集合与集合的关系
集合的四种基本关系

集合的四种基本关系在数学中,集合是由一些特定对象组成的整体。
集合之间存在着各种关系,而一些基本的关系可以被分类为四种:包含关系、相等关系、交集关系和并集关系。
本文将对这四种基本关系进行全面详细、完整且深入的描述。
1. 包含关系包含关系是集合之间最基本的关系之一。
如果一个集合的所有元素都属于另一个集合,那么我们说前一个集合包含在后一个集合中。
数学上用符号“⊆”表示包含关系。
例如,我们有两个集合A和B,其中A={1, 2, 3},B={1, 2, 3, 4}。
由于集合B中的所有元素(1、2和3)也都属于集合A,所以可以说集合A包含在集合B中。
用符号表示为A ⊆ B。
包含关系还可以进一步细分为真包含关系和假包含关系。
如果一个集合A包含于另一个集合B,并且它们不相等,我们称A在B之内并且A真包含B。
用符号表示为A ⊂ B。
如果A和B相等,我们称A在B之内但A不真包含B。
用符号表示为A ⊆B。
2. 相等关系相等关系是两个集合拥有完全相同元素的关系。
如果集合A和集合B的所有元素都相同,那么A等于B。
数学上用符号“=”表示相等关系。
例如,我们有两个集合C和D,其中C={1, 2, 3},D={3, 2, 1}。
尽管它们的元素排列顺序不同,但它们的元素完全相同,所以可以说集合C等于集合D。
用符号表示为C = D。
相等关系是一种非常严格的关系,要求两个集合的元素完全相同,没有任何差异。
3. 交集关系交集关系是指两个集合共有的元素构成的集合。
数学上用符号“∩”表示交集关系。
例如,我们有两个集合E和F,其中E={1, 2, 3, 4},F={3, 4, 5, 6}。
这两个集合的交集是{3, 4},因为它们共有的元素是3和4。
用符号表示为E ∩ F = {3, 4}。
交集关系是一种取共有部分的操作,可以用于找到两个集合中共同存在的元素。
4. 并集关系并集关系是指两个集合中所有元素的总和构成的集合。
数学上用符号“∪”表示并集关系。
集合和集合的关系

集合和集合的关系
数学中的集合是一类具有相同特征的基本概念,它可以被定义为由一组特定元素构成的不变的数学结构。
它可以用来描述数学中的关系,如数学中的等式、不等式以及函数等。
在数学中,所谓集合就是一类有着同样特性的元素组成的数学对象,而集合的关系就是指这类元素之间的某种形式的关系。
集合可以分为两类,即有限集合和无限集合。
有限集合就是指由有限个元素组成的集合,而无限集合则是一类由无限个元素构成的集合。
集合的关系可以分为三类,即子集关系、交集关系和并集关系。
子集关系是指一个集合包含另一个集合的元素,即另一个集合是前一个集合的子集;交集关系是指两个集合都有共同元素;而并集关系是指两个集合共有的元素,或其中一个集合包含另一个集合的所有元素。
在集合学中,子集关系可以被用来描述概念的继承关系,也可以用来表示数学的等价关系。
同样,交集关系和并集关系也有着各自的含义,比如交集可以用来表示不同概念的交织关系,而并集则可以用来表示多个概念集合的并集。
另外,还有一种集合称为超集合,它是指一个集合中元素的子集,包括这些元素本身,这种集合具有一种特殊的关系,称为“上下文”,它可以用来描述一个概念的上下文关系,也可以用来描述不同元素之间的层次关系。
此外,集合的关系还可以用来表示数学的联系与不同的数学概念之间的联系,比如集合的元素和集合中的联系,以及集合之间的联系
等等。
对于集合和集合的关系,它们在数学中占据了非常重要的地位,它们不仅可以用来表达概念的继承关系,也可以用来表示多个集合之间的一种特殊的联系。
因此,熟悉集合和集合的关系对理解和掌握数学的基本概念有着重要的意义。
集合与集合之间的关系

A=B
等 合 A 的元素,那么就说集
合 A 等于集合 B
图形语言 (Venn 图)
栏目 导引
第一章 集 合
3.性质 (1)规定:空集是__任__意__一__个__集__合___的子集,也就是说,对任意 集合 A,都有∅⊆A. (2)任何一个集合 A 都是它本身的__子__集__,即 A⊆A. (3)如果 A⊆B,B⊆C,则_A_⊆__C____. (4)如果 A B,B C,则__A___C___. (5)若 A⊆B,B⊆A,则 A=B;反之,若 A=B,则 A⊆B 且 B⊆A.
栏目 导引
第一章 集 合
已知集合 A={x|x2+x-6=0},B={x|mx+1 =0},B A,求 m 的值. 解:A={x|x2+x-6=0}={-3,2}. 因为 B A,所以 B={-3}或 B={2}或 B=∅. 当 B={-3}时,由 m·(-3)+1=0,得 m=13. 当 B={2}时,由 m·2+1=0,得 m=-12. 当 B=∅时,m=0. 综上所述,m=13或 m=-12或 m=0.
栏目 导引
第一章 集 合
4.集合关系与其特征性质之间的关系 我们可以通过判断两个集合之间的关系来判断它们的特征性 质之间的关系;或用集合特征性质之间的关系,判断集合之 间的关系.
栏目 导引
第一章 集 合
1.已知集合 M={1},N={1,2,3},能够准确表示集合 M 与 N 之间关系的是( ) A.M<N B.M∈N C.N⊆M D.M N 答案:D
(1)当 A⊆B 时,则 A=B 或 A B.
(2)判断两个集合间的关系:①用列举法表示两个集合再判断; ②分类讨论. (3)解数集问题学会运用数轴表示集合. (4)集合与集合间的关系可用 Venn 图直观表示.
集合的概念与运算

集合的概念与运算教案●知识梳理 1.集合的有关概念2.元素与集合、集合与集合之间的关系 (1)元素与集合:“∈”或“”.(2)集合与集合之间的关系:包含关系、相等关系. 3.集合的运算(1)交集:由所有属于集合A 且属于集合B 的元素所组成的集合,叫做集合A 与B 的交集,记为A ∩B ,即A ∩B ={x |x ∈A 且x ∈B }. (2)并集:由所有属于集合A 或属于集合B 的元素所组成的集合,叫做集合A 与集合B 的并集,记为A ∪B ,即A ∪B ={x |x ∈A 或x ∈B }. (3)补集:一般地,设S 是一个集合,A 是S 的一个子集(即A S ),由S 中所有不属于A 的元素组成的集合,叫做子集A 在全集S 中的补集(或余集),记为SA ,即S A ={x |x ∈S 且x A }.●点击双基1.(2004年全国Ⅱ,1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于A.{x |x <-2}B.{x |x >3}C.{x |-1<x <2}D.{x |2<x <3}2.(2005年北京西城区抽样测试题)已知集合A ={x ∈R|x <5-},B ={1,2,3,4},则(R A )∩B 等于A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{4}∉⊆∉23.(2004年天津,1)设集合P ={1,2,3,4,5,6},Q ={x ∈R|2≤x ≤6},那么下列结论正确的是A.P ∩Q =PB.P ∩Q QC.P ∪Q =QD.P ∩Q P4.设U 是全集,非空集合P 、Q 满足P Q U ,若求含P 、Q 的一个集合运算表达式,使运算结果为空集,则这个运算表达式可以是_______________.5.已知集合A ={0,1},B ={x |x ∈A ,x ∈N*},C ={x |x A },则A 、B 、C 之间的关系是___________________.●典例剖析【例1】 已知A ={x |x 3+3x 2+2x >0},B ={x |x 2+ax +b ≤0}且A ∩B ={x |0<x ≤2},A ∪B ={x |x >-2},求a 、b 的值.深化拓展∅⊆(2004年上海,19)记函数f (x )=的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1)的定义域为B . (1)求A ;(2)若B A ,求实数a 的取值范围.【例2】 (2004年湖北)设集合P ={m |-1<m ≤0},Q ={m ∈R|mx 2+4mx -4<0对任意实数x 恒成立},则下列关系中成立的是 A.P Q B.Q P C.P =Q D.P ∩Q =Q132++-x x ⊆【例3】已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,0≤x≤2},如果A∩B≠,求实数m的取值范围.●闯关训练夯实基础1.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B是A.(1,-1)B.C.{(1,-1)}D.{1,-1}2.(2004年上海,3)设集合A ={5,log 2(a +3)},集合B ={a ,b }.若A ∩B ={2},则A ∪B =______________.3.设A ={x |1<x <2},B ={x |x >a },若A B ,则a 的取值范围是___________________.4.已知集合A ={x ∈R|ax 2+2x +1=0,a ∈R}只有一个元素,则a 的值为__________________.5.(2004年全国Ⅰ,理6)设A 、B 、I 均为非空集合,且满足A B I ,则下列各式中错误..的是 A.(I A )∪B =I B.(I A )∪(I B )=I C.A ∩(I B )= D.(I A )∩(I B )=I B 6.(2005年春季北京,15)记函数f (x )=log 2(2x -3)的定义域为集合M ,函数g (x )= 的定义域为集合N .求:(1)集合M 、N ; (2)集合M ∩N 、M ∪N .⎩⎨⎧-==11y x ⊆⊆∅)1)(3(--x x培养能力7.已知A ={x ∈R|x 2+2x +p =0}且A ∩{x ∈R|x >0}=,求实数p 的取值范围.8.已知P ={(x ,y )|(x +2)2+(y -3)2≤4},Q ={(x ,y )|(x +1)2+(y -m )2<},且P ∩Q =Q ,求m 的取值范围.探究创新9.若B ={x |x 2-3x +2<0},是否存在实数a ,使A ={x |x 2-(a +a 2)x +a 3<0}且A ∩B =A ?请说明你的理由.41●思悟小结1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.关于集合的运算,一般应把各参与运算的集合化到最简,再进行运算.3.含参数的集合问题,多根据集合元素的互异性来处理.4.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.解决问题时常用数形结合、分类讨论等数学思想.教学点睛1.对于集合问题,要首先确定属于哪类集合(数集、点集或某类图形),然后确定处理此类问题的方法.2.集合问题多与函数、方程、不等式有关,要注意各类知识的融会贯通.3.强化数形结合、分类讨论的数学思想.拓展题例【例1】设M、N是两个非空集合,定义M与N的差集为M-N={x|x∈M且x N},则M-(M-N)等于A.NB.M∩NC.M∪ND.M【例2】设集合P={1,a,b},Q={1,a2,b2},已知P=Q,求1+a2+b2的值.。
第1讲 集合的概念,集合的表示方法集合之间的关系(学生版)

第1讲集合的概念,集合的表示方法集合之间的关系【基础知识】一、集合的意义1.集合:某些指定的对象集在一起就形成一个集合(简称集)。
2.元素:集合中每个对象叫做这个集合的元素。
3.属于:如果a是集合A的元素,就说a属于A,记作a∈Aa∉4.不属于:如果a不是集合A的元素,就说a不属于A,记作A5.有限集:含有有限个元素的集合。
6.无限集:含有无限个元素的集合。
7.集合相等:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,记作A=B。
8.数学上,常常需要用到数的集合.数的集合简称数集9.空集:我们把不含任何元素的集合,记作φ。
二、集合的表示方法1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合。
通常元素个数较少时用列举法。
2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。
区间:在数学上,常常需要表示满足一些不等式的全部实数所组成的集合.为了方便起见,我们引入区间(interval)的概念.闭区间在数轴上表示开区间在数轴上表示半开半闭区间在数轴上表示这里的实数a,b统称为这些区间的端点.三、集合之间的关系1、子集:定义:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A ,此时我们称A 是B 的子集。
即:B A B x A x ⊆∈⇒∈,则若任意 记作:A B B A ⊇⊆或;读作:A 包含于B 或B 包含A ;注意:B A ⊆有两种可能:(1)A 是B 的一部分;(2)A 与B 是同一集合 2、真子集:【考点剖析】考点一:集合的意义例1.下列所给对象不能构成集合的是________. (1)高一数学课本中所有的难题; (2)某一班级16岁以下的学生; (3)某中学的大个子;(4)某学校身高超过1.80米的学生; (5)1,2,3,1.例2.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正确的是( )A .B .C .M ∉-4D .M ∈4 例3.用“∈”或“∉”填空(1)-3______N ; (2)3.14______Q ; (3)13______Z ;(4)-12______R ; (5)1______N *; (6)0________N .例4.已知集合},012{2R x x ax x A ∈=++=,且A 中只有一个元素,求x 的值.例5.已知},0,1{2x x ∈,求实数x 的值.例6.已知集合S 的三个元素a .、b 、c 是△ABC 的三边长,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等腰三角形 例7.设A 为实数集,且满足条件:若a .∈A ,则a-11∈A (a .≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素; (2)集合A 不可能是单元素集. 证明.例8.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?考点二:集合的表示方法例1.写出下列集合中的元素(并用列举法表示):(1)既是质数又是偶数的整数组成的集合 (2)大于10而小于20的合数组成的集合例2.用描述法表示下列集合:(1)被5除余1的正整数所构成的集合(2)平面直角坐标系中第一、第三象限的点构成的集合 (3)函数122+-=x x y 的图像上所有的点 (4)例3.用列举法表示下列集合:(1)},,5),{(N y N x y x y x ∈∈=+(2)},032{2R x x x x ∈=--(3)},032{2R x x x x ∈=+-(4)},512{Z x N xx ∈∈-例4.用适当的方法表示下列集合(1)大于0且不超过6的全体偶数组成的集合A (2)被3除余2的自然数全体组成的集合B (3)直角坐标平面上第二象限的点组成的集合C例5.下列表示同一个集合的是( )A .)}3,2{()},2,3{(==N MB .}3,2{},2,3{==N MC .)}3,2{(},2,3{==N MD .φ==N M },0{ 例6.已知集合,用列举法分别表示集合B A 、例7.设∇是R 上的一个运算,A 是R 的非空子集,若对任意A b a ∈,,有A b a ∈∇,则称A 对运算∇封闭,下列数集对加法、减法、乘法和除法(除法不等于零)四则运算都封闭的是()A .自然数集B .整数集C .有理数集D .无理数集例8.(2021·上海曹杨二中高一期末)已知集合{}{}2230,M x x x N x x a =--<=>,若M N ⊆,则实数a 的取值范围是__________. 考点三:集合之间的关系例1.已知A ={0,1},B ={x |x ⊆A },则A 与B 的关系正确的是( )A .A ⊆B B .A B =C .B A ⊆D .A ∈B例2.已知集合}2,,{b a b a a A ++=,集合},,{2ac ac a B =,若B A =,求实数c 的值例3.已知集合}01{},06{2=+==-+=ax x B x x x A 且A ≠⊂B ,求a 的值.例4.定义A *B ={x |x ∈A ,且x ∉B },若A ={1,3,4,6},B ={2,4,5,6},则A *B 的子集个数为例5.设}2,1{B }4,3,2,1{A ==,,试求集合C ,使A C ≠⊂且C B ⊆例6.设集合A ={x |x 2+4x =0,x ∈R },B ={x |x 2+2(a +1)x +2a -1=0},若B ⊆A ,求实数a 的取值范围.例7.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.例8.若集合M ={x |x 2+x -6=0},N ={x |(x -2)(x -a )=0},且N ⊆M ,求实数a 的值.例9.已知,则A 与B 之间的包含关系为 ;【难度】★★ 【答案】B ≠⊂A例10.已知集合}3{>=x x A ,集合}1{m x x B >+=,若A B ≠⊂,实数m 的取值范围是,若A B ⊆,实数m 的取值范围是【过关检测】一、单选题1.(2021·上海市实验学校高一期末)设Q 是有理数,集合{|,,0}X x x a a b x ==+∈≠Q ,在下列集合中;(1){|2,}y y x x X =∈;(2){|}y y x X =∈;(3)1{|,}y y x X x =∈;(4)2{|,}y y x x X =∈;与X 相同的集合有( ) A .4个B .3个C .2个D .1个2.(2021·上海高一期末)已知“非空集合M 的元素都是集合P 的元素”是假命题,给出下列四个命题: ①M 的元素不都是P 的元素;②M 的元素都不是P 的元素; ③存在x P ∈且x M ∈;④存在x M ∈且x P ∉; 这四个命题中,真命题的个数为( ). A .1个 B .2个C .3个D .4个3.(2020·上海高一专题练习)下列各对象可以组成集合的是( ) A .与1非常接近的全体实数B .某校2015-2016学年度笫一学期全体高一学生C .高一年级视力比较好的同学D .与无理数π相差很小的全体实数4.(2020·上海高一专题练习)下面每一组的两个集合,相等的是( ) A .{(1,2)}M =,{(2,1)}N = B .{1,2}M =,{(1,2)}N =C .M =∅,{}N =∅D .{}2|210M x x x =-+=,{1}N =5.(2020·上海高一专题练习)方程组的解构成的集合是 A .{1}B .(1,1)C .{(1,1)}D .{1,1}6.(2020·上海高一专题练习)下列命题中正确的( ) ①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}; ③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};④集合{x |4<x <5}可以用列举法表示. A .只有①和④ B .只有②和③ C .只有②D .以上语句都不对7.(2020·上海高一课时练习)已知非零实数,,a b c ,则代数式a b ca b c++表示的所有的值的集合是( ) A .{3} B .{3}- C .{3,3}-D .{3,3,1,1}--8.(2020·上海高一课时练习)集合是指( ) A .第二象限内的所有点B .第四象限内的所有点C .第二象限和第四象限内的所有点D .不在第一、第三象限内的所有点9.(2020·上海高一专题练习)如果{}1A x x =>-,那么错误的结论是( ) A .0A ∈B .C .A φ∈D .A φ⊆10.(2020·上海高一专题练习)以下六个关系式:{}00∈,{}0⊇∅,0.3Q ∉, , ,是空集,错误的个数是( ) A .4 B .3C .2D .1二、填空题11.(2021·上海高一期末)10的所有正因数组成的集合用列举法表示为__________. 12.(2021·上海市实验学校高一期末)集合6{|3P x x =∈-Z 且}x ∈Z ,用列举法表示集合P =________ 13.(2021·上海市西南位育中学高一期末)已知集合(){}21320A x m x x =-+-=有且仅有两个子集,则实数m =______.14.(2021·上海市南洋模范中学高一期末)已知集合(){}lg 4A x y x =∈=-N ,则A 的子集个数为______. 15.(2021·上海市西南位育中学高一期末)设,,则A ___________B .(填“⊂”、“”、“”或“”) 16.(2020·上海高一课时练习)已知集合A ={1,2,a 2-2a },若3∈A ,则实数a =______. 17.(2020·上海高一专题练习)用符号“∈”或“∉”填空(1)0______N ,N ,N (2)12-_____,Q π______Q(3)________{}|,,x x a a Q b Q =+∈∈18.(2020·上海高一专题练习)集合2{|(6)20}A x ax a x =+-+=是单元素集合,则实数a =________ 19.(2020·上海高一专题练习)1∈{a 2−a −1,a ,−1},则a 的值是_________.20.(2020·上海高一专题练习)已知集合{}2|320M x x x =-+=,集合{}2|220,N x x x k k R=++=∈非空,若M N ⋂=∅,则k 的取值范围是___; 21.(2020·上海高一专题练习)定义集合运算(){}|,,AB z z xy x y x A y B ==+∈∈,集合{}{}0,1,2,3A B ==,则集合AB 所有元素之和为________22.(2020·上海高一专题练习)集合{1,4,9,16,25}用描述法来表示为________.23.(2020·上海高一专题练习)已知集合2{|()(1)0}M x x a x ax a =--+-=各元素之和等于3,则实数a =___________.24.(2020·上海高一课时练习)定义“×”的运算法则为:集合{(,)|,}A B x y x A y B ⨯=∈∈,设集合{1,23}P =,,{2,4,6,8}Q =,则集合P Q ⨯中的元素个数为________.25.(2020·上海高一课时练习)已知集合{}2|1,||2,A y y x x x Z ==+∈,用列举法表示为________. 26.(2020·上海高一专题练习)满足的集合A 的个数为____________个. 27.(2020·上海高一专题练习)已知A ,B 是两个集合,下列四个命题: ①A 不包含于B ⇔对任意x ∈A ,有x ∉B ②A 不包含于B ⇔AB =∅③A 不包含于B ⇔A 不包含B ④A 不包含于B ⇔存在x ∈A ,x ∉B 其中真命题的序号是______28.(2020·上海高一专题练习)集合A={x |ax −6=0},B={x |3x 2−2x=0},且A ⊆B ,则实数a =____ 29.(2020·上海高一专题练习)满足的集合M 共有___________个.30.(2020·上海高一专题练习)已知集合A 中有n 个元素,则集合A 的子集个数有_____个,真子集有_____个,非空真子集_______个. 三、解答题31.(2020·上海高一课时练习)已知2{1,0,}x x ∈,求实数x 的值.32.(2020·上海高一课时练习)含有3个实数的集合可表示为,也可表示为{}2,,0a a b +,求20092010a b +的值.33.(2020·上海高一课时练习)用适当的方法表示下列集合,并判断它是有限集还是无限集. (1)第三象限内所有点组成的集合; (2)由大于-3而小于9的偶数组成的集合; (3)所有被5除余2的奇数组成的集合.34.(2020·上海高一课时练习)选择适当的方法表示下列集合. (1)Welcome 中的所有字母组成的集合; (2)所有正偶数组成的集合; (3)二元二次方程组的解集; (4)所有正三角形组成的集合.35.(2020·上海高一课时练习)用适当的方法表示下列集合 (1)大于0且不超过6的全体偶数组成的集合A (2)被3除余2的自然数全体组成的集合B (3)直角坐标平面上第二象限的点组成的集合C36.(2020·上海高一课时练习)用适当的方法表示下列集合. (1)由所有小于20的既是奇数又是质数的正整数组成的集合; (2)由所有非负偶数组成的集合;(3)直角坐标系内第三象限的点组成的集合.37.(2020·上海高一专题练习)A ={x |x <2或x >10},B ={x |x <1-m 或x >1+m }且BA ,求m 的范围.38.(2020·上海高一专题练习)已知A ={x |},B ={x |25x -≤≤},若AB ,求实数m 的取值范围.。
集合之间的关系—集合的相等与包含

集合之间的关系——集合的相等与包含【新课导入】1. 考察下列两组集合,观察它们的元素有何关系.(1) 集合P ={1,2}与集合Q ={}2320x x x -+=;(2) 集合P ={x ︱x 为非负整数}与自然数集N .答:(1) 在第一组集合中,Q ={}2320x x x -+=={1,2},它与集合P 的元素完全相同;(2) 在第二组集合中,因为集合P ={x ︱x 为非负整数}={0,1,2,3,……},它与自然数集的元素也 完全相同.可见,相等是集合之间的一种重要关系.2. 再来看看小亮的家庭,他家的成员有爷爷、奶奶、 爸爸、妈妈、姐姐和小亮. 若姐姐和小亮构成一个集 合P ,全家成员构成一个集合Q , 显然集合P 中的元素都属于集合Q ,那么P 与Q 有怎样的关系呢?很明显,集合P 中的元素也是集合Q 中的元素,也就是集合Q 可以包含集合P .可见,包含也是集合之间的一种重要关系.【双基讲解】1.集合的相等一般地,如果集合A 和集合B 所含的元素完全相同,那么叫做集合A 与集合B 相等,记作A =B ,读作“集合A 等于集合B ”.如果集合A ={1,3,5,7}, 集合B ={3,5,1,7},那么A 与B 相等吗?2.集合的包含------子集一般地,对于两个集合A 和B ,如果集合A 中的任何一个元素都属于集合B ,那么集合A 叫做集合B 的子集,记作A ⊆B 或B ⊇A ,读作“A 包含于B ”或“B 包含A ”.在小亮家庭里,明显可以看出:P ⊆Q .3. 集合的包含------真子集一般地,对于两个集合A 和集合B ,如果A ⊆B 并且B 中至少有一个元素不属于A ,,那么集合A 叫做集合B 的真子集,记作AB , 或B A ,读作“A 真包含于B ”或“B 真包含A ”. 在小亮家庭里,P Q 也是成立的.4.文氏图(Ve nn Di A gr A m )用平面区域来表示集合之间关系的方法叫做集合的图示法,所用图叫做文氏图(Venn diagram.).AB 可以表示为【示范例题】例1 已知集合A ={x|x ≤5,x 是正偶数},集合B ={A ,2},且 A =B ,求A 的值.解 集合A ={x|x ≤5,x 是正偶数}={2,4}.A =B ,∴A = 4 .例2 已知集合S ={2x ,x+y }与集合T ={2,1}相等 , 求x ,y 的值.分析:因为集合中的元素,前后顺序交换,仍是这个集合,所以这里必须列出两个二元一次方程组.解 由S = T ,可知 221x x y =⎧⎨+=⎩ 或 212x x y =⎧⎨+=⎩解方程组,得 10x y =⎧⎨=⎩ 或 1232x y ⎧=⎪⎪⎨⎪=⎪⎩. 【巩固练习】1. 判断下列两个集合是否相等,并说明理由.(1) 集合A ={}2210x x x ++=和集合B ={}210x x -=;(2) 集合A ={1,2,3,4,6,12}和集合B ={x ∣x 为12的因数}.2. 已知集合A ={0,3},集合B ={2x-y ,2y-x },且A =B ,求x ,y 的值.3. 已知集合S ={2x+y ,x-y }与集合T ={3,0}相等,求x ,y 的值.【示范例题】例3 试判断下列各组的两个集合是否具有包含关系,并用符号表示.(1) 集合E ={2,4,6,…}与集合D ={}2,n n k k =∈;(2) 集合A ={…,-4,-2,0,2,4,…}与集合B ={}2,n n k k =∈. 解 (1) 集合E 是正偶数集,而集合D ={}2,n n k k =∈={0,2,4,6,…}是非负偶数集, 0∉E ,但0∈D ,E D ⊆所以.(2) 集合A 是偶数集,对于A 中的任何一个偶数A ,都可以表示成A =21k ,1k ∈Z .可见,必有,a B ∈,所以A B ⊆.对于集合B 中的任何一个元素n ,因为2,n k k =∈,故n 必为偶数,于是B A ⊆.说明:一般地,对于集合A 和B ,如果A B ⊆,同时A B ⊇,那么集合A 和B 是相等的,即A =B .【巩固练习】1. 判断下列结论是否正确,并说明理由.(1)对任何集合A ,必有AA ; (2)若AB ,A A ,则必有A B ; (3)若A B ,BC ,则A C .2. 用符号“⊆”或“⊇”把下列每两个集合连接起来.(1) A ={}21,n n k k =+∈与B ={…,-3,-1,0,1,3,…}(1) C ={}21,n n k k =+∈与B ={…,-3,-1,1,3,…} (3) A 是所有水果组成的集合,B 是油桃、黄桃、蟠桃组成的集合,C 是所有桃子组成的集合.【示范例题】例4 试写出4的正因数的集合A 的所有子集和真子集.解4的正因数是1,2,4 ,∴ A ={1,2,4} .∴A 的子集是 φ, {1},{2},{4},{1,2},{1,4},{2,4},{1,2,4}, ∴A 的子集是 φ, {1},{2},{4},{1,2},{1,4},{2,4} .例5 已知集合A ={1},集合B ={}210x x -=,试用文氏图表示集合A 与B 的关系. 解 210x -=, 1x ∴=± . ∴ B ={1,-1}.A ={1} ,A B .【巩固练习】1. 用真包含符号“”或“”把数集N ,Z ,Q ,R 连接起来.2. 已知区间[1,2] ,(1,2),[1,2),试用符号表示它们之间的包含关系.3. 已知集合A ={}2230x x x --=和集合B ={}10x x +=,试用文氏图表示集合A 与B 的关系. 六 课堂小结1.集合的相等的概念;2.集合的包含 —— 子集的概念;3.集合的包含 —— 真子集的概念;4.文氏图表示集合的关系 .七 布置作业由老师根据学生的具体情况灵活布置八 教学后记根据上课的具体情况,由老师书写教案编制人:。
数学-高一-第1讲-集合及集合之间的关系

辅导教案学员姓名:学科教师:年级:辅导科目:授课日期××年××月××日时间A / B / C / D / E / F段主题集合及集合之间的关系教学内容1. 理解集合(包括空集和全集)的意义;理解集合与其元素之间的关系及其关系符号;会用“列举法”和“描述法”表示集合;认识常用的数集的表示.2.理解集合的相等和包含关系及其关系符号.(以提问的形式回顾)1、集合的概念(1)集合的有关概念:集合的述性说明:把能够确切指定的一些对象看作一个整体,这个整体就叫做集合,简称集。
我们既要研究集合这个整体,也要研究这个整体中的个体。
我们称集合中的各个对象叫做这个集合的元素;①集合的分类:、;②集合中元素的特性:、、;③空集是指:;答案:①有限集、无限集;“确定性”;②“互异性”;“无序性.③不含任何元素的集合.【说明】集合元素的“确定性”往往不是很好理解,可以结合实例来帮助学生理解.(2)集合的表示方法:集合的符号表示:集合常用大写英文字母A、B、C……表示,集合中的元素常用小写英文字母a、b、c……表示;元素与集合的关系:属于∈与不属于∉(注意方向和辨析);列举法:将集合中的元素一一列出来(不考虑元素的顺序),并且写在大括号内,这种表示集合的方法叫做列举法;描述法:在大括号内先写出这个集合的元素的一般形式,再划一条竖线,在竖线后面写上集合中元素所共同具有的特性,即:{}A x x p =满足的性质,这种表示集合的方法叫做描述法.图示法:(主要用于描述集合之间的关系)【说明】一般不宜采用列举法表示无限集;描述法这一表示集合的形式学生较难理解,可以结合下面的例题来加深对这种表示方法的理解;对于描述法,一定要引导学生紧紧抓住竖线前面的代表元素x 的含义(常见的有数、点等).(3)特殊集合的表示:常用的集合的特殊表示法:实数集R (正实数集+R )、有理数集Q (负有理数集-Q )、整数集Z (正整数集+Z )、自然数集N (包含零)、不包含零的自然数集*N ; 空集∅(例:方程220x +=的实数解集为∅).【说明】常用数集之间的关系:*N N Z Q R⊂⊂⊂⊂≠≠≠≠; 注意∅与{0}的区别.2、集合之间的关系(1)子集:对于两个集合A 与B ,如果集合A 的任何..一个元素都属于集合B ,那么集合A 叫作集合B 的子集,记作:A B ⊆或B A ⊇(读作:A 包含于B 或B 包含A )(2)真子集:对于两个集合A 与B ,如果A B ⊆,并且B 中至少有一个元素不属于A ,那么集合A 叫做B 的真子集,记作:A B Ü或B A Ý,读作A 真包含于B 或B 真包含A .(3)相等的集合:对于两个集合A 与B ,如果A B ⊆且B A ⊆,那么叫做集合A 等于集合B ,记作A =B (读作集合A 等于集合B );【辨析】①空集是任何集合的子集,即A ∅⊆;空集是任何非空集合的真子集.②任何集合A 是其自身的子集,即A A ⊆;③子集的传递性:若,,A B B C A C ⊆⊆⊆则;④若A B ⊆,则A B ⊂≠或A B =;⑤相等的集合中所含元素完全相同;⑥连接元素与集合的符号有:∈和∉;⑦连接集合与集合的符号有:⊆⊂=≠≠、、、等; ⑧含有n 个元素的集合的子集共有2n .(采用教师引导,学生轮流回答的形式)例1. 判断下列各组对象能否组成集合:(1)不等式320x +>的解;(2)我班中身高较高的同学;(3)直线21y x =-上所有的点;(4)不大于10且不小于1的奇数。
1.2集合间的基本关系(共42张PPT)

1.能正确表示集合 M={x∈R|0≤x≤2}和集合 N={x∈R|x2-x=0}关系的
Venn 图是
()
解析:选 B.解 x2-x=0 得 x=1 或 x=0,故 N={0,1},易得 N M,其 对应的 Venn 图如选项 B 所示.
2.已知集合 A={x|x2-3x+2=0},B={1,2},C={x|x<8,x∈N},用适当 的符号填空:
(多选)已知集合 A={x|x2+x-6=0},B={x|mx+1=0},B
A,则 m 的值为 A.13 C.0
B.-12 D.2
()
解析:选 ABC.A={x|x2+x-6=0}={-3,2}. 因为 B A 且 B={x|mx+1=0},
所以 B={-3}或 B={2}或 B=∅. 当 B={-3}时,
称集合 A 是集合 B 的子集 如果集合 A⊆B,但存在元素 真子集 __x_∈__B_,__且__x_∉__A___,就称集 合 A 是集合 B 的真子集
符号表示 A__⊆__B (或 B__⊇__A)
A____B (或 B____A)
图形表示
定义 如果集合 A 的_任__何___一__个__ 元素都是集合 B 的元素, 集合相等 同时集合 B 的__任__何__一__个__ 元素都是集合 A 的元素, 那么集合 A 与集合 B 相等
1.Venn 图 (1)定义:在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称 为 Venn 图,这种表示集合的方法叫做图示法. (2)适用范围:元素个数较少的集合. (3)使用方法:把元素写在封闭曲线的内部.
2.子集、真子集、集合相等 定义
如果集合 A 中_任___意__一__个__元 子集 素都是集合 B 中的元素,就
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、考点知识清单
1.集合的分类⎧
⎨
⎩限有
集
限集无
2.集合中元素的特性:
3.集合的表示方法:
(1)列举法
(2)描述法
4.常用数集的专用符号:
自然数集正整数集
整数集有理数集实数集
5.集合的关系
集合与元素的关系
(1) 如果a是集合A的元素,那么可表示为
(2) 如果a不是集合A的元素,那么可表示为
集合与集合的关系
(1) 如果A是B的子集,那么可表示为
(2) 如果A是B的真子集,那么可表示为
集合相等
(1) 若两集合的元素相同,则两集合
(2) 集合A与B相等,可表示为
6.集合A与B的交集是指
,用符号表示为,用描述法表示为
用Venn图表示为:
7. 集合A与B的并集是指
,用符号表示为,用描述法表示为
用Venn图表示为:
8.设集合I为全集,集合A是它的一个子集,A的补集是指
,用符号表示为
用描述法表示为
用Venn图表示为:9.用适当的符号填空
(1)A B
⋂,A A B
⋂A B
⋃
(2)A A B
⋃()
I I
C C A=
(3)
I
A C A
⋂=
I
A C A
⋃=
(4)A⋂∅=A⋃∅=
(5)A B
⋂,
B A
⋂A B
⋃B A
⋃
(6)A B A
⋂=⇔,A B A
⋃=⇔
(7)()
I
C A B
⋂()()
I I
C A C B
⋃
(8)()
I
C A B
⋃()()
I I
C A C B
⋂
二、规律方法训练
考点1 集合的含义及表示
1.设集合22
(,)1,
416
x y
A x y
⎧⎫
⎪⎪
=+=
⎨⎬
⎪⎪
⎩⎭
{}
(,)3,
x
B x y y
==
则A B
⋂的子集的个数是
考点2 集合间的关系
2.已知集合{}
2320,,
A x x x x R
=-+=∈{}
05,
B x x x N
=<<∈
则A C B
⊆⊆满足条件的集合C的个数为
考点3 集合的运算
某班共有30人,其中15喜欢篮球运动,10人喜欢乒乓
球运动,8人对这两项运动都不喜欢,则喜欢篮球运动
但不喜欢乒乓球运动的人数为人.
三、考点分类剖析
1.已知集合{}
2223,2,log ,a M a a a =-+若1,M ∈则实
数a 的取值集合为( ) {}.0,1A
{}.0,2B {}.2C {}D.1 2. 集合{}
2201320120,A x x x =-+<{}2log ,,
B x x m m Z =<∈
若,A B ⊆则整数m 的最小值是 ( )
.0
A .1
B .10
C
D .11
母题迁移
3.设A 是整数集的一个非空子集,对于,k A ∈如果1,k A -∉ 且1,k A +∉那么称k 为A 的一个“好元素”. 给定{}1,2,3,4,5,6,7,8,S =由S 的三个元素构成的所有集合中,不含“好元素”的集合共有
.6A
.12B .9C D.5
4.已知全集{}0,1,2,3,4,5,6,7,8,9,U =集合{}0,1,3,5,8,A =
集合{}2,4,5,6,8,B =则()()U U C A C B ⋂= 5.若集合41log 2A x x ⎧⎫
=≤
⎨⎬⎩⎭
,{}
12B x x =+≥,则 ()R C A B ⋂= .
6.已知集合{}2A x x a =-≤,{
}
2
540B x x x =-+≥ 若A B ⋂=∅,则实数a 的取值范围为 7. 某实验班有21个学生参加数学竞赛,17个学生参加物理竞赛,10个学生参加化学竞赛。
他们之间既参加数
学竞赛又参加物理竞赛的有12人,既参加数学竞赛又
参加化学竞赛的有6人,既参加物理竞赛又参加化学竞
赛的有5人,三科都参加的有2人。
现在参加竞赛的学
生都要到外地去学习参观,则需要预定火车票 张.
高考真题演练 1.若集合{}1,2,3,4,5A =,{}
(,),,B x y x A y A x y A =∈∈-∈
则B 中所含元素的个数为
2.设集合{}
14A x x =<<,集合{
}
2
230B x x x =--≤, 则R A C B ⋂=
3.
若集合{A ={},1,B m =,A B A ⋃=,则m =
4. 已知全集{}0,1,2,3,4,U =集合{}1,2,3A =集合{}2,4,
B =则()U
C A B ⋃= 5.若集合{}1,1,A =-{}0,2,B =则集合{
},,z z x y x A y B =+∈∈
的元素的个数为
6.已知集合{}
2
1P x x =≤{},M a =若P M P ⋃=,则a 的
取值范围是
7.若{}1P x x =<{},1Q x x =>-,则( )
A P Q ⊆、
B Q P ⊆、 R
C C P Q ⊆、 R
D Q C P ⊆、 8. 已知集合{}0,1,2,3,4M =,{}1,3,5,N =且P M N =⋂, 则集合P 的子集共有( )个.
A 、2个
B 、4个
C 、6个
D 、8个 小结 :。