开式中,x 的系数为 。

【步步高】(广东专用)2015高考数学一轮复习 第2讲 一元二次不等式及其解法同步检测 文

【步步高】(广东专用)2015高考数学一轮复习 第2讲 一元二次不等式及其解法同步检测 文

第2讲 一元二次不等式及其解法一、选择题 1.不等式x -2x +1≤0的解集是( ) A .(-∞,-1)∪(-1,2] B .(-1,2] C .(-∞,-1)∪[2,+∞)D .[-1,2] 解析 ∵x -2x +1≤0⇔⎩⎪⎨⎪⎧x +x -,x +1≠0⇔⎩⎪⎨⎪⎧-1≤x ≤2,x ≠-1,∴x ∈(-1,2]. 答案 B2. 若集合{},{}x A x x B xx-2=-1≤2+1≤3=≤0,则A B ⋂=( ) A. {}x x -1≤<0 B. {}x x 0<≤1 C. {}x x 0≤≤2 D.{}x x 0≤≤1解析 因为集合{},{}A x x B x x =-1≤≤1=0<≤2,所以A B ⋂={}x x 0<≤1,选B. 答案 B3.设a >0,不等式-c <ax +b <c 的解集是{x |-2<x <1},则a ∶b ∶c = ( ). A .1∶2∶3 B .2∶1∶3 C .3∶1∶2D .3∶2∶1解析 ∵-c <ax +b <c ,又a >0,∴-b +c a <x <c -ba. ∵不等式的解集为{x |-2<x <1},∴⎩⎪⎨⎪⎧ -b +ca =-2,c -b a =1,∴⎩⎪⎨⎪⎧b =a2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a2=2∶1∶3.答案 B4.不等式(x 2-2)log 2x >0的解集是( ).A .(0,1)∪(2,+∞)B .(-2,1)∪(2,+∞)C .(2,+∞)D .(-2,2)解析 原不等式等价于⎩⎪⎨⎪⎧ x 2-2>0,log 2x >0或⎩⎪⎨⎪⎧x 2-2<0,log 2x <0.∴x >2或0<x <1,即不等式的解集为(0,1)∪(2,+∞). 答案 A5.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为 ( ).A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)解析 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点, 又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,∴-32<a <-56,又a ∈Z ,∴a =-1,不等式f (x )>1即为-x 2-x >0, 解得-1<x <0. 答案 C6.设函数f (x )=⎩⎪⎨⎪⎧-2,x >0,x 2+bx +c ,x ≤0,若f (-4)=f (0),f (-2)=0,则关于x 的不等式f (x )≤1的解集为( ).A .(-∞,-3]∪[-1,+∞)B .[-3,-1]C .[-3,-1]∪(0,+∞)D .[-3,+∞)解析 当x ≤0时,f (x )=x 2+bx +c 且f (-4)=f (0),故其对称轴为x =-b2=-2,∴b =4.又f (-2)=4-8+c =0,∴c =4,当x ≤0时,令x 2+4x +4≤1有-3≤x ≤-1;当x >0时,f (x )=-2≤1显然成立,故不等式的解集为 [-3,-1]∪(0,+∞). 答案 C 二、填空题7.已知关于x 的不等式ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12,则不等式-cx 2+2x -a >0的解集为________.解析 由ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12知a <0,且-13,12为方程ax 2+2x +c =0的两个根,由根与系数的关系得-13+12=-2a ,-13×12=c a ,解得a =-12,c =2,∴-cx 2+2x -a >0,即2x 2-2x -12<0,其解集为(-2,3). 答案 (-2,3)8.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析 由函数f (x )的图象可知(如下图),满足f (1-x 2)>f (2x )分两种情况:①⎩⎪⎨⎪⎧1-x 2≥0,x ≥0,1-x 2>2x⇒0≤x <2-1.②⎩⎪⎨⎪⎧1-x 2>0,x <0⇒-1<x <0.综上可知:-1<x <2-1. 答案 (-1,2-1)9.已知函数f (x )=-x 2+2x +b 2-b +1(b ∈R ),若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是________.解析 依题意,f (x )的对称轴为x =1,且开口向下, ∴当x ∈[-1,1]时,f (x )是增函数.若f (x )>0恒成立,则f (x )min =f (-1)=-1-2+b 2-b +1>0,即b 2-b -2>0,∴(b -2)(b +1)>0,∴b >2或b <-1. 答案 (-∞,-1)∪(2,+∞)10.设a ∈R ,若x >0时均有[(a -1)x -1](x 2-ax -1)≥0,则a =________. 解析 显然a =1不能使原不等式对x >0恒成立,故a ≠1且当x 1=1a -1,a ≠1时原不等式成立.对于x 2-ax -1=0,设其两根为x 2,x 3,且x 2<x 3,易知x 2<0,x 3>0.当x >0时,原不等式恒成立,故x 1=1a -1满足方程x 2-ax -1=0,代入解得a =32或a =0(舍去). 答案 32三、解答题11.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ), 当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a,∴x -m <0,1-an +ax >0.∴f (x )-m <0,即f (x )<m .12.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }, (1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.解 (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1.由根与系数的关系,得⎩⎪⎨⎪⎧1+b =3a,1×b =2a.解得⎩⎪⎨⎪⎧a =1,b =2.(2)由(1)知不等式ax 2-(ac +b )x +bc <0为x 2-(2+c )x +2c <0,即(x -2)(x -c )<0. ①当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c };②当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2};③当c =2时,不等式(x -2)(x -c )<0的解集为∅. 综上所述:当c >2时,不等式的解集为{x |2<x <c }; 当c <2时,不等式的解集为{x |c <x <2}; 当c =2时,不等式的解集为∅.13.已知抛物线y =(m -1)x 2+(m -2)x -1(x ∈R ). (1)当m 为何值时,抛物线与x 轴有两个交点?(2)若关于x 的方程(m -1)x 2+(m -2)x -1=0的两个不等实根的倒数平方和不大于2,求m 的取值范围.解 (1)根据题意,m ≠1且Δ>0,即Δ=(m -2)2-4(m -1)(-1)>0,得m 2>0, 所以m ≠1且m ≠0.(2)在m ≠0且m ≠1的条件下,⎩⎪⎨⎪⎧x 1+x 2=m -21-m,x 1·x 2=11-m,因为1x 1+1x 2=x 1+x 2x 1x 2=m -2,所以1x 21+1x 22=⎝ ⎛⎭⎪⎫1x 1+1x 22-2x 1x 2=(m -2)2+2(m -1)≤2. 得m 2-2m ≤0,所以0≤m ≤2.所以m 的取值范围是{m |0<m <1或1<m ≤2}. 14.设函数f (x )=a 2ln x -x 2+ax ,a >0. (1)求f (x )的单调区间;(2)求所有的实数a ,使e -1≤f (x )≤e 2对x ∈[1,e]恒成立. 注 e 为自然对数的底数.解 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0,所以f ′(x )=a 2x -2x +a =-x -a x +ax.由于a >0,所以f (x )的增区间为(0,a ),减区间为(a ,+∞). (2)由题意得,f (1)=a -1≥e-1,即a ≥e. 由(1)知f (x )在[1,e]内单调递增, 要使e -1≤f (x )≤e 2,对x ∈[1,e]恒成立,只要⎩⎪⎨⎪⎧f=a -1≥e-1,f =a 2-e 2+a e≤e 2,解得a =e.。

【步步高】(广东专用)2015届高考数学二轮复习专.

【步步高】(广东专用)2015届高考数学二轮复习专.

第1讲排列.组合与二项式定理2•排列、组合、两个计数原理往往通过实际问 题进行综合考查,一般以选择、填空题的形式 出现,难度中等,还经常与概率问题相结合, 出现在解答题的第一或第二个小题中,难度也 为中等;对于二项式定理的考查,主要出现在 选择题或填空题中,难度为易或中等.考情解读 1 •高考中对两个计数原理、排考情解手学2F知识梳理1 •分类加法计数原理和分步乘法计数原理如果每种方法都能将规定的事件完成,则要用分类加法计数原理将方法种数相加;如果需要通过若干步才能将规定的事件完成,则要用分步乘法计数原理将各步的方法种数相乘.2 •排列与组合⑴排列:从光个不同元素中取出个元素,按照一定的顺序排成一列,叫做从死个不同元素中取出加个元素的一个排歹•从〃个不同元素中取出加个元素的排列数公式是A = n{n - 1)(〃-2)…(〃+ 1)或写成n\(2)组合:从死个不同元素中取出个元素组成一组,叫做从死个不同元素中取出加个元素的一个组 合•从〃个不同元素中取出加个元素的组合数公式是 咆d ・g+l )或号成r -5 -」 /与秋5-应!(…)! • ⑶组合数的性质①etc ;严;②c^^c+cr 1. 3•二项式定理⑴二项式定理:(a + b)" = C%"沪 + C\a n ~lb + C%"叫2 + ••• + Gfl"~r b r + ••• + C"^b'\r = 0,1^, •••, n). (2)二项展开式的通项Tr +i = W, r = 0,U, •», n,其中 C ;叫做二项 式系数.11m\_ 亠and)二项式系数的性质①对称性:与首末两端“等距离”两项的二项式系数相等cm即eg, cjzzcr1,②最大值:当"为偶数时,中间的一项的二项式系数&取得最大值;当«为奇数时,中间的两项的二项式系数C二卅1C]相等,且同时取得最大值.+ 1 + •••③各二项◎丽分类突破>热点一两个计数原理>热点二排列与组合>热点三二项式定理两个例1 (1)将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大•当思维启迪先3,4固定在图中的位置时,填写空格的方法为(A.6 种B.12 种C.18 种D.24 种—•O * "E解析•• •每一行从左到右,每一列从上到下分别依次增大,1,2,9只有一种填法,5只能填在右上角或左下角,5填后与之相邻的空格可填6,7,8任一个;余下两个数字按从小到大只有一种方法.共有2X3=6种结果,故选A・答案A⑵如果一个三位正整数“a“J满足如<^且如《2,则称这样的三位数为凸数(如120,343,275), 那么所有凸A.240B.204C.729D.920 思维启迪按中间数进行分类.解析分8类,当中间数为2时,有1X2=2种;当中间数为3时,有2X3=6种;当中间数为4时,有3X4 = 12 种;当中间数为5时,有4X5=20 种;当中间数为6时,有5X6=30 种;当中间数为7时,有6X7=42 种;(1)在应用分类加法计数原理和分步乘法计数原理 时,一般先分类再分步,每一步当中又可能用到!■ 分类加法计数原理.(2)对于复杂的两个原理综合使用的问题,可恰当i 玄加练1选出2名男医生、1名女医生组成一个医疗小组,则 不同的选法共有()A.60 种B.70 种C.75 种D.150 种 思或表(1)(201)有6名男医生、5名女医生,从中列出示意足这样条件的函数的个数为(A.8B.9C.26D.27ln(x 2+l)=l=»x=±A/e —1,ln(x 2+l)=2=>x=±\t 2--l,所以定义域取值即在这5个元素中选取,②当定义域中有4个元素时,C ;C]=4,③当定义域中有5个元素时,有一种情况. 所以共有4+4+1=9(个)这样的函数. 答案B数/仗2111(2 + 1)的值域为{0,1,2},则满 ①当定义域中有3个元素C ;C ;Cj=4, 解析I软诫汇排列与组合例2 (1)(2014 •重庆)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168思维启迪将不能相邻的节目插空安排;—廿•: GW q「IT •解卞先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品1, 小品2,相声” “小品1,相声,小品2”和“相声, 小品1,小品2"・对于第一种情况,形式为“□小品1歌舞1小品2口相声丁 ,有A;CjA;=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“口小品1□相声□小品2□” ,有A圖=48(种)安排方法,故共有36+36+48=120(种)安排方法.答案B其中“1=(), “5 = 2, “]2 = 5,且%+ 1-加=1,R = l,2,3,…,11,则满足这种条件的不同数列的个数为(A.84B.168C.76D.152思维启迪⑵数列V\a k+x—a^ = l, jt = 1,2,3, (11)前一项总比后一项大1或小1,如到色中4个变化必然有3升1减,到如2中必然有5升2减,是组合的问题,AC1XC?=84. 答案A解排列、组合的应用题,通常有以下途径:(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素.⑵以位置为主体,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列或组合数.变式训练2(1)在航天员进行的一项太空实验中,先后要实施6个程序,其中程序A只能出现在第一步或最后一步,程序〃和C实施时必须相邻,则实验顺序的编排方法共有()A.24 种C.96 种B.48 种D.144 种首先安排4有2种方法;第二步在剩余的5个位置选取相邻的两个排C, 有4种排法,而C位置互换有2种方法;第三步安排剩余的3个程序,有&种排法, 共有2X4X2XA;=96(种).答案C(2)从0,1,23,4中任取四个数字组成无重复数字的四位数,其中偶数的个数________ (用数字作答).且为0,1,2,3,4中任取四个数字组成无重复数字的四位一是当0在个位的四位偶数有A;=24(个);二是当0不在个位时,先从2,4中选一个放在个位,再从余下的三个数选一个放在首位,应有A]A提=36(个),故共有四位偶数60个.丰热点三二项式定理例3 (1)在(a+x)7展开式中『的系数为35,则实数a的值为 _____ •思维启迪利用通项公式求常数项;解析通项公式:77+i=C"-匕所以展开式中J的系数为C制=35,解得尸1・P)如果(1 +X +Z)(x 一“)5(“为实常数)的展开式中所有项 的系数和为0,则展开式中含0项的系数为—_・思维启迪可用赋值法求二项展开式所有项的系数和. 解析•・・令兀=1得(1+x +x 2)(x 一“)啲展开式中所有项 的系数和为(1 + 1 + 12)(1-«)5=0, •I “ = 1, (1 +x +x 2)(x —a)5=(1 +x +x 2)(x — l)5= (Z —1)仗一1)4=兀3仗一1)4一仗一1)4, 其展开式中含『项的系数为d(-l)3-C ;(-l)°=-5.(1)在应用通项公式时,要注意以下几点:① 它表示二项展开式的任意项,只要死与厂确定, 该项就随之确定;② 7;+】是展开式中的第厂+1项,而不是第厂项; ③ 公式中,方的指数和为nRa, 〃不能随便颠 倒位置;思维升4④ 对二项式(a-by 展开式的通项公式要特别注意符号问题.(2) 在二项式定理的应用中,“赋值思想”是一 种重要方法,是处理组合数问题、系数问题的 经典方法. 变式训练3(1)(2014•湖北诺二项式(2工+了的展开式中]的系数 是84,则实数a 等于()A.2思维升尹叱5»r二项式(2x+-)7的展开式的通项公式为T;+1 = G(2Q7 丁白JC 旷处7巳令7—2r=—3,得厂=5・故展开式中Z的系数是C?2V=84,解得a=l.X答案C—<«>/*«J r n(2)(2014-浙江)在(1 +x)6(l +刃4的展开式中,记严尸项的系数为几n, n),贝IJ/(3,O) +/(2,1) +/(1,2) + 力0,3)等于(。

【步步高】(广东专用)2015高考数学一轮复习 第1讲 任意角、弧度制及任意角的三角函数同步检测 文

【步步高】(广东专用)2015高考数学一轮复习 第1讲 任意角、弧度制及任意角的三角函数同步检测 文

第四章 三角函数、解三角形第1讲 任意角、弧度制及任意角的三角函数一、选择题1.sin 2cos 3tan 4的值( ).A .小于0B .大于0C .等于0D .不存在解析 ∵sin 2>0,cos 3<0,tan 4>0,∴sin 2cos 3tan 4<0.答案 A2.已知点P (sin 5π4,cos 3π4)落在角θ的终边上,且θ∈[0,2π),则θ是第________象限角.( )A .一B .二C .三D .四解析 因P 点坐标为(-22,-22),∴P 在第三象限. 答案 C3.若一扇形的圆心角为72°,半径为20 cm ,则扇形的面积为( ). A .40π cm 2 B .80π cm 2 C .40cm 2 D .80cm 2解析 72°=2π5,∴S 扇形=12αR 2=12×2π5×202=80π(cm 2). 答案 B4.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所对半径的大小无关; ④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是( ). A .1 B .2 C .3 D .4解析 由于第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当θ=π,cos θ=-1<0时既不是第二象限角,又不是第三象限角,故⑤错.综上可知只有③正确.答案 A5.已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P (4,y )是角θ终边上一点,且sin θ=-255,则y = ( ). A .-8 B .8 C .-4 D .4解析 根据题意sin θ=-255<0及P (4,y )是角θ终边上一点,可知θ为第四象限角.再由三角函数的定义得,y42+y 2=-255,又∵y <0,∴y =-8(合题意),y =8(舍去).综上知y =-8.答案 A 6.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( ).A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12 C.⎝ ⎛⎭⎪⎫-12,-32 D.⎝ ⎛⎭⎪⎫-32,12 解析 设α=∠POQ ,由三角函数定义可知,Q 点的坐标(x ,y )满足x =cos α, y =sin α,∴x =-12,y =32,∴Q 点的坐标为⎝ ⎛⎭⎪⎫-12,32. 答案 A二、填空题 7.若β的终边所在直线经过点P ⎝⎛⎭⎪⎫cos 3π4,sin 3π4,则sin β=________, tan β=________.解析 因为β的终边所在直线经过点P ⎝⎛⎭⎪⎫cos 3π4,sin 3π4,所以β的终边所在直线为y =-x ,则β在第二或第四象限.所以sin β=22或-22,tan β=-1. 答案 22或-22-1 8.已知点P (tan α,cos α)在第三象限,则角α的终边在第______象限.解析 ∵点P (tan α,cos α)在第三象限,∴tan α<0,cos α<0.∴角α在第二象限.答案 二9.设扇形的周长为8 cm ,面积为4 cm 2,则扇形的圆心角的弧度数是________.解析 由题意得S =12(8-2r )r =4,整理得r 2-4r +4=0,解得r =2.又l =4,故|α|=l r =2(rad).答案 210.函数y =2cos x -1的定义域为________.解析∵2cos x -1≥0,∴cos x ≥12. 由三角函数线画出x 满足条件的终边的范围(如图阴影所示).∴x ∈⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ). 答案 ⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ) 三、解答题11. (1)写出与下列各角终边相同的角的集合S ,并把S 中适合不等式-360°≤α<720°的元素α写出来:①60°;②-21°.(2)试写出终边在直线y =-3x 上的角的集合S ,并把S 中适合不等式-180°≤α<180°的元素α写出来.解 (1)①S ={α|α=60°+k ·360°,k ∈Z },其中适合不等式-360°≤α<720°的元素α为-300°,60°,420°;②S ={α|α=-21°+k ·360°,k ∈Z },其中适合不等式-360°≤α<720°的元素α为-21°,339°,699°.(2)终边在y =-3x 上的角的集合是S ={α|α=k ·360°+120°,k ∈Z }∪{α|α=k ·360°+300°,k ∈Z }={α|α=k ·180°+120°,k ∈Z },其中适合不等式-180°≤α<180°的元素α为-60°,120°.12.(1)确定-cos8·tan5的符号; (2)已知α∈(0,π),且sin α+cos α=m (0<m <1),试判断式子sin α-cos α的符号.解析 (1)∵-3,5,8分别是第三、第四、第二象限角,∴tan(-3)>0,tan5<0,cos8<0,∴原式大于0.(2)若0<α<π2,则如图所示,在单位圆中,OM =cos α,MP =sin α, ∴sin α+cos α=MP +OM >OP =1.若α=π2,则sin α+cos α=1. 由已知0<m <1,故α∈⎝ ⎛⎭⎪⎫π2,π. 于是有sin α-cos α>0.13.一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB . 解 设圆的半径为r cm ,弧长为l cm ,则⎩⎪⎨⎪⎧ 12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧ r =1,l =2.∴圆心角α=l r=2.如图,过O 作OH ⊥AB 于H ,则∠AOH =1 rad.∴AH =1·sin 1=sin 1 (cm),∴AB =2sin 1 (cm).14. 如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C是圆与x 轴正半轴的交点,A 点的坐标为⎝ ⎛⎭⎪⎫35,45,△AOB 为正三角形.(1)求sin ∠COA ;(2)求cos ∠COB .解 (1)根据三角函数定义可知sin ∠COA =45. (2)∵△AOB 为正三角形,∴∠AOB =60°,又sin ∠COA =45,cos ∠COA =35, ∴cos ∠COB =cos(∠COA +60°)=cos ∠COA cos 60°-sin ∠COA sin 60°3 5·12-45·32=3-4310.=。

【步步高】(广东专用)2015高考数学一轮复习 第2讲 导数的应用同步检测 文

【步步高】(广东专用)2015高考数学一轮复习 第2讲 导数的应用同步检测 文

第2讲 导数的应用(一)一、选择题1.与直线2x -y +4=0平行的抛物线y =x 2的切线方程是( ). A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0D .2x -y -1=0解析 设切点坐标为(x 0,x 20),则切线斜率为2x 0, 由2x 0=2得x 0=1,故切线方程为y -1=2(x -1), 即2x -y -1=0. 答案 D2.若函数h (x )=2x -k x +k3在(1,+∞)上是增函数,则实数k 的取值范围是( ).A .(-2,+∞)B .(2,+∞)C .(-∞,-2)D .(-∞,2)解析 由条件得h ′(x )=2+k x 2=2x 2+k x2≥0在(1,+∞)上恒成立,即k ≥-2x 2在(1,+∞)上恒成立,所以k ∈(-2,+∞). 答案 A3.函数f (x )=(4-x )e x的单调递减区间是 ( ).A .(-∞,4)B .(-∞,3)C .(4,+∞)D .(3,+∞)解析 f ′(x )=e x+(4-x )·e x=e x(3-x ),令f ′(x )<0,由于e x>0,∴3-x <0,解得x >3.答案 D4.函数f (x )=ax 3+bx 在x =1a处有极值,则ab 的值为( )A .2B .-2C .3D .-3解析 f ′(x )=3ax 2+b ,由f ′⎝ ⎛⎭⎪⎫1a =3a ⎝ ⎛⎭⎪⎫1a 2+b =0,可得ab =-3.故选D.答案 D5.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( ). A .f (0)+f (2)<2f (1) B .f (0)+f (2)≤2f (1) C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)解析 不等式(x -1)f ′(x )≥0等价于⎩⎪⎨⎪⎧x -1≥0,f x 或⎩⎪⎨⎪⎧x -1≤0,f x可知f (x )在(-∞,1)上递减,(1,+∞)上递增,或者f (x )为常数函数,因此f (0)+f (2)≥2f (1).答案 C6.已知函数f (x )的定义域为[-1,5],部分对应值如下表.f (x )的导函数y =f ′(x )的图象如图所示.下列关于函数f (x )的命题: ①函数y =f (x )是周期函数; ②函数f (x )在[0,2]上是减函数;③如果当x ∈[-1,t ]时,f (x )的最大值是2,那么t 的最大值为4; ④当1<a <2时,函数y =f (x )-a 有4个零点. 其中真命题的个数有( ).A .4B .3C .2D .1解析 依题意得,函数f (x )不可能是周期函数,因此①不正确;当x ∈(0,2)时,f ′(x )<0,因此函数f (x )在[0,2]上是减函数,②正确;当x ∈[-1,t ]时,f (x )的最大值是2,依题意,结合函数f (x )的可能图象形状分析可知,此时t 的最大值是5,因此③不正确;注意到f (2)的值不明确,结合图形分析可知,将函数f (x )的图象向下平移a (1<a <2)个单位后相应曲线与x 轴的交点个数不确定,因此④不正确.综上所述,选D. 答案 D 二、填空题7.函数y =x -2sin x 在[0,π]上的递增区间是________.解析 y ′=1-2cos x ,令1-2cos x ≥0,得cos x ≤12,解得2k π+π3≤x ≤2k π+53π,k ∈R ,又0≤x ≤π,∴π3≤x ≤π.答案 ⎣⎢⎡⎦⎥⎤π3,π 8.函数f (x )=x 3-3x 2+1在x =________处取得极小值.解析 f ′(x )=3x 2-6x ,令f ′(x )=0,得x 1=0,x 2=2,当x ∈(-∞,0)时,f ′(x )>0, 当x ∈(0,2)时,f ′(x )<0,当x ∈(2,+∞)时,f ′(x )>0,显然当x =2时f (x )取极小值.答案 29.若曲线f (x )=ax 5+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 解析 ∵f ′(x )=5ax 4+1x,x ∈(0,+∞),∴由题意知5ax 4+1x=0在(0,+∞)上有解.即a =-15x5在(0,+∞)上有解.∵x ∈(0,+∞),∴-15x 5∈(-∞,0).∴a ∈(-∞,0).答案 (-∞,0)10.已知函数y =-13x 3+bx 2-(2b +3)x +2-b 在R 上不是单调减函数,则b 的取值范围是________.解析 y ′=-x 2+2bx -(2b +3),要使原函数在R 上单调递减,应有y ′≤0恒成立,∴Δ=4b 2-4(2b +3)=4(b 2-2b -3)≤0,∴-1≤b ≤3,故使该函数在R 上不是单调减函数的b 的取值范围是b <-1或b >3. 答案 (-∞,-1)∪(3,+∞) 三、解答题11.设函数f (x )=ax 3-3x 2,(a ∈R ),且x =2是y =f (x )的极值点,求函数g (x )=e x·f (x )的单调区间.解 f ′(x )=3ax 2-6x =3x (ax -2). 因为x =2是函数y =f (x )的极值点.所以f ′(2)=0,即6(2a -2)=0,因此a =1, 经验证,当a =1时,x =2是函数f (x )的极值点, 所以g (x )=e x(x 3-3x 2),g ′(x )=e x (x 3-3x 2+3x 2-6x )=e x (x 3-6x )=x (x +6)(x -6)e x.因为e x>0,所以y =g (x )的单调增区间是(-6,0)和(6,+∞);单调减区间是(-∞,-6)和(0,6). 12.已知函数f (x )=x 3-ax -1(1)若f (x )在(-∞,+∞)上单调递增,求实数a 的取值范围;(2)是否存在实数a ,使f (x )在(-1,1)上单调递减?若存在,求出a 的取值范围;若不存在试说明理由. 解 (1)f ′(x )=3x 2-a由Δ≤0,即12a ≤0,解得a ≤0,因此当f (x )在(-∞,+∞)上单调递增时,a 的取值范围是(-∞,0]. (2)若f (x )在(-1,1)上单调递减,则对于任意x ∈(-1,1)不等式f ′(x )=3x 2-a ≤0恒成立 即a ≥3x 2,又x ∈(-1,1),则3x 2<3因此a ≥3函数f (x )在(-1,1)上单调递减,实数a 的取值范围是[3,+∞). 13.已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤f x +m 2在区间(t,3)上总不是单调函数,求m 的取值范围.解 (1)根据题意知,f ′(x )=a -xx(x >0),当a >0时,f (x )的单调递增区间为(0,1],单调递减区间为(1,+∞);当a <0时,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1];当a =0 时,f (x )不是单调函数.(2)∵f ′(2)=-a2=1,∴a =-2,∴f (x )=-2ln x +2x -3.∴g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数,且g ′(0)=-2,∴⎩⎪⎨⎪⎧g t <0,g >0.由题意知:对于任意的t ∈[1,2],g ′(t )<0恒成立,∴⎩⎪⎨⎪⎧g <0,g <0,g>0,∴-373<m <-9.14.设函数f (x )=ln x +ax -1在⎝ ⎛⎭⎪⎫0,1e 内有极值. (1)求实数a 的取值范围;(2)若x 1∈(0,1),x 2∈(1,+∞).求证:f (x 2)-f (x 1)>e +2-1e .注:e 是自然对数的底数.(1)解 易知函数f (x )的定义域为(0,1)∪(1,+∞), f ′(x )=1x-a x -2=x -2-ax x x -2=x 2-a +x +1x x -2.由函数f (x )在⎝ ⎛⎭⎪⎫0,1e 内有极值,可知方程f ′(x )=0在⎝ ⎛⎭⎪⎫0,1e 内有解,令g (x )=x 2-(a+2)x +1=(x -α)(x -β).不妨设0<α<1e,则β>e ,又g (0)=1>0,所以g ⎝ ⎛⎭⎪⎫1e =1e2-a +2e +1<0,解得a >e +1e -2. (2)证明 由(1)知f ′(x )>0⇔0<x <α或x >β,f ′(x )<0⇔α<x <1或1<x <β,所以函数f (x )在(0,α),(β,+∞)上单调递增,在(α,1),(1,β)上单调递减. 由x 1∈(0,1)得f (x 1)≤f (α)=ln α+aα-1,由x 2∈(1,+∞)得f (x 2)≥f (β)=ln β+aβ-1,所以f (x 2)-f (x 1)≥f (β)-f (α). 由(1)易知α·β=1,α+β=a +2,所以f (β)-f (α)=ln β-ln 1β+a ⎝ ⎛⎭⎪⎫1β-1-1α-1=2lnβ+a ·α-ββ-α-=2ln β+a ·1β-β2-a +=2ln β+β-1β.记h (β)=2ln β+β-1β(β>e),则h ′(β)=2β+1+1β2=⎝ ⎛⎭⎪⎫1β+12>0,所以函数h (β)在(e ,+∞)上单调递增, 所以f (x 2)-f (x 1)≥h (β)>h (e)=2+e -1e .。

【步步高】(广东专用)2015高考数学一轮复习 第2讲 圆的方程同步检测 文

【步步高】(广东专用)2015高考数学一轮复习 第2讲 圆的方程同步检测 文

第2讲 圆的方程一、选择题1.已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ). A .x 2+y 2=2 B .x 2+y 2= 2 C .x 2+y 2=1D .x 2+y 2=4解析 AB 的中点坐标为:(0,0), |AB |=[1--2+-1-2=22,∴圆的方程为:x 2+y 2=2. 答案 A2.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与圆的位置关系是( ). A .原点在圆上 B .原点在圆外 C .原点在圆内D .不确定解析 将圆的一般方程化为标准方程(x +a )2+(y +1)2=2a ,因为0<a <1,所以(0+a )2+(0+1)2-2a =(a -1)2>0,所以原点在圆外. 答案 B3.已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -2)2=1 B .(x -2)2+(y +2)2=1 C .(x +2)2+(y +2)2=1 D .(x -2)2+(y -2)2=1解析 只要求出圆心关于直线的对称点,就是对称圆的圆心,两个圆的半径不变.设圆C 2的圆心为(a ,b ),则依题意,有⎩⎪⎨⎪⎧a -12-b +12-1=0,b -1a +1=-1,解得⎩⎪⎨⎪⎧a =2,b =-2,对称圆的半径不变,为1.答案 B4.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y -2=0的距离等于1,则半径r 的取值范围是( ).A .(4,6)B .[4,6)C .(4,6]D .[4,6]解析 因为圆心(3,-5)到直线4x -3y -2=0的距离为5,所以当半径r =4 时,圆上有1个点到直线4x -3y -2=0的距离等于1,当半径r =6时,圆上有3个点到直线4x -3y -2=0的距离等于1,所以圆上有且只有两个点到直线4x -3y -2=0的距离等于1时,4<r <6. 答案 A5.已知圆C :x 2+y 2+mx -4=0上存在两点关于直线x -y +3=0对称,则实数m 的值为( ). A .8B .-4C .6D .无法确定解析 圆上存在关于直线x -y +3=0对称的两点,则x -y +3=0过圆心⎝ ⎛⎭⎪⎫-m2,0,即-m2+3=0,∴m =6.答案 C6.圆心为C ⎝ ⎛⎭⎪⎫-12,3的圆与直线l :x +2y -3=0交于P ,Q 两点,O 为坐标原点,且满足OP →·OQ→=0,则圆C 的方程为( ).A.⎝ ⎛⎭⎪⎫x -122+(y -3)2=52 B.⎝ ⎛⎭⎪⎫x -122+(y +3)2=52 C.⎝ ⎛⎭⎪⎫x +122+(y -3)2=254D.⎝ ⎛⎭⎪⎫x +122+(y +3)2=254解析 法一 ∵圆心为C ⎝ ⎛⎭⎪⎫-12,3,∴设圆的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=r 2.设P (x 1,y 1),Q (x 2,y 2).由圆方程与直线l 的方程联立得:5x 2+10x +10-4r 2=0, ∴x 1+x 2=-2,x 1x 2=10-4r25.由OP →·OQ →=0,得x 1x 2+y 1y 2=0,即: 54x 1x 2-34(x 1+x 2)+94=10-4r 24+154=0, 解得r 2=254,经检验满足判别式Δ>0.故圆C 的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=254.法二 ∵圆心为C ⎝ ⎛⎭⎪⎫-12,3,∴设圆的方程为⎝ ⎛⎭⎪⎫x +122+(y -3)2=r 2,在所给的四个选项中只有一个方程所写的圆心是正确的,即⎝ ⎛⎭⎪⎫x +122+(y -3)2=254,故选C. 答案 C 二、填空题7.过两点A (0,4),B (4,6),且圆心在直线x -2y -2=0上的圆的标准方程是________. 解析 设圆心坐标为(a ,b ),圆半径为r ,则圆方程为(x -a )2+(y -b )2=r 2, ∵圆心在直线x -2y -2=0上,∴a -2b -2=0,①又∵圆过两点A (0,4),B (4,6),∴(0-a )2+(4-b )2=r 2,②且(4-a )2+(6-b )2=r 2,③由①②③得:a =4,b =1,r =5, ∴圆的方程为(x -4)2+(y -1)2=25. 答案 (x -4)2+(y -1)2=258.已知圆C :(x -3)2+(y -4)2=1,点A (0,-1),B (0,1).P 是圆C 上的动点,当|PA |2+|PB |2取最大值时,点P 的坐标是________.解析 设P (x 0,y 0),则|PA |2+|PB |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2, 显然x 20+y 20的最大值为(5+1)2,∴d max =74,此时OP →=-6PC →,结合点P 在圆上,解得点P 的坐标为⎝ ⎛⎭⎪⎫185,245.答案 ⎝ ⎛⎭⎪⎫185,245 9.已知平面区域⎩⎪⎨⎪⎧x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为________.解析 由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆,又△OPQ 为直角三角形,故其圆心为斜边PQ 的中点(2,1),半径为|PQ |2=5,∴圆C 的方程为(x -2)2+(y -1)2=5. 答案 (x -2)2+(y -1)2=510.已知圆C :(x -3)2+(y -4)2=1,点A (-1,0),B (1,0),点P 是圆上的动点,则d =|PA |2+|PB |2的最大值为________,最小值为________.解析 设点P (x 0,y 0),则d =(x 0+1)2+y 20+(x 0-1)2+y 20=2(x 20+y 20)+2,欲求d 的最值,只需求u =x 20+y 20的最值,即求圆C 上的点到原点的距离平方的最值.圆C 上的点到原点的距离的最大值为6,最小值为4,故d 的最大值为74,最小值为34. 答案 74 34 三、解答题11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410. (1)求直线CD 的方程; (2)求圆P 的方程.解 (1)直线AB 的斜率k =1,AB 的中点坐标为(1,2), ∴直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0. ①又直径|CD |=410,∴|PA |=210, ∴(a +1)2+b 2=40,②由①②解得⎩⎪⎨⎪⎧a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2),∴圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.12.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点,求四边形PAMB 面积的最小值.解 (1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0), 根据题意得:⎩⎪⎨⎪⎧-a 2+-1-b 2=r 2,-1-a 2+-b2=r 2,a +b -2=0,解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4. (2)因为四边形PAMB 的面积S =S △PAM +S △PBM =12|AM |·|PA |+12|BM |·|PB |,又|AM |=|BM |=2,|PA |=|PB |,所以S =2|PA |, 而|PA |=|PM |2-|AM |2=|PM |2-4, 即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小, 所以|PM |min =|3×1+4×1+8|32+42=3, 所以四边形PAMB 面积的最小值为S =2|PM |2min -4=232-4=2 5. 13.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称. (1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ →·MQ →的最小值.解 (1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2.(2)设Q (x ,y ),则x 2+y 2=2,且PQ →·MQ →=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2,令x =2cos θ,y =2sin θ,∴PQ →·MQ →=x +y -2=2(sin θ+cos θ)-2 =2sin ⎝ ⎛⎭⎪⎫θ+π4-2, 所以PQ →·MQ →的最小值为-4.14.已知点A (-3,0),B (3,0),动点P 满足|PA |=2|PB |. (1)若点P 的轨迹为曲线C ,求此曲线的方程;(2)若点Q 在直线l 1:x +y +3=0上,直线l 2经过点Q 且与曲线C 只有一个公共点M ,求|QM |的最小值.解 (1)设点P 的坐标为(x ,y ), 则x +2+y 2=2x -2+y 2.化简可得(x -5)2+y 2=16,此即为所求.(2)曲线C 是以点(5,0)为圆心,4为半径的圆,如图, 由直线l 2是此圆的切线,连接CQ , 则|QM |=|CQ |2-|CM |2=|CQ |2-16, 当CQ ⊥l 1时,|CQ |取最小值,|CQ |=|5+3|2=42,此时|QM |的最小值为32-16=4.。

15年高考真题——理科数学(广东卷)-推荐下载

15年高考真题——理科数学(广东卷)-推荐下载

(D)4
(B) x2 y2 1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

【步步高】2015届高考数学第一轮复习(典型题 详解)中档题目强化练参数方程专项基础训练

【步步高】2015届高考数学第一轮复习(典型题 详解)中档题目强化练参数方程专项基础训练

参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上__________的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组所确定的点M (x ,y )都在____________,那么方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称______.相对于参数方程而言,直接给出点的坐标间关系的方程叫做__________. 2.几种常见曲线的参数方程(1)直线:经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程是____________(t 为参数). (2)圆:以O ′(a ,b )为圆心,r 为半径的圆的参数方程是____________,其中α是参数.当圆心在(0,0)时,方程⎩⎪⎨⎪⎧x =r cos α,y =r sin α.(3)椭圆:中心在原点,坐标轴为对称轴的椭圆的参数方程有以下两种情况: 椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是____________,其中φ是参数.椭圆x 2b 2+y 2a2=1(a >b >0)的参数方程是____________,其中φ是参数.(4)抛物线:抛物线y 2=2px (p >0)的参数方程是⎩⎪⎨⎪⎧x =2pt 2,y =2pt .(t 为参数).1.(课本习题改编)若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t (t 为参数),则直线的斜率为________.2.椭圆⎩⎪⎨⎪⎧x =2cos θ,y =5sin θ(θ为参数)的离心率为________.3.已知点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t (t 为参数)上,则|PF |=________.4.(课本习题改编)直线⎩⎪⎨⎪⎧x =-1+t sin 40°,y =3+t cos 40°(t 为参数)的倾斜角为________.5.已知曲线C 的参数方程是⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数).则点M 1(0,1),M 2(5,4)在曲线C 上的是________.题型一 参数方程与普通方程的互化例1 已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________.思维升华 (1)参数方程化为普通方程常用的消参技巧有代入消元、加减消元、平方后再加减消元等.对于与角θ有关的参数方程,经常用到的公式有sin 2θ+cos 2θ=1,1+tan 2θ=1cos 2θ等.(2)在将曲线的参数方程化为普通方程时,还要注意其中的x ,y 的取值范围,即在消去参数的过程中一定要注意普通方程与参数方程的等价性.(2013·广东)已知曲线C 的参数方程为⎩⎨⎧x =2cos ty =2sin t(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为________.题型二 参数方程的应用例2 在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数),直线l 经过点P (2,2),倾斜角α=π3.(1)写出圆的标准方程和直线l 的参数方程; (2)设l 与圆C 相交于A 、B 两点,求|P A |·|PB |的值.思维升华 根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: (1)直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; (2)定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;(3)设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 2M |及中点坐标).已知直线l 的参数方程为⎩⎨⎧x =3+12t ,y =2+32t (t 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数). (1)将曲线C 的参数方程化为普通方程;(2)若直线l 与曲线C 交于A 、B 两点,求线段AB 的长.题型三 极坐标、参数方程的综合应用例3 在直角坐标平面内,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.曲线C 的极坐标方程是ρ=4cos θ,直线l 的参数方程是⎩⎨⎧x =-3+32t ,y =12t(t 为参数),M ,N分别为曲线C 、直线l 上的动点,则|MN |的最小值为________.思维升华 涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.转化后可使问题变得更加直观,它体现了化归思想的具体运用.(2013·湖北)在直角坐标系xOy 中,椭圆C 的参数方程为⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数,a >b >0),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O为极点,以x 轴正半轴为极轴)中,直线l 与圆O 的极坐标方程分别为ρsin(θ+π4)=22m (m为非零常数)与ρ=b .若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为________.参数的几何意义不明致误典例:(10分)已知直线l 的参数方程为⎩⎨⎧x =12t ,y =22+32t(t 为参数),若以直角坐标系xOy 的O 点为极点,Ox 方向为极轴,选择相同的长度单位建立极坐标系,得曲线C 的极坐标方程为ρ=2cos(θ-π4).(1)求直线l 的倾斜角;(2)若直线l 与曲线C 交于A ,B 两点,求|AB |.易错分析 不明确直线的参数方程中的几何意义导致错误. 规范解答解 (1)直线的参数方程可以化为⎩⎪⎨⎪⎧x =t cos 60°,y =22+t sin 60°,[2分]根据直线参数方程的意义,直线l 经过点(0,22), 倾斜角为60°.[4分](2)直线l 的直角坐标方程为y =3x +22,[6分] ρ=2cos(θ-π4)的直角坐标方程为(x -22)2+(y -22)2=1,[8分]所以圆心(22,22)到直线l 的距离d =64. 所以|AB |=102.[10分] 温馨提醒 对于直线的参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)来说,要注意t 是参数,而α则是直线的倾斜角.与此类似,椭圆参数方程⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ的参数φ有特别的几何意义,它表示离心角.方法与技巧1.参数方程化普通方程常用的消参技巧:代入消元、加减消元、平方后加减消元等,经常用到公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ.2.利用曲线的参数方程来求解两曲线间的最值问题非常简捷方便,是我们解决这类问题的好方法.3.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:①t 0=t 1+t 22;②|PM |=|t 0|=⎪⎪⎪⎪⎪⎪t 1+t 22;③|AB |=|t 2-t 1|;④|P A |·|PB |=|t 1·t 2|. 失误与防范在将曲线的参数方程化为普通方程时,不仅仅要把其中的参数消去,还要注意其中的x ,y 的取值范围.也即在消去参数的过程中一定要注意普通方程与参数方程的等价性.A 组 专项基础训练1.若直线的参数方程为⎩⎨⎧x =1+3t ,y =2-3t(t 为参数),则直线的倾斜角为________.2.将参数方程⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(0≤t ≤5)化为普通方程为________________. 3.(2013·湖南)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.4.(2013·陕西)如图,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程为______________.5.已知曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R )经过点(m ,12),则m =________.6.(2013·重庆)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.7.(2012·天津)已知抛物线的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数),其中p >0,焦点为F ,准线为l .过抛物线上一点M 作l 的垂线,垂足为E .若|EF |=|MF |,点M 的横坐标是3,则p =________.8.已知曲线C :⎩⎪⎨⎪⎧ x =2cos θ,y =2sin θ(θ为参数)和直线l :⎩⎪⎨⎪⎧x =t ,y =t +b (t 为参数,b 为实数),若曲线C 上恰有3个点到直线l 的距离等于1,则b =________.9.在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧ x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.10.若直线l 的极坐标方程为ρcos(θ-π4)=32,圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数)上的点到直线l 的距离为d ,则d 的最大值为________.B 组 专项能力提升1.已知抛物线C 1的参数方程为⎩⎪⎨⎪⎧x =8t2y =8t (t 为参数),圆C 2的极坐标方程为ρ=r (r >0),若斜率为1的直线经过抛物线C 1的焦点,且与圆C 2相切,则r =________.2.直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数为________.3.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =t ,y =t (t 为参数)和⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),则曲线C 1与C 2的交点坐标为________. 4.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知射线θ=π4与曲线⎩⎪⎨⎪⎧x =t +1,y =(t -1)2 (t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为________.5.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =4-2t ,y =t -2(t 为参数),P 是椭圆x 24+y 2=1上的任意一点,则点P 到直线l 的距离的最大值为________.6.已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos αy =1+sin α (α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 与圆C 的交点的直角坐标为________________.7.(2013·辽宁改编)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1)C 1与C 2交点的极坐标为________;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),则a ,b 的值分别为________.答案基础知识自主学习 要点梳理1.任意一点 这条曲线上 参数 普通方程2.(1)⎩⎪⎨⎪⎧ x =x 0+t cos α,y =y 0+t sin α (2)⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α(3)⎩⎪⎨⎪⎧ x =a cos φ,y =b sin φ ⎩⎪⎨⎪⎧x =b cos φ,y =a sin φ夯基释疑1.-32 2.215 3.4 4.50° 5.M 1题型分类深度剖析 例1 ⎝⎛⎭⎫1,255解析 将两曲线的参数方程化为普通方程分别为x 25+y 2=1 (0≤y ≤1,-5<x ≤5)和y 2=45x ,联立解得交点为⎝⎛⎭⎫1,255.跟踪训练1 ρcos θ+ρsin θ-2=0解析 由⎩⎪⎨⎪⎧x =2cos ty =2sin t(t 为参数),得曲线C 的普通方程为x 2+y 2=2.则在点(1,1)处的切线l的方程为y -1=-(x -1),即x +y -2=0.又x =ρcos θ,y =ρsin θ,∴l 的极坐标方程为ρcos θ+ρsin θ-2=0.例2 解 (1)由圆C 的参数方程可得其标准方程为x 2+y 2=16.因为直线l 过点P (2,2),倾斜角α=π3,所以直线l 的参数方程为⎩⎨⎧x =2+t cos π3,y =2+t sin π3,即⎩⎨⎧x =2+12t ,y =2+32t (t 为参数).(2)把直线l 的参数方程⎩⎨⎧x =2+12t ,y =2+32t代入圆C :x 2+y 2=16中,得(2+12t )2+(2+32t )2=16,t 2+2(3+1)t -8=0,设A 、B 两点对应的参数分别为t 1、t 2,则t 1t 2=-8,即|P A |·|PB |=8. 跟踪训练2 解 (1)x 2+y 2=16.(2)将⎩⎨⎧x =3+12t ,y =2+32t 代入x 2+y 2=16,并整理得t 2+33t -9=0.设A 、B 对应的参数为t 1、t 2,则t 1+t 2=-33,t 1t 2=-9. |AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=37.例312解析 化极坐标方程ρ=4cos θ为直角坐标方程x 2+y 2-4x =0,所以曲线C 是以(2,0)为圆心,2为半径的圆.化参数方程⎩⎨⎧x =-3+32t ,y =12t(t 为参数)为普通方程x -3y +3=0.圆心到直线l 的距离d=|2+3|1+3=52,此时,直线与圆相离,所以|MN |的最小值为52-2=12. 跟踪训练363解析 椭圆C 的标准方程为x 2a 2+y 2b 2=1,直线l 的标准方程为x +y =m ,圆O 的方程为x 2+y 2=b 2,由题意知⎩⎨⎧|m |2=b a 2-b 2=|m |,∴a 2-b 2=2b 2,a 2=3b 2,∴e =c 2a 2=3b 2-b 23b 2=23=63.练出高分 A 组 1.150°解析 由直线的参数方程知,斜率k =y -2x -1=-3t 3t =-33=tan θ,θ为直线的倾斜角,所以该直线的倾斜角为150°. 2.x -3y -5=0,x ∈[2,77]解析 化为普通方程为x =3(y +1)+2,即x -3y -5=0,由于x =3t 2+2∈[2,77],故曲线为线段. 3.3解析 椭圆C 的右顶点坐标为(3,0),若直线l 过(3,0),则0=3-a ,∴a =3.4.⎩⎨⎧x =12+12cos 2θ,y =12sin 2θ0≤θ<π解析 由题意得圆的标准方程为⎝⎛⎭⎫x -122+y 2=⎝⎛⎭⎫122,设圆与x 轴的另一交点为Q ,则Q (1,0),设点P 的坐标为(x ,y ),则OP =OQ cos θ=cos θ.∴⎩⎨⎧x =OP cos θ=cos 2θ=12+12cos 2θ,y =OP sin θ=cos θ·sin θ=12sin 2θ0≤θ<π.5.±154解析 将曲线C :⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(参数θ∈R )化为普通方程为x 2+y 24=1,将点(m ,12)代入该椭圆方程,得m 2+144=1,即m 2=1516,所以m =±154.6.16解析 将极坐标方程ρcos θ=4化为直角坐标方程得x =4,将x =4代入⎩⎪⎨⎪⎧x =t 2,y =t 3得t =±2,从而y =±8.所以A (4,8),B (4,-8).所以|AB |=|8-(-8)|=16.7.2解析 根据抛物线的参数方程可知抛物线的标准方程是y 2=2px ,所以y 2M =6p ,所以E ⎝⎛⎭⎫-p 2,±6p ,F ⎝⎛⎭⎫p 2,0,所以p 2+3=p 2+6p ,所以p 2+4p -12=0,解得p =2(负值舍去).8.±2解析 将曲线C 和直线l 的参数方程分别化为普通方程为x 2+y 2=4和y =x +b ,依题意,若要使圆上有3个点到直线l 的距离为1,只要满足圆心到直线的距离为1即可,得到|b |2=1,解得b =±2.9.32解析 将曲线C 1与C 2的方程化为普通方程求解. ∵⎩⎪⎨⎪⎧ x =t +1,y =1-2t ,消去参数t 得2x +y -3=0. 又⎩⎪⎨⎪⎧x =a sin θ,y =3cos θ,消去参数θ得x 2a 2+y 29=1. 方程2x +y -3=0中,令y =0得x =32, 将⎝⎛⎭⎫32,0代入x 2a 2+y 29=1,得94a 2=1.又a >0,∴a =32. 10.32+1解析 ρcos(θ-π4)=32,∴ρcos θ+ρsin θ=6, ∴直线l 的直角坐标方程为x +y =6.由圆C 的参数方程知圆C 的圆心为C (0,0),半径r =1.圆心C (0,0)到直线l 的距离为62=3 2.∴d min =32+1. B 组1. 2解析 抛物线C 1的普通方程为y 2=8x ,其焦点坐标是(2,0),过该点且斜率为1的直线方程是y =x -2,即x -y -2=0.圆ρ=r 的圆心是极点、半径为r ,直线x -y -2=0与该圆相切,则r =|0-0-2|2= 2. 2.2解析 将参数方程化为普通方程求解.将⎩⎪⎨⎪⎧ x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0; 将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.3.(1,1)解析 化参数方程为普通方程然后解方程组求解.C 1的普通方程为y 2=x (x ≥0,y ≥0),C 2的普通方程为x 2+y 2=2.由⎩⎪⎨⎪⎧ y 2=x ,x ≥0,y ≥0,x 2+y 2=2得⎩⎪⎨⎪⎧x =1,y =1. ∴C 1与C 2的交点坐标为(1,1).4.⎝⎛⎭⎫52,52 解析 化射线的极坐标方程为普通方程,代入曲线方程求t 值.射线θ=π4的普通方程为y =x (x ≥0),代入⎩⎪⎨⎪⎧x =t +1,y =(t -1)2,得t 2-3t =0,解得t =0或t =3. 当t =0时,x =1,y =1,即A (1,1);当t =3时,x =4,y =4,即B (4,4).所以AB 的中点坐标为⎝⎛⎭⎫52,52. 5.2105解析 由于直线l 的参数方程为⎩⎪⎨⎪⎧ x =4-2t ,y=t -2(t 为参数),故直线l 的普通方程为x +2y =0. 因为P 为椭圆x 24+y 2=1上的任意一点,故可设P (2cos θ,sin θ),其中θ∈R .因此点P 到直线l 的距离是d =|2cos θ+2sin θ|12+22 =22⎪⎪⎪⎪sin ⎝⎛⎭⎫θ+π45.所以当θ=k π+π4,k ∈Z 时,d 取得最大值2105.6.(-1,1)和(1,1)解析 ∵y =ρsin θ,∴直线l 的直角坐标方程为y =1. 由⎩⎪⎨⎪⎧ x =cos α,y =1+sin α得x 2+(y -1)2=1.由⎩⎪⎨⎪⎧ y =1,x 2+(y -1)2=1得⎩⎪⎨⎪⎧ x =-1,y =1或⎩⎪⎨⎪⎧ x =1,y =1.∴直线l 与圆C 的交点的直角坐标为(-1,1)和(1,1).7.(1)⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4 (2)-1,2解析 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4, 直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧ x 1=0,y 1=4,⎩⎪⎨⎪⎧ x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4,注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3). 故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab 2+1,所以⎩⎨⎧ b 2=1,-ab 2+1=2,解得a =-1,b =2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 直接证明与间接证明
一、选择题
1.“所有9的倍数都是3的倍数,某奇数是9的倍数,故该奇数是3的倍数.”上述推理( )
A 小前提错
B 结论错
C 正确
D 大前提错 解析 大前提,小前提都正确,推理正确,故选C. 答案 C
2.对于平面α和共面的直线m ,n ,下列命题中真命题是( ). A .若m ⊥α,m ⊥n ,则n ∥α B .若m ∥α,n ∥α,则m ∥n C .若m ⊂α,n ∥α,则m ∥n
D .若m ,n 与α所成的角相等,则m ∥n
解析 对于平面α和共面的直线m ,n ,真命题是“若m ⊂α,n ∥α,则m ∥n ”. 答案 C
3.要证:a 2+b 2-1-a 2b 2≤0,只要证明 ( ).
A .2ab -1-a 2b 2≤0
B .a 2+b 2-1-a 4+b
42≤0
C.(a +b )2
2-1-a 2b 2≤0
D .(a 2-1)(b 2-1)≥0
解析 因为a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0,故选D. 答案 D
4.命题“如果数列{a n }的前n 项和S n =2n 2-3n ,那么数列{a n }一定是等差数列”是否成立( ).
A .不成立
B .成立
C .不能断定
D .能断定 解析 ∵S n =2n 2-3n ,
∴S n -1=2(n -1)2-3(n -1)(n ≥2),
∴a n =S n -S n -1=4n -5(n =1时,a 1=S 1=-1符合上式). 又∵a n +1-a n =4(n ≥1),
∴{a n }是等差数列. 答案 B
5.设a ,b ,c 均为正实数,则三个数a +1b ,b +1c ,c +1
a ( ). A .都大于2
B .都小于2
C .至少有一个不大于2
D .至少有一个不小于2
解析 ∵a >0,b >0,c >0,
∴⎝ ⎛
⎭⎪⎫a +1b +⎝ ⎛⎭⎪⎫b +1c +⎝ ⎛⎭⎪⎫c +1a =⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭
⎪⎫b +1b + ⎝ ⎛⎭⎪⎫
c +1c ≥6,当且仅当a =b =c 时,“=”成立,故三者不能都小于2,即至少有一个不小于2. 答案 D
6.定义一种运算“*”:对于自然数n 满足以下运算性质:(n +1)*1=n *1+1,则n *1= ( ).
A .n
B .n +1
C .n -1
D .n 2
解析 由(n +1)*1=n *1+1,得n *1=(n -1)*1+1=(n -2)*1+2=…=n. 答案 A 二、填空题
7.要证明“3+7<25”可选择的方法有以下几种,其中最合理的是________(填序号).
①反证法,②分析法,③综合法. 答案 ②
8.设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是________. 解析 取a =2,b =1,得m <n .再用分析法证明:
a -
b <a -b ⇐a <b +a -b ⇐a <b +2b ·a -b +a -b ⇐2b ·a -b >0,显然成立. 答案 m <n
9.已知a ,b ,μ∈(0,+∞)且1a +9
b =1,则使得a +b ≥μ恒成立的μ的取值范围是________.
解析 ∵a ,b ∈(0,+∞)且1a +9
b =1,
∴a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+⎝ ⎛⎭⎪⎫
9a b +b a ≥10+29=16,∴a +b 的最小值为16.
∴要使a +b ≥μ恒成立,需16≥μ,∴0<μ≤16. 答案 (0,16]
10.若a ,b ,c 是不全相等的正数,给出下列判断: ①(a -b )2+(b -c )2+(c -a )2≠0; ②a >b 与a <b 及a =b 中至少有一个成立; ③a ≠c ,b ≠c ,a ≠b 不能同时成立. 其中判断正确的是_______.
解析 ①②正确;③中a ≠c ,b ≠c ,a ≠b 可能同时成立, 如a =1,b =2,c =3.选C. 答案 ①② 三、解答题
11.已知非零向量a ,b ,且a ⊥b ,求证:|a |+|b |
|a +b |≤ 2.
证明 a ⊥b ⇔a ·b =0, 要证|a |+|b ||a +b |
≤ 2.
只需证|a |+|b |≤2|a +b |,
只需证|a |2+2|a ||b |+|b |2≤2(a 2+2a ·b +b 2), 只需证|a |2+2|a ||b |+|b |2≤2a 2+2b 2, 只需证|a |2+|b |2-2|a ||b |≥0, 即(|a |-|b |)2≥0,
上式显然成立,故原不等式得证.
12.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和. (1)求证:数列{S n }不是等比数列; (2)数列{S n }是等差数列吗?为什么?
(1)证明 假设数列{S n }是等比数列,则S 2
2=S 1S 3, 即a 21(1+q )2=a 1·a 1·(1+q +q 2),
因为a 1≠0,所以(1+q )2=1+q +q 2, 即q =0,这与公比q ≠0矛盾, 所以数列{S n }不是等比数列.
(2)解 当q =1时,S n =na 1,故{S n }是等差数列; 当q ≠1时,{S n }不是等差数列,否则2S 2=S 1+S 3, 即2a 1(1+q )=a 1+a 1(1+q +q 2), 得q =0,这与公比q ≠0矛盾. 13.已知f (x )=x 2+ax +b . (1)求:f (1)+f (3)-2f (2);
(2)求证:|f (1)|,|f (2)|,|f (3)|中至少有一个不小于1
2.
(1)解 ∵f (1)=a +b +1,f (2)=2a +b +4,f (3)=3a +b +9, ∴f (1)+f (3)-2f (2)=2.
(2)证明 假设|f (1)|,|f (2)|,|f (3)|都小于1
2. 则-12<f (1)<12,-12<f (2)<12,-12<f (3)<12, ∴-1<-2f (2)<1,-1<f (1)+f (3)<1. ∴-2<f (1)+f (3)-2f (2)<2, 这与f (1)+f (3)-2f (2)=2矛盾. ∴假设错误,即所证结论成立.
14.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若
f (c )=0,且0<x <c 时,f (x )>0. (1)证明:1
a 是f (x )=0的一个根;
(2)试比较1
a
与c 的大小; (3)证明:-2<b <-1.
解 (1)证明 ∵f (x )的图象与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2, ∵f (c )=0,∴x 1=c 是f (x )=0的根,
又x 1x 2=c a ,∴x 2=1a ⎝ ⎛⎭⎪⎫
1a ≠c ,
∴1
a
是f (x )=0的一个根.
(2)假设1a <c ,又1
a
>0,
由0<x <c 时,f (x )>0,
知f ⎝ ⎛⎭⎪⎫1a >0与f ⎝ ⎛⎭⎪⎫
1a =0矛盾,∴1a ≥c ,
又∵1a ≠c ,∴1
a
>c .
(3)证明 由f (c )=0,得ac +b +1=0, ∴b =-1-ac .
又a >0,c >0,∴b <-1.
二次函数f (x )的图象的对称轴方程为
x =-b 2a =x 1+x 22<x 2+x 22=x 2=1a ,
即-
b 2a <1
a
.又a >0, ∴b >-2,∴-2<b <-1.。

相关文档
最新文档