初二数学《二次根式》提高测试题
八年级初二数学下学期二次根式单元提高题检测试题

八年级初二数学下学期二次根式单元提高题检测试题一、选择题1. )A B C D 2.下列根式中,最简二次根式是( )A B C D 3.下列运算中,正确的是( )A =B 1=C =D =4.下列各式一定成立的是( )A 2a b =+B 21a =+C 21a =-D ab =5.下列运算中,正确的是( )A =3B .=-1C D .36.下列运算正确的是( ) A .52223-=y y B .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2D =7.x 的取值范围是( ) A .x ≥1B .x >1C .x ≤1D .x <18.若a b > )A .-B .-C .D .9.设0a >,0b >=的值是( ) A .2B .14C .12D .315810.下列二次根式中,最简二次根式是( )A B C D11.若75与最简二次根式1m +是同类二次根式,则m 的值为( ) A .7B .11C .2D .112.下列计算正确的是( ) A .235+=B .2332-= C .()222= D .393=二、填空题13.比较实数的大小:(1)5?-______3- ;(2)51-_______12 14.化简322+=___________. 15.化简并计算:()()()()()()()...112231920xx x x x x x x ++++=+++++++________.(结果中分母不含根式)16.已知|a ﹣2007|+2008a -=a ,则a ﹣20072的值是_____. 17.计算:11882--=_____________. 18.1262⨯÷=_____. 19.若实数23a =-,则代数式244a a -+的值为___. 20.实数a 、b 在数轴上的位置如图所示,则化简()222a b a b -+-=_____.三、解答题21.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:2222221122a b c S a b ⎛⎫+-=- ⎪⎝⎭同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2()()()S p p a p b p c =---2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积.(2)请证明:12S S【答案】(11572) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S = (2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:S ==(2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+ =2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b c b c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅=1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.22.计算:(1﹣(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--= 42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)xx x -+-=12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.23.已知1,2y =. 【答案】1【分析】根据已知和二次根式的性质求出x 、y 的值,把原式根据二次根式的性质进行化简,把x 、y 的值代入化简后的式子计算即可. 【详解】 1-8x≥0,x≤188x-1≥0,x≥18,∴x=18,y=12,∴原式532-==1222. 【点睛】本题考查的是二次根式的化简求值,把已知条件求出x 、y ,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.24.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,∵a b m n 、、、都为正整数,∴12m n =⎧⎨=⎩或21m n =⎧⎨=⎩ ,∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.25.观察下列等式:1==;==== 回答下列问题:(1(2)计算:【答案】(1(2)9 【分析】(1)根据已知的31=-n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可.【详解】=解:(1(2+99+++-=1100=1=10-1=9.26.计算(1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差.【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点: 二次根式的混合运算;方差.27.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.28.计算(1+(2+-(3÷ (4)(【答案】(1)23)4;(4)7. 【分析】(1)先把各二次根式化为最简二次根式,然后合并即可; (2)先把各二次根式化为最简二次根式,然后合并即可; (3)根据二次根式的乘除法则运算; (4)利用平方差公式计算; 【详解】(1+=+22=;(2==;÷(3)2b=2b=;4(4)((22=-=7【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了平方差公式.29.计算-②)21【答案】①【分析】①根据二次根式的加减法则计算;②利用平方差、完全平方公式进行计算.【详解】解:①原式=5-2-=②原式=(【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.30.计算:(1)0 1 2⎛⎫ ⎪⎝⎭(2)(4【答案】(1)-5;(2)9【分析】(1)第一项利用算术平方根的定义计算,后一项利用零指数幂法则计算,即可得到结果;(2)利用平方差公式计算即可.【详解】(1)0 1 2⎛⎫ ⎪⎝⎭41=--,5=-;(2)(4167=-9=.【点睛】本题考查了二次根式的混合运算以及零指数幂,熟练掌握平方差公式是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据二次根式的性质把每一项都化为最简二次根式,再根据同类二次根式的定义判断即可.【详解】解:A=BC不是同类二次根式,不合题意;D3故选:A.【点睛】本题考查了同类二次根式的定义和二次根式的性质,属于基本题型,熟练掌握基本知识是解题关键.2.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A、被开方数含分母,故选项A不符合题意;B、被开方数是小数,故选项B不符合题意;C、被开方数不含开的尽的因数,被开方数不含分母,故C符合题意;D、被开方数含开得尽的因数,故D错误不符合题意;故选:C.【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.3.C解析:C【分析】根据二次根式的加、减、乘、除运算法则对各项进行计算即可得到结果.【详解】不是同类二次根式,不能合并,故此选项错误;不是同类二次根式,不能合并,故此选项错误;==,故此选项错误;D2故选:C.【点睛】此题主要考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答此题的关键.4.B解析:B【分析】分别利用二次根式的性质化简求出即可.【详解】解;A 2=|a+b|,故此选项错误;B 2+1,正确;C ,无法化简,故此选项错误;D ,故此选项错误;故选:B .【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.5.D解析:D【分析】根据二次根式的加减乘除法则逐项判断即可得.【详解】A 314=+=,此项错误B 、23==-,此项错误C 2428===⨯=,此项错误D 、3=,此项正确 故选:D .【点睛】本题考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解题关键.6.D解析:D【分析】由合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,分别进行判断,即可得到答案.【详解】解:A 、222523y y y -=,故A 错误;B 、426x x x ⋅=,故B 错误;C 、222()2a b a ab b --=++,故C 错误;D ==D 正确;故选:D .【点睛】本题考查了合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,解题的关键是熟练掌握运算法则进行解题.7.A解析:A【分析】根据二次根式有意义的条件:被开方数x-1≥0,解不等式即可.【详解】解:根据题意,得x-1≥0,解得x≥1.故选A.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.8.D解析:D【分析】首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a3b≥0∵a>b,∴a>0,b<0=-,a ab故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.9.C解析:C【分析】=变形后可分解为:)=0,从而根据a>0,b>0可得出a和b的关系,代入即可得出答案.【详解】由题意得:a=+15b,∴+)=0,故可得:a =5b ,a =25b , ∴23a b ab a b ab -+++=12. 故选C .【点睛】本题考查二次根式的化简求值,有一定难度,根据题意得出a 和b 的关系是关键.10.A解析:A【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A 、原式=;B 、是最简二次根式,不能化简;C 、原式=;D 、原式=. 考点:最简二次根式 11.C解析:C【分析】几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.【详解】解7553=m=7时1822m +==,故A 错误;当m=11时11223m +==1m +B 错误;当m=1时12m +=故D 错误;当m=2时13m +=故C 正确; 故选择C.【点睛】本题考查了同类二次根式的定义.12.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A 、非同类二次根式,不能合并,故错误;B 、2333=C 、222=,正确;D 39故选C .【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题13.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为: ,.解析:< <【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<(2)113424-=∵3=∴304<< 12 故答案为:< ,<. 【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键.14.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 15.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案. 【详解】解:原式====220400x x x-.【点睛】 此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.16.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a 的取值范围;再根据a 的取值范围,化简去掉绝对值;最后进行整理变形. 详解:∵|a﹣2007|+=a ,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a 的取值范围;再根据a 的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a ﹣2007=a ,∴a ≥2008,∴a ﹣2007=a ,=2007,两边同平方,得:a ﹣2008=20072,∴a ﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a 的取值范围,从而化简绝对值并变形.17.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.解析:2【解析】【详解】22.故答案为2. 【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.18.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可.【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.19.3【解析】∵ =,∴=(a-2)2==3,故答案为3.解析:3【解析】a=∵∴244a a -+=(a-2)2=()222+=3, 故答案为3.20.﹣2a【分析】首先根据实数a 、b 在数轴上的位置确定a 、b 的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a <0<b ,|a|<|b|,∴=-a-b+b-a=-解析:﹣2a【分析】首先根据实数a 、b 在数轴上的位置确定a 、b 的正负,然后利用二次根式的性质化简,最后合并同类项即可求解.【详解】依题意得:a <0<b ,|a|<|b|,.故答案为-2a .【点睛】此题主要考查了二次根式的性质与化简,其中正确利用数轴的已知条件化简是解题的关键,同时也注意处理符号问题. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
八年级初二数学第二学期二次根式单元达标提高题检测试题

一、选择题1.下列计算正确的是( )A .325+=B .1233-=C .326D .1234÷= 2.下列计算正确的是( ) A .336+= B .3323+= C .336⨯=D .3333+= 3.下列二次根式中,是最简二次根式的是( )A .15B .8C .13D .26 4.下列各式中,正确的是( )A .42=±B .822-=C .()233-=-D .342=5.下列各式是二次根式的是( )A .3B .1-C .35D .4π-6.下列计算正确的是( )A .531883+=B .()322326a b a b -=-C .222()a b a b -=-D .2422a ab a a b a -+⋅=-++ 7.如果关于x 的不等式组0,2223x m x x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为2x >,且式子3m -的值是整数,则符合条件的所有整数m 的个数是( ).A .5B .4C .3D .2 8.若ab <0,则代数式可化简为( ) A .a B .a C .﹣a D .﹣a9.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,2b a +b |+|a -c |-222c bc b -+( )A .2c -bB .2c -2aC .-bD .b 10.下列计算正确的是( ) A .234265=B 842C 2733=D 2(3)3-=-二、填空题11.若a ,b ,c 是实数,且21416210a b c a b c ++=---,则2b c +=________.12.)30m -≤,若整数a 满足m a +=a =__________.13.14+⋅⋅⋅=的解是______.14.已知|a ﹣2007=a ,则a ﹣20072的值是_____.15.已知a ,b 是正整数,若有序数对(a ,b )使得的值也是整数,则称(a ,b )是的一个“理想数对”,如(1,4)使得=3,所以(1,4)是的一个“理想数对”.请写出其他所有的“理想数对”: __________.16.计算: 20082009⋅-=_________.17.如果2y ,那么y x =_______________________.18.=_______.19.n 的最小值为___20.若a 、b 都是有理数,且2222480a ab b a -+++=.三、解答题21.计算: 21)3)(3--【答案】.【解析】【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.【详解】解:原式2222]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.22.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可.【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==23.计算:(1)+(2(33+-【答案】(1)2) -10【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可.【详解】解:(1)+===(2(33+-=5+9-24=14-24=-10.【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.24.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.25.先化简,再求值:2222212⎛⎫----÷⎪-+⎝⎭x y x yxx x xy y,其中x y==.【答案】原式x yx-=-,把x y==代入得,原式1=-.【详解】试题分析:先将括号里面进行通分,再将能分解因式的分解因式,约分化简即可.试题解析:2222212⎛⎫----÷⎪-+⎝⎭x y x yxx x xy y()()()222=x yx y x xx x x x y x y-⎛⎫---⋅⎪+-⎝⎭=y x x yx x y---⋅+x yx-=-把x y==代入得:原式1==-+考点:分式的化简求值.26.观察下列各式.====…… 根据上述规律回答下列问题.(1)接着完成第⑤个等式: _____;(2)请用含(1)n n ≥的式子写出你发现的规律;(3)证明(2)中的结论.【答案】(1=2(n =+3)见解析 【分析】(1)当n=5=(2(n =+ (3)直接根据二次根式的化简即可证明.【详解】解:(1=(2(n =+(3=(n ==+【点睛】此题主要考查探索数与式的规律,熟练发现规律是解题关键.27.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.28.化简求值:212(1)211x x x x -÷-+++,其中1x =.【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,11x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】解:A ;B ==;C =;D 2===.故选项错误. 故选B .2.B【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案.【详解】=3=,∴A、C、D均错误,B正确,故选:B.【点睛】此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键. 3.D解析:D【分析】根据最简二次根式的特点解答即可.【详解】A,故该选项不符合题意;B=C、D不能化简,即为最简二次根式,故选:D.【点睛】此题考查最简二次根式,掌握最简二次根式的特点:①被开方数中不含分母;②被开方数中不含能再开方的因式或因数,牢记特点是解题的关键.4.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A、B、C选项;利用立方根性质判断D选项.【详解】A,故该选项错误;B==C3=,故该选项错误;D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.5.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A 、符合二次根式有意义条件,符合题意;B 、-1<0B 选项不符合题意;C 、是三次根式,所以C 选项不符合题意;D 、π-4<0D 选项不符合题意.故选:A .【点睛】a ≥0.6.D解析:D【分析】分别运用二次根式、整式的运算、分式的运算法则逐项排除即可.【详解】解:A. =A 选项错误;B. ()()()33322363228a b a b a b -=-=-,故B 选项错误;C. 222()2a b a ab b -=-+,故C 选项错误;D. ()()2224222a a a ab a b a a b a a b a +--++⋅=⋅=-++++,故D 选项正确. 故答案为D .【点睛】本题考查了二次根式、整式的运算、分式的运算,掌握相关运算法则是解答本题的关键.7.C解析:C【分析】先求出两个不等式的解集,根据不等式组的解集为2x >可得出m ≤2的值是整数,得出|m|=3或2,于是m=-3,3,-2或2,由m ≤2,得m=-3,-2或2.【详解】 解:解不等式02x m ->得x >m ,解不等式223xx--<-得x>2,∵不等式组解集为x>2,∴m≤2,∵式子3m-的值是整数,则|m|=3或2,∴m=-3,3,2或-2,由m≤2得,m=-3,-2或2.即符合条件的所有整数m的个数是3个.故选:C.【点睛】本题考查了解一元一次不等式组以及二次根式的性质,熟练运用一元一次不等式组的解法是解题的关键.8.C解析:C【解析】【分析】二次根式有意义,就隐含条件b<0,由ab<0,先判断出a、b的符号,再进行化简即可.【详解】解:若ab<0,且代数式有意义;故由b>0,a<0;则代数式故选:C.【点睛】本题主要考查二次根式的化简方法与运用:当a>0时,,当a<0时,,当a=0时,.9.D解析:D【解析】解:∵|a|+a=0,∴|a|=﹣a,∴﹣a≥0,∴a≤0,∵|ab|=ab,∴ab≥0,∴b≤0,∵|c|﹣c=0,∴| c|=c,∴c≥0,∴原式=﹣b+(a+b)﹣(a﹣c)﹣(c﹣b)=b.故选D.10.C解析:C【分析】根据合并二次根式的法则、二次根式的性质、二次根式的除法法则即可判定.【详解】A、2342A错误;B=B错误;C3=,故选项C正确;=,故选项D错误;D3故选:C.【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.二、填空题11.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a,b,c的值,从而得到答案.∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123=== ∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.12.【分析】先根据确定m 的取值范围,再根据,推出,最后利用来确定a 的取值范围.【详解】解:为整数为故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用解析:5)30m -≤确定m 的取值范围,再根据m a +=32a ≤≤,最后利用78<<来确定a 的取值范围.【详解】 解:()230m m --≤23m ∴≤≤m a +=a m ∴=32a ∴≤≤7528<<46a ∴<<a 为整数a ∴为5故答案为:5.【点睛】本题考查的知识点是二次根式以及估算无理数的大小,利用“逼近法”得出围是解此题的关键.13.9【解析】【分析】设y=,由可将原方程进行化简,解化简后的方程即可求得答案.【详解】设y=,则原方程变形为,∴,即,∴4y+36-4y=y(y+9),即y2+9y-36=0,∴解析:9 【解析】【分析】设()11111y y y y =-++可将原方程进行化简,解化简后的方程即可求得答案. 【详解】设则原方程变形为()()()()()1111112894y y y y y y ++=+++++, ∴1111111112894y y y y y y -+-++-=+++++, 即11194y y -=+, ∴4y+36-4y=y(y+9),即y 2+9y-36=0,∴y=-12或y=3, ∵, ∴,∴x=9,故答案为:9.【点睛】本题考查了解无理方程,解题的关键是利用换元法,还要注意()11111y y y y =-++的应用. 14.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a 的取值范围;再根据a 的取值范围,化简去掉绝对值;最后进行整理变形. 详解:∵|a ﹣2007|+=a ,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a 的取值范围;再根据a 的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a ﹣2007=a ,∴a ≥2008,∴a ﹣2007=a ,=2007,两边同平方,得:a ﹣2008=20072,∴a ﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a 的取值范围,从而化简绝对值并变形.15.(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a=1,=1,要使为整数,=1或时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,解析:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9)【解析】试题解析:当a =1,要使或12时,分别为4和3,得出(1,4)和(1,1)是的“理想数对”,当a =412,要使+或12时,分别为3和2,得出(4,1)和(4,4)是的“理想数对”,当a =913,要使16时,=1,得出(9,36)是的“理想数对”,当a =1614,要使14时,=1,得出(16,16)是的“理想数对”,当a =3616,要使13时,=1,得出(36,9)是的“理想数对”, 即其他所有的“理想数对”:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9).故答案为:(1,1)、(4,1)、(4,4)、(9,36)、(16,16)、(36,9). 16.【解析】原式==17.【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x≥0,∴x=3,∴y=﹣2,∴.故答案为:.【点睛】 解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.18.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t =,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t =,由算术平方根的非负性可得t ≥0,则244t =+=+8=+8=+81)6=+2=1)∴=.t1.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.19.5【分析】因为是整数,且,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∵,且是整数,∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了解析:5【分析】,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.20.【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b的值,然后代入即可.解:∵∴∴∴∵∴解得:a=-4,b=-2∴=故答案为:.【点睛解析:【分析】先将原等式两边同时乘2,然后将左侧配方,然后利用平方的非负性即可求出a 和b 的值,然后代入即可.【详解】解:∵2222480a ab b a -+++=∴222448160a ab b a -+++=∴()()222448160a ab ba a -+++=+ ∴()()22240ab a +-+=∵()()2220,40a b a +-≥≥∴20,40a b a +-==解得:a=-4,b=-2=故答案为:【点睛】此题考查的是配方法、非负性的应用和化简二次根式,掌握完全平方公式、平方的非负性和二次根式的乘法公式是解决此题的关键.三、解答题21.无22.无24.无25.无26.无27.无28.无。
(2021年整理)二次根式经典提高练习习题(含答案)

(完整)二次根式经典提高练习习题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)二次根式经典提高练习习题(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)二次根式经典提高练习习题(含答案)的全部内容。
《二次根式》(一)判断题:1.ab 2)2(-=-2ab .……………( ) 2.3-2的倒数是3+2.( ) 3.2)1(-x =2)1(-x .…( ) 4.ab 、31b a 3、ba x 2-是同类二次根式( )5.x 8,31,29x +都不是最简二次根式.( ) (二)填空题:6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a= . 8.a -12-a 的有理化因式是____________.9.当1<x <4时,|x -4|+122+-x x =________________.10.方程2(x -1)=x +1的解是____________.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______. 12.比较大小:-721_________-341. 13.化简:(7-52)2000·(-7-52)2001=______________.14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.(三)选择题:16.已知233x x +=-x 3+x ,则………………( )(A)x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B)2y (C )-2x (D )-2y18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………( ) (A)x 2 (B )-x2 (C )-2x (D)2x 19.化简aa 3-(a <0)得( )(A)a - (B )-a (C)-a - (D)a 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A)2)(b a + (B )-2)(b a - (C)2)(b a -+- (D)2)(b a --- (四)比较大小 21(五)求值:22的整数部分为x ,小数部分为y ,试求2212x xy y ++的值.23。
八年级初二数学提高题专题复习二次根式练习题含答案

一、选择题1.若5,a =17=b ,则0.85的值用a 、b 可以表示为 ( ) A .10a b+ B .10-b aC .10ab D .b a2.若01x <<,则221144x x x x ⎛⎫⎛⎫-+-+-= ⎪ ⎪⎝⎭⎝⎭( ). A .2xB .2x-C .2x -D .2x3.已知实数a 在数轴上的位置如图所示,则化简2||(-1)a a +的结果为( )A .1B .﹣1C .1﹣2aD .2a ﹣14.下列方程中,有实数根的方程是( ) A 240x += B 210x -= C 12x +=D 331x x --=.5.()()a x a a y a x a a y --=--a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是( )A .3B .13C .2D .536.“分母有理化”是我们常用的一种化简的方法,如:33)(23)74323(23)(23)==+--+3535+-3535x =+-3535+>-,故0x >,由22(3535)35352(35)(35)2x =+-=-+-=,解得2x 35352+-=3263363332-++结果为( ) A .536+B .56+C .56D .536-7.下列计算正确的是( )A .235+=B .623÷=C .23(3)86--=-D .321-=8.下列计算正确的是( ) A .235+=B .236⋅=C .2434÷=D .()233-=-9.如果12与最简二次根式72a -是同类二次根式,那么a 的值是( ) A .﹣2 B .﹣1 C .1 D .2 10.下列二次根式中是最简二次根式的是( )A .6B .18C .27D .12二、填空题11.将2(3)(0)3a a a a-<-化简的结果是___________________.12.化简322+=___________.13.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①(3)f =z __________;②2(33)f +=z __________; ③222222(11)(22)(22)(33)(33)(44)f f f f f f ++++⋅++⋅++⋅+z z z z z z22(20172017)(20182018)f f +=+⋅+z z __________.14.已知x=3+1,y=3-1,则x 2+xy +y 2=_____. 15.实数a ,b 在数轴上的位置如图所示,则化简()22b a b +-﹣|a +b |的结果是_____.16.已知函数1x f x x,那么21f _____.17.把1m m-_____________. 18.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--+-=+---m+4的算术平方根为________.19.若0xy >,则二次根式________. 20.n 为________.三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3==,25384532++====-进行分母有理化. (3)利用所需知识判断:若a =,2b =a b,的关系是 . (4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019 【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出; (2)原式分子分母同时乘以分母的有理化因式(2,化简即可; (3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可. 【详解】解:(1)∵()()1111=, ∴1的有理化因式是1;(22243743--==--(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.先化简再求值:4y x⎛-⎝,其中3x-=.【答案】(2x-【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x,y的值,继而将x、y的值代入计算可得答案.【详解】解:4y x⎛-⎝((=-(2x=-∵30x-∴3,4x y==当3,4x y==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.23.计算(11)1)⨯; (2)【答案】(12+;(2). 【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(22⨯,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.24.计算:(1(2|a ﹣1|,其中1<a 【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.25.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案; (2)直接利用乘法公式计算得出答案. 【详解】解:(1)原式=-(2)原式=3434++-=6+. 【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.26.计算(1(2)21)-【答案】(1)4;(2)3+ 【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可; (2)利用平方差公式和完全平方公式计算即可. 【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.27.计算:(1 ;(2)))213【答案】(1)2)1-. 【分析】(1)根据二次根式的混合运算法则可以算得答案. (2)结合整式的乘法公式和二次根式的运算法则计算. 【详解】(1)原式==(2)原式=212---=1-. 【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.28.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】化简即可. 【详解】10ab. 故选C . 【点睛】的形式. 2.D解析:D 【分析】根据二次根式的意义先化简各项,再进行分式的加减运算可得出解. 【详解】 解:∵0<x <1, ∴0<x <1<1x, ∴10x x +>,10x x-<.原式=11x x x x+-- =11x x x x ++- =2x . 故选D .点睛:本题考查了二次根式的性质和绝对值化简,也考查了分式的加减.3.A解析:A 【分析】先由点a 在数轴上的位置确定a 的取值范围及a-1的符号,再代入原式进行化简即可 【详解】由数轴可知0<a <1,所以,||1a a a =+-=1,选A . 【点睛】此题考查二次根式的性质与化简,实数与数轴,解题关键在于确定a 的大小4.C解析:C 【分析】k =的形式,再根据二次根式成立的条件逐个进行判断即可. 【详解】 解:A 、x 2+4=0,此时方程无解,故本选项错误;B10=,1-,∵算术平方根是非负数,∴此时方程无解,故本选项错误;C2 =,∴x+1=4,∴x=3,故本选项正确;D1 =,∴x-3≥0且3-x≥0,解得:x=3,代入得:0+0=1,此时不成立,故本选项错误;故选:C.【点睛】本题考查了二次根式的意义,能根据二次根式成立的条件进行判断是解此题的关键.5.B解析:B【分析】根据根号下的数要是非负数,得到a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x,把y=-x代入原式即可求出答案.【详解】由于根号下的数要是非负数,∴a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,a(x-a)≥0和x-a≥0可以得到a≥0,a(y-a)≥0和a-y≥0可以得到a≤0,所以a只能等于0,代入等式得,所以有x=-y,即:y=-x,由于x,y,a是两两不同的实数,∴x>0,y<0.将x=-y代入原式得:原式=()()()()2222313x x x xx x x x+---=--+-.故选B.【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a、x、y的值和代入求分式的值是解此题的关键.6.D解析:D【分析】进行化简,然后再进行合并即可.【详解】设x=<x<,∴0∴266x=-+,∴212236x=-⨯=,∴x=∵5=-,∴原式5=-5=-故选D.【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.7.B解析:B【分析】根据二次根式加减运算和二次根式的性质逐项排除即可.【详解】与A选项错误;===B选项正确;=-=,所以C选项错误;321与D选项错误;故选答案为B.【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.8.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.9.D解析:D【分析】根据最简二次根式与同类二次根式的定义列方程组求解.【详解】由题意,得7-2a=3,解得a=2,故选D.【点睛】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.10.A解析:A【分析】根据最简二次根式的定义判断即可.【详解】A是最简二次公式,故本选项正确;BCD=故选A.【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.二、填空题11..【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a<0.∴a-3<0,∴(a-=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.12.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()00a aa aa a⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 13.3【解析】1、;2、根据题意,先推导出等于什么,(1)∵,∴,(2)再比较与的大小关系,①当n=0时,;②当为正整数时,∵,∴,∴,综合(1)、(2)可得:,解析:320172018 【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么,(1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+, (2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->, ∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n>-,综合(1)、(2)可得:1122n n-<+,∴f n=z,∴3f=z.3、∵f n=z,∴(2017zf+111112233420172018=++++⨯⨯-⨯111111112233420172018=-+-+-++-112018=-20172018=.故答案为(1)2;(2)3;(3)20172018.点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n为非负整数时,1122n n-<+,从而得到f n=z;(2)解题③的要点是:当n为正整数时,111(1)1n n n n=-++.14.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2)2﹣(+1)(﹣1)= 12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y)2﹣xy=(2﹣1)=12﹣2=10.故答案为10.15.3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|解析:3b【分析】先判断a,b的取值范围,并分别判断a-b,a+b的符号,再根据二次根式的性质和绝对值的性质化简,计算即可求解.【详解】解:由数轴可知:b>0,a﹣b<0,a+b<0,∴原式=|b|+|a﹣b|﹣|a+b|=b﹣(a﹣b)+(a+b)=b﹣a+b+a+b=3b,故答案为:3b【点睛】a=和绝对值的性质是解题的关键.16.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 17.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:1m,即0m∴11mm m mm mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.18.3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y ,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m 的值,进而可得出结论.【详解】依题意得:35302302x y m x y m x y +--=⎧⎪+-=⎨⎪+=⎩,解得:x =1,y =1,m =5,∴==3.故答案为3.【点睛】 本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.19.-【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是 解析:【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy >∴00x y <,<,∴x ==.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 20.7【分析】把28分解因数,再根据二次根式的定义判断出n 的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
八年级初二数学第二学期二次根式单元达标提高题检测试题

八年级初二数学第二学期二次根式单元达标提高题检测试题一、选择题1.下列计算正确的是( )A 3=±B 2=C .2=D 2=2.下列计算正确的是( )A 1BCD ±3.下列计算正确的是( )A 2=±B 3=-C .(25= D .(23=-4.下列各式计算正确的是( )A B .C =3 D .5.下列计算结果正确的是( )A B .3=C =D=6.下列根式中,最简二次根式是( )A B C D7.下列算式:(1=2)3)=7;(4)+= ) A .(1)和(3)B .(2)和(4)C .(3)和(4)D .(1)和(4)8.a b =--则( ) A .0a b +=B .0a b -=C .0ab =D .220a b +=9.下列运算正确的是( )A .32-=﹣6B 12-C =±2D .=10.以下运算错误的是( )A =B .2= CD 2=a >0)11.有意义,则实数m 的取值范围是( ) A .m >﹣2B .m >﹣2且m ≠1C .m ≥﹣2D .m ≥﹣2且m ≠112.已知,5x y +=-,3xy =则y x x y x y+的结果是( ) A .23B .23-C .32D .32-二、填空题13.比较实数的大小:(1)5?-______3- ;(2)514-_______12 14.已知实数,x y 满足()()22200820082008x x y y ----=,则2232332007x y x y -+--的值为______.15.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=22]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 16.下面是一个按某种规律排列的数阵:11第行325 62第行722310 11 233第行 131541732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 17.(623÷=________________ .18.已知:5+22可用含x 2=_____.19.28n n 为________. 20.已知23x =243x x --的值为_______.三、解答题21.小明在解决问题:已知a 23+2a 2-8a +1的值,他是这样分析与解答的:因为a 23+()()232323-+-=23,所以a -23所以(a -2)2=3,即a 2-4a +4=3. 所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题:(1)计算:= - .(2)… (3)若a,求4a 2-8a +1的值.【答案】 ,1;(2) 9;(3) 5 【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解; (3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可. 【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===,则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.22.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值(3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1.【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.23.已知m ,n 满足m 4n=3+.【答案】12015【解析】 【分析】由43m n +=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n +=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.24.像2)=1=a (a ≥0)、﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题: (1);(2)+;(3)的大小,并说明理由.【答案】(1(2)(3)< 【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式=9;(2)原式=2+=2+ (3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.25.计算:(1﹣(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--= 42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)xx x -+-=12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.26.先化简,再求值:24224x x x x x x ⎛⎫÷- ⎪---⎝⎭,其中2x =.【答案】22x x +-,1 【分析】先把分式化简,然后将x 、y 的值代入化简后的式子求值即可. 【详解】 原式(2)(2)22(2)2x x x x x x x x +-+=⋅=---,当2x =时,原式1==.【点睛】本题考查了分式的化简求值这一知识点,把分式化到最简是解题的关键.27.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值. 【答案】(1)±2;(2)2.【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)a ===b ===22221111()223122222a b a b ab ⎛⎫+=+-=+-⨯⨯=-= ⎪ ⎪⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.28.已知a ,b (1)求a 2﹣b 2的值; (2)求b a +ab的值.【答案】(1);(2)10 【分析】(1)先计算出a+b 、a-b 的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab 的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可. 【详解】(1)∵a b ,∴a +ba ﹣b =,∴a 2﹣b 2=(a +b )(a ﹣b )==;(2)∵a b ,∴ab =)×)=3﹣2=1,则原式=22b a ab +=()22a b ab ab +-=(2211-⨯=10. 【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.29.计算 (1))(121123-⎛⨯-- ⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值.【答案】(1)28-;(2)17. 【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得. 【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y ==,1122x y∴+=+=,()11119112224xy =⨯=⨯-=,则()222x xy y x y xy ++=+-,22=-,192=-, 17=. 【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.30.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c为实数且2c =2c ab-的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可; (2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可. 【详解】 (1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9 =13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩, ∴3a =,1b =-, ∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得. 【详解】A3=,此项错误;B2=-,此项错误;=≠C、27D2==,此项正确;故选:D.【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.2.A解析:A【解析】2÷故选A.3.C解析:C【分析】直接利用二次根式的性质分别求解,即可得出答案.【详解】解:A,故A选项错误;B,故B选项错误;C选项:2=5,故C选项正确;D选项:2=3,故D选项错误,故选:C.【点睛】此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.4.C解析:C【分析】根据二次根式的化简进行选择即可.【详解】AB、C,故本选项正确;D、=18,故本选项错误;故选:C.【点睛】本题考查了二次根式的混合运算,掌握二次根式的化简是解题的关键.5.C解析:C【分析】根据二次根式的加法、减法、乘法、分母有理化逐一进行计算判断即可.【详解】A 不能合并,故A 选项错误;B .-=B 选项错误;C =D5==,故D 选项错误, 故选C .【点睛】本题考查了二次根式的运算,分母有理化,熟练掌握各运算法则是解题的关键.6.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A 、被开方数含分母,故选项A 不符合题意;B 、被开方数是小数,故选项B 不符合题意;C 、被开方数不含开的尽的因数,被开方数不含分母,故C 符合题意;D 、被开方数含开得尽的因数,故D 错误不符合题意;故选:C .【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.7.B解析:B【分析】根据二次根式的性质和二次根式的加法运算,分别进行判断,即可得到答案.【详解】(1(2),正确;(3)2=22=,错误;(4)==故选:B .【点睛】本题考查了二次根式的加法运算,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.8.C解析:C【分析】直接利用二次根式的性质 ,将已知等式左边化简,可以得到a 与b 中至少有一个为0,进而分析得出答案即可.【详解】解:∵a b =--,∴a-b=-a-b , 或b-a=-a-b∴a= -a ,或b=-b, ∴a=0,或b=0, ∴ab=0, ∴0ab =.故选:C .【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.9.B解析:B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12=-,此选项计算正确;C 2=,此选项计算错误;D 、,此选项计算错误;故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.10.C解析:C【分析】利用二次根式的乘法法则对A 、B 进行判断;利用二次根式的化简对C 、D 进行判断.【详解】A .原式=所以A 选项的运算正确;B.原式=所以,B选项的运算正确;C.原式==5,所以C选项的运算错误;D.原式=2,所以D选项的运算正确.故选C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.D解析:D【分析】根据二次根式有意义的条件即可求出答案.【详解】由题意可知:2010mm+≥⎧⎨-≠⎩,∴m≥﹣2且m≠1,故选D.【点睛】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件. 12.B解析:B【分析】由x+y=-5,xy=3可得到x<0,y<0,再利用二次根式的性质化简得到原式==-,然后把xy=3代入计算即可.【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴原式===-(x<0,y<0),当xy=3时,原式=-故选B.【点睛】此题考查二次根式的化简求值,解题关键在于先化简.二、填空题13.【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)(2)∵∴∴故答案为: ,.解析:< <【分析】(1)根据两个负数比较大小、绝对值大的反而小比较即可;(2)先求出两数的差,再根据差的正负比较即可.【详解】(1)<(2)113424-=∵3=0<< 12 故答案为:< ,<. 【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则的内容是解此题的关键. 14.1【分析】设a=,b=,得出x ,y 及a ,b 的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x −a)=(y+b)(y −b)=2008……解析:1【分析】设x ,y 及a ,b 的关系,再代入代数式求值. 【详解】解:设x 2−a 2=y 2−b 2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 15.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.16.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.17.【解析】=,故答案为.解析:【解析】÷=()()2232===--,故答案为18.【解析】∵=,∴=== -==﹣x3+x,故答案为:﹣x3+x.解析:211166x x-+【解析】∵x=-==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x3+116x,故答案为:﹣16x3+116x.19.7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n 的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n 的最小值即可.【详解】解:∵28=4×7,4是平方数,n 的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.20.-4【分析】把代入计算即可求解.【详解】解:当时,=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题解析:-4【分析】把2x =243x x --计算即可求解.【详解】解:当2x =243x x --((22423=---=--+4383=-4故答案为:-4【点睛】本题考查了求代数式的值,二次根式混合运算,本题直接代入求值即可,能正确进行二次根式的混合运算是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
初二数学《二次根式》全章测试含答案

《二次根式》全章检测班级____________姓名_________________成绩_____________一、选择题:(每小题3分,共24分)1.若32-x 是二次根式,则x 应满足的条件是( ) A. 23>x B. 23≥x C. 23<x D. 23≤x 2.下列二次根式中,是最简二次根式的是( ) A .2.0B .x1C .22b a - D .a 43.下列变形中,正确的是( ) $A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D.)4()9(-⨯-=49⨯4.若a a -=-1)1(2,则a 的取值范围是( ) A .1a >B .1≥aC .1a <D .1≤a5.化简后,与2的被开方数相同的二次根式是( ) A.12 B. 18 C.41D. 32 6.实数a 在数轴上的位置如图所示,化简2)2(1-+-a a =( ) A .23a - B. 3- C .1 D .1- 7.下列各式中,一定成立的是( ) A.2)(b a +=a +b B. 22)1(+a =a 2+1C.12-a =1+a ·1-a D.b a =b1ab*8.等腰三角形两边分别为32和25,那么这个三角形的周长是( )A.2534+B.21034+C.2534+或21032+D.21032+ 二、填空题:(每小题3分,共24分) 9.使1-x x有意义的x 的取值范围是_______________ 10.若0442=+-++y y y x ,则xy 的值为________11.若0<n =12.在实数范围内分解因式:94-x =_____________________13.当21<x <1时,122+-x x -241x x +-=______________ ]14.如果最简二次根式a b b -3和22+-a b 是同类二次根式,则ab =_____________15.若322--+-=x x y ,则y x 的值为__________16.已知b a 、分别是5的整数部分和小数部分,则ba 1-=_____________ 三、解答题:17.计算:(每小题5分,共30分) (1) 3118122++- (2)213675÷⨯】(3)(4) ()((5) 12112(33)++(6)6a>18.先化简,再求值:(每小题6分,共12分)(1)(6x -(4y ,其中x =32,y =3@(2) 已知x 为偶数,且a a a a a a a aa a a 39612-1,3131222-+---+--=--求的值~四、解答题:(每小题5分,共10分) 19.已知4,4=-=+ab b a ,求aba b a b +的值】20.~21.先观察规律:, (454)51,34341,23231,12121-=+-=--=+-=+再利用这一规律计算下列式子的值:)12002)(200120021 (3)41231121(+++++++++—参考答案:17. (1)33524- (2) 10 (3) 4-+(4) 6-(5) 30-(6) 318. (1) 223,--xy (2) 23,11a a +- 19. 4,2--ab 20. 2001。
人教版八年级初二数学下学期二次根式单元提高题检测试题

一、选择题1.下列计算正确的是( )A =B =C =D =2.下列计算结果正确的是( )A B .3=C =D=3.下列计算正确的是( )A =B .12=C 3=D .14=4.下列各式中,运算正确的是( )A .=-=.2=D 2=-5. ) A .-3B .3或-3C .9D .36.已知a 满足2018a -a ,则a -2 0182=( ) A .0B .1C .2 018D .2 0197.下列计算正确的是( )A =B =C 6=-D 1=8.若a =,2b =+a b 的值为( )A .12B .14CD9.下列二次根式中是最简二次根式的是( )AB CD10.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对二、填空题11.若0a >化成最简二次根式为________.12.732x y -=-,则2x ﹣18y 2=_____.13.已知aa 3+5a 2﹣4a ﹣6的值为_____.14.10=,则222516x y +=______.15.若a 、b 、c 均为实数,且a 、b 、c 均不为0=___________16.若0xy >,则二次根式________.17.x 的取值范围是______.18.如果0xy >.19.1=-==++……=___________.20. (a ≥0)的结果是_________.三、解答题21.计算: 21)3)(3--【答案】. 【解析】 【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式2222]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.22.像2)=1=a (a ≥0)、﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题: (1);(2)+;(3)的大小,并说明理由.【答案】(1(2)(3)< 【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式=9;(2)原式=2+=2+ (3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.23.在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:2224312111-=-=-+=).善于动脑的小明继续探究:当a b m n 、、、为正整数时,若2a n +=+),则有22(2a m n =+,所以222a m n =+,2b mn =.请模仿小明的方法探索并解决下列问题:(1)当a b m n 、、、为正整数时,若2a n =+),请用含有mn 、的式子分别表示a b 、,得:a = ,b = ;(2)填空:13-( - 2;(3)若2a m +=(),且a m n 、、为正整数,求a 的值.【答案】(1)223a m n =+,2b mn =;(2)213--;(3)14a =或46. 【解析】 试题分析:(1)把等式)2a n +=+右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:2231324a m n b mn ⎧=+=⎨==⎩,结合a b m n 、、、都为正整数可得:m=2,n=1,这样就可得到:213(1-=-;(3)将()2a m +=+右边展开,整理可得:225a m n =+,62mn =结合a m n 、、为正整数,即可先求得m n 、的值,再求a 的值即可.试题解析:(1)∵2a n =+),∴223a m n +=++, ∴2232a m n b mn =+=,;(2)由(1)中结论可得:2231324a m nb mn ⎧=+=⎨==⎩ ,∵a b m n 、、、都为正整数, ∴12m n =⎧⎨=⎩ 或21m n =⎧⎨=⎩ , ∵当m=1,n=2时,223713a m n =+=≠,而当m=2,n=1时,22313a m n =+=, ∴m=2,n=1,∴(2131--;(3)∵222()52a m m n +=+=++ ∴225a m n =+,62mn = , 又∵a m n 、、为正整数, ∴=1=3m n ,, 或者=3=1m n ,,∴当=1=3m n ,时,46a =;当=3=1m n ,,14a =, 即a 的值为:46或14.24.先化简,再求值:a+212a a -+,其中a =1007. 如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.25.已知5353x y ==-+求下列各式的值: (1)22x xy y -+; (2).y xx y+ 【答案】(1) 72;(2)8. 【分析】计算出5xy=12, (1)把x 2-xy+y 2变形为(x+y )2-3xy ,然后利用整体代入的方法计算;(2)把原式变形为2()2x y xyxy+-,然后利用整体代入的方法计算.【详解】 ∵53x =-5+3,53y =+=532∴xy=12, (1)22x xy y -+ =(x+y )2-3xy,=2132-⨯ =72; (2)y x x y +=2212()22812x y xy xy-⨯+-==.【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.26.计算下列各式: (1;(2【答案】(12;(2) 【分析】先根据二次根式的性质化简,再合并同类二次根式即可. 【详解】(1)原式2=- 2=; (2)原式==. 【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a a a a a ≥⎧==⎨-<⎩,)=≥≥=(a≥0,b>0).a b0,027.计算:(1(2|a﹣1|,其中1<a【答案】(1)1;(2)1【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a的取值范围进行化简.【详解】解:(1-1=2-1=1(2)∵1<a,a﹣1=2﹣a+a﹣1=1.【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.28.计算下列各题:(1-.(2)2【答案】(1)2)2--【分析】(1)根据二次根式的运算顺序和运算法则计算即可;(2)利用平方差、完全平方公式进行计算.【详解】解:(1)原式==;=--+(2)原式22(5=---525=--2【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案.【详解】=,=3∴A、C、D均错误,B正确,故选:B.【点睛】此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键. 2.C解析:C【分析】根据二次根式的加法、减法、乘法、分母有理化逐一进行计算判断即可.【详解】A不能合并,故A选项错误;B.-=B选项错误;C===,故D选项错误,D故选C.【点睛】本题考查了二次根式的运算,分母有理化,熟练掌握各运算法则是解题的关键.3.B解析:B【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A不符合题意;∵12=,故选项B符合题意;C不符合题意;∵=D不符合题意;故选:B.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.4.A解析:A 【分析】由合并同类项、二次根式的性质分别进行判断,即可得到答案. 【详解】解:A、-=A 正确; B=B 错误; C、2不能合并,故C 错误; D2=,故D 错误;故选:A . 【点睛】本题考查了二次根式的性质,合并同类项,解题的关键是熟练掌握运算法则进行解题.5.D解析:D 【分析】根据二次根式的性质进行计算即可.【详解】|3|3=. 故选:D .【点睛】(0)0(0)(0)a a a a a a ><⎧⎪===⎨⎪-⎩.6.D解析:D 【解析】 【分析】根据二次根式的被开数的非负性,求的a 的范围,然后再化简绝对值,最后,依据二次根式的定义进行变形即可. 【详解】解:等式2018a -=a 成立,则a ≥2019, ∴, , ∴a-2019=20182,∴a-20182=2019. 故选D . 【点睛】本题主要考查的是二次根式有意义的条件,求得a 的取值范围是解题的关键.7.B解析:B 【分析】根据二次根式加减运算和二次根式的性质逐项排除即可. 【详解】与A 选项错误;===B 选项正确;321=-=,所以C 选项错误;与D 选项错误;故选答案为B . 【点睛】本题考查了二次根式加减运算和二次根式的性质,掌握同类二次根式的定义和二次根式的性质是解答本题的关键.8.B解析:B 【分析】将a 乘以可化简为关于b 的式子, 从而得到a 和b 的关系, 继而能得出a b 的值 【详解】解:4ba ====14a b ∴= 故选:B . 【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b 的形式.9.A解析:A 【分析】根据最简二次根式的定义判断即可. 【详解】A是最简二次公式,故本选项正确;BCD=故选A.【点睛】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.10.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】x30-=,=0=,∴x=-2或x=3,又∵2030 xx+≥⎧⎨-≥⎩,∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题11.【分析】先判断b的符号,再根据二次根式的性质进行化简即可.【详解】解:∵∴∴所以答案是:【点睛】本题考查了二次根式的性质.解析:【分析】先判断b的符号,再根据二次根式的性质进行化简即可.解:∵40,0 aab-≥>∴0b<2a bb b b=--所以答案是:【点睛】a=.12.【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】解:∵一定有意义,∴x≥11,∴﹣|7﹣x|+=3y﹣2,﹣x+7+x﹣9=3y﹣2,整理得:=3y,∴x﹣解析:22【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】一定有意义,∴x≥11,|7﹣x=3y﹣2,﹣x+7+x﹣9=3y﹣2,=3y,∴x﹣11=9y2,则2x﹣18y2=2x﹣2(x﹣11)=22.故答案为:22.【点睛】本题考查二次根式有意义的应用,以及二次根式的性质应用,属于提高题.13.-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.解:当a=-=-=-3时,原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】-3时,解:当a原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(a+3)2-7a+3=7a-7-7a+3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.14.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】=-10两边平方得,()()22223=1003x y x y ++--+ 整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.15.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:00b b 当时当时>⎨⎪<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >= 当b <=故答案为:00b b ⎧>⎪⎪⎨⎪<⎪⎩当时当时. 16.-【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是 解析:【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy > ∴00x y <,<,∴x ==.故答案为.【点睛】 此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 17.且【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.18.【分析】由,且,即知,,据此根据二次根式的性质化简可得.【详解】∵,且,即,∴,,∴,故答案为:.【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.解析:-【分析】由0xy >,且20xy -≥,即•0y xy -≥知0x <,0y <,据此根据二次根式的性质化简可得.【详解】∵0xy >,且20xy -≥,即•0y xy -≥,∴0x <,0y <,==-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键. 19.2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第1个等式为:,第2个等式为:,第3个等式为:,归纳类推得:第n 个等式为:(其中,解析:2018【分析】先根据已知等式归纳类推出一般规律,再根据二次根式的加减法与乘法运算法则即可得.【详解】第11=,第2=,第3=归纳类推得:第n 1=-n 为正整数),则2020++,2020=+,=, 20202=-,2018=,故答案为:2018.【点睛】本题考查了二次根式的加减法与乘法运算,依据已知等式,正确归纳出一般规律是解题关键.20.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a 【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a ≥===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
八年级初二数学下学期二次根式单元达标提高题检测试卷

一、选择题1.下列计算正确的是( )A .=1212⨯B .4-3=1C .63=2÷D .8=2±2.下列运算结果正确的是( )A .()299-=-B .623÷=C .()222-=D .255=-3.下列二次根式中是最简二次根式的为( )A .12B .30C .8D .124.下列运算正确的是( )A .235+=B .322-=3C .2(2)-=﹣2D .24322÷=5.下列计算正确的是( )A .2+3=5B .8=42C .32﹣2=3D .23⋅=6 6.已知52a =+,52b =-,则227a b ++的值为( )A .4B .5C .6D .7 7.在函数y=23x x +-中,自变量x 的取值范围是( ) A .x≥-2且x≠3 B .x≤2且x≠3 C .x≠3 D .x≤-28.下列各式中正确的是( ) A .36=±6 B .2(2)2--=- C .8=4D .2(7)-=7 9.下列二次根式是最简二次根式的是( )A .0.1B .19C .8D .14410.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为( )A .3B .4C .6D .9二、填空题11.将2(3)(0)3a a a a-<-化简的结果是___________________. 12.(1)已知实数a 、b 在数轴上的位置如图所示,化简()222144a a ab b +--+=_____________;(2)已知正整数p ,q 32016p q =()p q ,的个数是_______________;(3)△ABC 中,∠A=50°,高BE 、CF 所在的直线交于点O,∠BOC 的度数__________.13.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72 [72]=8 [8]=2 [2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________.14.已知3x x+=,且01x <<,则2691x x x =+-______. 15.已知函数1x f x x ,那么21f _____.16.若613-的整数部分为x ,小数部分为y ,则(213)x y +的值是___.17.把1a a-的根号外的因式移到根号内等于? 18.已知1<x <2,171x x +=-,则11x x ---的值是_____. 19.将一组数2,2,6,22,10,…,251按图中的方法排列:若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______.20.函数y 4x -中,自变量x 的取值范围是____________. 三、解答题21.计算:22322343341009999100+++++【答案】910【解析】【分析】 先对代数式的每一部分分母有理化,然后再进行运算【详解】22322343341009999100++++++ 22322343341009999100---++++=9912233499100-+-+-++-=1100-=1110-=910 【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 ?章 能力卷
测试时间: 45分钟 总分:100分
一、判断题(每小题1分,共5分)
1.ab 2
)2(-=-2ab .
( )
2.3-2的倒数是3+2. ( )
3.2
)1(-x =2)1(-x .
( )
4.ab 、
3
1b a 3、b
a
x 2-
是同类二次根式. ( )
5.x 8,
3
1
,29x +都不是最简二次根式. ( ) 二、填空题(每小题2分,共20分)
6.当x __________时,式子
3
1
-x 有意义. 7.化简-
8
1527102
÷31225a
=____________. 8.a -12-a 的有理化因式是____________.
9.当1<x <4时,|x -4|+
122+-x x =________________.
10.方程2(x -1)=x +1的解是____________. 11.已知a 、b 、c 为正数,d 为负数,化简
2
2
22d
c ab
d c ab +-=_______.
12.比较大小:-
7
21_________-
3
41.
13.化简:(7-52)2000·(-7-52)2001=______________. 14.若1+x +
3-y =0,则(x -1)2+(y +3)2=____________.
15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=_____. 三、选择题(每小题3分,共15分)
16.已知233x x +=-x 3+x ,则
( )
(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0
17.若x <y <0,则222y xy x +-+222y xy x ++= ( )
(A )2x (B )2y (C )-2x (D )-2y 18.若0<x <1,则4)1
(2
+-x
x -4)1(2
-+
x
x 等于
( ) (A )
x 2 (B )-x
2
(C )-2x (D )2x 19.化简a
a 3
-(a <0)得
( )
(A )a - (B )-a (C )-a - (D )a 20.当a <0,b <0时,-a +2ab -b 可变形为
( )
(A )2)(b a + (B )-2)(b a - (C )2)(b a -+- (D )2)(b a ---
四、在实数范围内因式分解(每小题3分,共6分)
21.9x 2-5y 2; 22.4x 4-4x 2+1.
五、计算题(每小题6分,共24分)
23.(235+-)(235--) 24.11
45--
7114--7
32
+
25.(a 2m
n -m ab mn +
m n
n m )÷a 2b 2m
n
26.(a +b
a ab
b +-)÷(b ab a ++a ab b --ab b a +)(a ≠b ).
六、求值(每小题7分,共14分)
27.已知x =2323-+,y =2
32
3+-,求3
2234232y x y x y x xy x ++-的值.
28.当x =1-2时,求
2
2
2
2
a
x x a x x
+-++
2
2
2
222a
x x x a x x +-+-+
2
2
1a
x +的值.
七、解答题 (每小题8分,共16分)
29.计算(2
5+1)
(211
++
321++4
31
++…+
100
991
+).
30.若x ,y 为实数,且y =x 41-+14-x +
21.求x
y y x ++2-
x
y
y x +-2的值.。