哈尔滨市道里区2017届九年级上期末考试数学试题含答案

合集下载

黑龙江省哈尔滨市 九年级上期末考试数学试题含答案 (2)【精品】

黑龙江省哈尔滨市   九年级上期末考试数学试题含答案 (2)【精品】

2017~2018南岗区学年度(上)九年级期末调研测试一、选择题(每小题3分。

共计30分) 1.下列各数是有理数的是( ). (A)91-(B) 5 (C) 7- (D)23 2.下列计算正确的是( ).(A)(一3)3=-273(B) 6÷2=3(C)2+3=62(D)(-y)=2-y 23.下列图形中,是轴对称图形,不是中心对称图形的是( ).4.将抛物线y=2向右平移2个单位,再向上平移1个单位,所得抛物线相应的函数表达式 是( )..(A)y=(+2)2+1 (B)y=(+2)2—1 (C)y=(一2)2+1 (D)y=(一2)2—15.如图所示几何体是由5个大小相同的小立方块搭成,它的俯视图是( ).6.方程2)1(231--=-x x x 的解为( ). (A)=61-(B) =67 (C) =76 (D) =45 7.如图.在Rt △ABC 中,∠BAC=900,AD ⊥BC 于点D ,则下列结论不正确的是( ) (A)sinB =AB AD (B) sinB =BC AC ; (C)sinB=AC CD (D)sinB=ACAD8.如图,四边形ABCD 内接于⊙O,四边形ABC0是平行四边形,则∠ADC 的大小是( ). (A)450(B)600(C)650(D)7509.如图,在△ABC 中,点D ,E ,F 分别在AB ,AC,BC 边上,DE∥BC ,DF ∥A C ,则下列结论一定正确的是( ). (A)AE CE BF DE = (B) BF CE CF AE = (C) AC AB CF AD = (D) ABADAC DF =10.一段笔直的公路AC 长30千米,途中有一处休息点B ,AB 长20千米,甲、乙两名长跑爱好者同时从点A 出发.甲以15千米/时的速度匀速跑至点B ,原地休息10分钟后,再以15千米/时的速度匀速跑至终点C ;.乙以l2千米/时的速度匀速跑至终点C,下列选项中。

哈尔滨市道里郊区九年级上统一考试数学试卷含答案.doc

哈尔滨市道里郊区九年级上统一考试数学试卷含答案.doc

2015--2016年九年级数学试卷命题员:王雪 审题员: 金双艳 何玮 宋百灵考生须知:请认真阅读试卷和答题卡的相关要求,将所有试题的答案答在答题卡上,答案写在试卷上无效。

选择题用2B 铅笔涂卡作答(注意答题卡题号顺序);其余试题须用0.5mm 黑色字迹的签字笔在答题区域内按题号顺序作答(注意看明题号)第1卷选择题(共30分)一、选择题(每题3分,共30分) 1. 下列函数是y 关于x 的二次函数的是( )A .xy 2= B.23+-=x y C.23x y -=+2 D.223-=x y2.、下列几个标志中,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3. 若反比例函数x ky =的图象经过点(-1,3),则这个反比例函数的图象还经过点( ) A.(3,-1) B.(31-,1) C.(-3,-1) D. (31,2)4.将抛物线232+-=x y 向左平移1个单位,再向下平移3个单位后所得到的抛物线为( ) A.3)1(32---=x y B.1)1(32---=x y C.3)1(32-+-=x y D.1)1(32-+-=x y5. 、如图,⊙O 是△ABC 的外接圆,∠OCB=40°,则∠A 的度数等于( )A. 30°B. 40°C. 50°D. 60°6. 已知2是关于x 的方程x 2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或107. 已知点P 1(x 1,y 1),P 2(x 2,y 2)均在双曲线y=x32m +上,当x 1<x 2<0时,y 1<y 2,那么m 的取值范围是( )A. m> 23B. m>-23C. m<23D. m< -238.下列命题一定正确的是( )A.平分弦的直径必垂直于弦 B 、经过三个点一定可以作圆 C.三角形的外心到三角形三个顶点的距离都相等 D.相等的圆周角所对的弧也相等 9.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为( )A. 215B. 8C. 210D. 213 10. 如图,二次函数y=ax 2+bx+c 的图像与y 轴正半轴相交,其顶点坐标为(21,1),下列结论:①abc<0;②b 2-4ac>0;③a+b+c<0;④a+b=0;⑤4ac-b 2=4a. 其中正确的个数是( )A. 1 B. 2 C. 3 D. 4 二、填空题(每题3分,共30分) 11. 如果函数()1222--+=m m x m m y 是二次函数,则m = 。

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。

2017学年第一学期期末教学质量监测九年级数学试卷及详细解答

2017学年第一学期期末教学质量监测九年级数学试卷及详细解答

2017学年第一学期期末教学质量监测九年级 数学试卷考生须知:1.本试卷分试题卷和答题卷两部分。

满分100分,考试时间90分钟。

2.答题前,必须在答题卷的密封区内填写校名、班级、学号、姓名、试场、座位码。

3.所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号对应。

4.考试结束后,只需上交答题卷。

试题卷一、选择题:本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.两个相似三角形的面积比为2:3,则这两个三角形的面积比为( ) A. 2:3B.2:3C. 4:9D. 9:42.已知圆O 的半径为2,点P 在同一平面内,PO=3,那么点P 与圆O 的位置关系是( ) A. 点P 在圆O 内 B. 点P 在圆O 上 C. 点P 在圆O 外 D. 无法确定3.下列函数中有最小值的是( ) A. y=2x -1 B.y=x3-C.y=-2x +1 C.y=22x+3x4.“a 是实数,|a|⩾0”这一事件是( ) A. 必然事件 B. 不确定事件 C. 不可能事件 D. 随机事件5.在Rt △ABC 中,∠C=90∘, ∠B=58∘,BC=3 , 则AB 的长为( ) A. ︒58sin 3B.︒58cos 3C. 3sin58∘D. 3cos58∘6.已知圆心角为120°的扇形的面积为12π,则扇形的弧长为( ) A. 4π B.2π C. 4 D.27.如图,圆O 是△ABC 的外接圆,BC 的中垂线与弧AC 相交于D 点,若∠A =60°,∠C =40°,则弧AD 的度数为( ) A. 80°B. 70°D. 30°8.如图,在相同的4×4的正方形网格中,三角形相似的是()A.①和②B.②和④C.②和③D.①和③9.定义符号min{a ,b}的含义为:当a ≥b 时,min{a ,b}=b ;当a <b 时,min{a ,b}=a.如:min{5,-2}=-2,min{-6,-3}=-6,则min{2-x+3,x}的最大值是( )A.2131+ B.2131+- C.3 D.213-1-10.如图,AB 是圆O 的直径,弦CD ⊥AB 于点G ,点F 是CD 上一点,且满足CF :FD=3:7,连接AF 并延长交圆O 于点E ,连接AD 、DE ,若CF=3,AF=3,给出下列结论:①FG=2; ②tan ∠E=55 ③S △DEF=6549 其中正确的有( )个。

2017年黑龙江省哈尔滨市道里区九年级上学期数学期末试卷【答案版】

2017年黑龙江省哈尔滨市道里区九年级上学期数学期末试卷【答案版】

2016-2017学年黑龙江省哈尔滨市道里区九年级(上)期末数学试卷一.选择题(每小题3分,共计30分)1.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)在△ABC中,∠C=90°,下列选项中的关系式正确的是()A.sinA=B.cosB=C.tanA=D.AC=AB•cosA 3.(3分)如图所示的几何体是由一些小正方体组合而成的,则这个几何体的主视图为()A.B.C.D.4.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,连接AD、DB、BC,若∠ABD=55°,则∠BCD的度数为()A.65°B.55°C.45°D.35°5.(3分)如图,将△ABC绕点A逆时针旋转得到△AB′C′,若B′落到BC边上,∠B=50°,则∠CB′C′的度数为()A.50°B.60°C.70°D.80°6.(3分)在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>B.m<C.m≥D.m≤7.(3分)一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是()A.B.C.D.8.(3分)如图,l3∥l4∥l5,l1交l3,l4,l5于E,A,C,l2交l3,l4,l5于D,A,B,以下结论的错误的为()A.=B.=C.=D.=9.(3分)如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为()A.5B.7C.8D.1010.(3分)如图是抛物线y1=ax2+bx+c(a≠0)的一部分,抛物线的顶点坐标A (1,3),与x轴的一个公共点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0;②abc<0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个公共点是(﹣1,0);⑤当1<x<4时,有y2>y1;其中正确的有()个.A.1B.2C.3D.4二.填空题(每题3分,共30分)11.(3分)点A(﹣4,1)关于原点对称点A′的坐标是.12.(3分)反比例函数y=的图象经过点(﹣2,3),则k的值为.13.(3分)将二次函数y=x2+1的图象向左平移2个单位,再向下平移3个单位长度得到的图象对应的二次函数的解析式为y=x2+ax+b,则ab=.14.(3分)在△ABC中,∠C=90°,cosA=,AC=6,则BC=.15.(3分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则的长为.16.(3分)在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进4颗黑色棋子,取得白色棋子的概率变为,则x2+y2=.17.(3分)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以60海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为海里.18.(3分)某种商品的进价为40元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,当x=时才能使利润最大.19.(3分)如图,⊙O的弦AB与半径OC垂直,点D为垂足,OD=DC,AB=2,点E在⊙O上,∠EOA=30°,则△EOC的面积为.20.(3分)如图,△ABC,∠ACB=90°,点D,E分别在AB,BC上,AC=AD,∠CDE=45°,CD与AE交于点F,若∠AEC=∠DEB,CE=,则CF=.三.解答题(60分)21.(7分)通过配方,确定抛物线y=ax2+bx+1的顶点坐标及对称轴,其中a=sin30°﹣tan45°,b=4tan30°•sin60°.22.(7分)如图,在小正方形的边长均为1的方格纸中,有线段AB,点A,B 均在小正方形的顶点上.(1)在图1中画出四边形ABCD,四边形ABCD是中心对称图形,且四边形ABCD 的面积为6,点C,D均在小正方形的顶点上;(2)在图2中画一个△ABE,点E在小正方形的顶点上,且BE=BA,请直接写出∠BEA的余弦值.23.(8分)在平面直角坐标系内,点O为坐标原点,直线y=x+4交x轴于点A,交y轴于点B,点C(2,m)在直线y=x+4上,反比例函数y=经过点C.(1)求m,n的值;(2)点D在反比例函数y=的图象上,过点D作X轴的垂线,点E为垂足,若OE=3,连接AD,求tan∠DAE的值.24.(8分)如图,正方形ABCD,点E在AD上,将△CDE绕点C顺时针旋转90°至△CFG,点F,G分别为点D,E旋转后的对应点,连接EG,DB,DF,DB 与CE交于点M,DF与CG交于点N.(1)求证BM=DN;(2)直接写出图中已经存在的所有等腰直角三角形.25.(10分)如图,在平面直角坐标系内,点O为坐标原点,抛物线y=﹣x2+x+4交x轴负半轴于点A,交x轴正半轴于点B,交y轴于点C.(1)求AB长;(2)同时经过A,B,C三点作⊙D,求点D的坐标;(3)在(2)的条件下,横坐标为10的点E在抛物线y=﹣x2+x+4上,连接AE,BE,求∠AEB的度数.26.(10分)如图,AB为⊙O的直径,弦CD⊥AB,点E为垂足,点F为的中点,连接DA,DF,DF交AB于点G.(1)如图1,求证:∠AGD=∠ADG;(2)如图2,连接AF交CE于点H,连接HG,求证:CH=HG;(3)如图3,在(2)的条件下,过点O作OP⊥AD,点P为垂足,若OP=BG,DG=4,求HG长.27.(10分)如图,在平面直角坐标系内,点O为坐标原点,抛物线y=ax2+bx+2交x正半轴于点A,交x轴负半轴于点B,交y轴于点C,OB=OC,连接AC,tan∠OCA=2.(1)求抛物线的解析式;(2)点P是第三象限抛物线y=ax2+bx+2上的一个动点,过点P作y轴的平行线交直线AC于点D,设PD的长为d,点P的横坐标为t,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PA,PC,当△ACP的面积为30时,将△APC沿AP 折叠得△APC′,点C′为点C的对应点,求点C′坐标并判断点C′是否在抛物线y=ax2+bx+2上,说明理由.2016-2017学年黑龙江省哈尔滨市道里区九年级(上)期末数学试卷参考答案与试题解析一.选择题(每小题3分,共计30分)1.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.2.(3分)在△ABC中,∠C=90°,下列选项中的关系式正确的是()A.sinA=B.cosB=C.tanA=D.AC=AB•cosA 【解答】解:A、sinA=,故A错误;B、cosB═,故B错误;C、tanA=,故C错误;D、AC=AB•cosA,故D正确;故选:D.3.(3分)如图所示的几何体是由一些小正方体组合而成的,则这个几何体的主视图为()A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:D.4.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,连接AD、DB、BC,若∠ABD=55°,则∠BCD的度数为()A.65°B.55°C.45°D.35°【解答】解:∵AB是⊙O的直径,∴∠ADB=90°.∵∠ABD=55°,∴∠A=90°﹣55°=35°,∴∠BCD=∠A=35°.故选:D.5.(3分)如图,将△ABC绕点A逆时针旋转得到△AB′C′,若B′落到BC边上,∠B=50°,则∠CB′C′的度数为()A.50°B.60°C.70°D.80°【解答】解:由旋转的性质可知:AB=AB′,∠B=∠AB′C′=50°.∵AB=AB′,∴∠B=∠BB′A=50°.∴∠BB′C′=50°+50°=100°.∴∠CB′C′=180°﹣100°=80°.故选:D.6.(3分)在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>B.m<C.m≥D.m≤【解答】解:∵x1<0<x2时,y1<y2,∴反比例函数图象在第一,三象限,∴1﹣3m>0,解得:m<.故选:B.7.(3分)一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色珠子的概率是()A.B.C.D.【解答】解:共有3×4=12种可能,而有2种结果都是蓝色的,所以都是蓝色的概率概率为.故选:D.8.(3分)如图,l3∥l4∥l5,l1交l3,l4,l5于E,A,C,l2交l3,l4,l5于D,A,B,以下结论的错误的为()A.=B.=C.=D.=【解答】解:∵l3∥l4∥l5,∴,故选:C.9.(3分)如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为()A.5B.7C.8D.10【解答】解:∵PA、PB分别切⊙O于点A、B,∴PB=PA=4,∵CD切⊙O于点E且分别交PA、PB于点C,D,∴CA=CE,DE=DB,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,故选:C.10.(3分)如图是抛物线y1=ax2+bx+c(a≠0)的一部分,抛物线的顶点坐标A (1,3),与x轴的一个公共点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a﹣b=0;②abc<0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个公共点是(﹣1,0);⑤当1<x<4时,有y2>y1;其中正确的有()个.A.1B.2C.3D.4【解答】解:∵对称轴x=﹣=1,∴2a+b=0,①错误;∵a<0,∴b>0,∵抛物线与y轴的交点在正半轴上,∴c>0,∴abc<0,②正确;∵把抛物线y=ax2+bx+c向下平移3个单位,得到y=ax2+bx+c﹣3,∴顶点坐标A(1,3)变为(1,0),抛物线与x轴相切,∴方程ax2+bx+c=3有两个相等的实数根,③正确;∵对称轴是直线x=1,与x轴的一个交点是(4,0),∴与x轴的另一个交点是(﹣2,0),④错误;∵当1<x<4时,由图象可知y2<y1,∴⑤错误.正确的有②③.故选:B.二.填空题(每题3分,共30分)11.(3分)点A(﹣4,1)关于原点对称点A′的坐标是(4,﹣1).【解答】解:点A(﹣4,1)关于原点对称点A′的坐标是(4,﹣1).故答案为:(4,﹣1).12.(3分)反比例函数y=的图象经过点(﹣2,3),则k的值为﹣6.【解答】解:把(﹣2,3)代入函数y=中,得3=,解得k=﹣6.故答案为:﹣6.13.(3分)将二次函数y=x2+1的图象向左平移2个单位,再向下平移3个单位长度得到的图象对应的二次函数的解析式为y=x2+ax+b,则ab=8.【解答】解:∵二次函数y=x2+1的图象向左平移2个单位,再向下平移3个单位长度,∴得到的图象对应的二次函数的解析式为y=(x+2)2+1﹣3=x2+4x+2,∴a=4,b=2,∴ab=8,故答案为:8.14.(3分)在△ABC中,∠C=90°,cosA=,AC=6,则BC=6.【解答】解:∵∠C=90°,∴cosA==,∵AC=6,∴AB=12,∴BC===6.故答案为:6.15.(3分)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则的长为2π.【解答】解:连接OA、OC,∵四边形ABCD是⊙O的内接四边形,∴∠D=180°﹣∠B=45°,∴∠AOC=90°,∴的长==2π,故答案为:2π.16.(3分)在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进4颗黑色棋子,取得白色棋子的概率变为,则x2+y2=20.【解答】解:由题意得,解得:x=2,y=4,所以x2+y2=20,故答案为:2017.(3分)如图,在某监测点B处望见一艘正在作业的渔船在南偏西15°方向的A处,若渔船沿北偏西75°方向以60海里/小时的速度航行,航行半小时后到达C处,在C处观测到B在C的北偏东60°方向上,则B、C之间的距离为30海里.【解答】解:由题意得,AC=60×0.5=30海里,∵CD∥BF,∴∠CBF=∠DCB=60°,又∠ABF=15°,∴∠ABC=45°,∵AE∥BF,∴∠EAB=∠FBA=15°,又∠EAC=75°,∴∠CAB=90°,∴BC=AC=30海里,故答案为:30.18.(3分)某种商品的进价为40元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,当x=70时才能使利润最大.【解答】解:设获得的利润为w元,由题意可得,w=(x﹣40)(100﹣x)=﹣(x﹣70)2+900,∴当x=70时,w取得最大值,故答案为:70.19.(3分)如图,⊙O的弦AB与半径OC垂直,点D为垂足,OD=DC,AB=2,点E在⊙O上,∠EOA=30°,则△EOC的面积为1或2.【解答】解:依照题意画出图形,连接OA.设⊙O的半径为x(x>0),则OD=DC=x.∵OC⊥AB于点D,∴∠ADO=90°,AD=DB=AB=.在Rt△ADO中,AO=x,OD=x,AD=,∴∠OAD=30°,∠AOD=60°,AD==x=,解得:x=2.当点E在外时,∠COE=∠AOD+∠EOA=90°,=EO•OC=2;∴S△EOC当点E在上时,过点E作EF⊥OC于点F,∵∠COE=∠AOD﹣∠EOA=30°,∴EF=OE=1,=OC•EF=1.∴S△EOC综上可知:△EOC的面积为1或2.故答案为:1或2.20.(3分)如图,△ABC,∠ACB=90°,点D,E分别在AB,BC上,AC=AD,∠CDE=45°,CD与AE交于点F,若∠AEC=∠DEB,CE=,则CF=5.【解答】解:延长CE至G,使EC=EG,延长ED至H,使EH=AE,过D作DT∥BC,交AE于T,连接GH、AH,设∠AEC=α,则∠DEB=α,∵∠AEC=∠DEB=α,∴△AEC≌△DEB,∴AC=GH,∠ACE=∠EGH=90°,∴AC∥GH,∴四边形ACGH是矩形,∴AH∥CG,∴∠AHE=∠HEG=α,∵AC=AD,∴∠ACD=∠ADC,设∠ACD=∠ADC=β,∵∠CDE=45°,∴β+45°+∠BDE=180°,∴β=135°﹣∠BDE①,∵△ACD是等腰三角形,∴∠CAD=180°﹣2β,∵△ACB是直角三角形,∴∠ABC=90°﹣∠CAD=90°﹣(180°﹣2β)=2β﹣90°,在△BDE中,由内角和得:α+∠BDE+∠ABC=180°,α+∠BDE+2β﹣90°=180°②,把①代入②得:α+∠BDE+2(135°﹣∠BDE)﹣90°=180°,∠BDE=α,∴∠ADH=∠BDE=α,∴AD=AH=AC,∴四边形ACGH是正方形,∴AH=AC=2CE=,∴AD=AC=,∵∠BED=∠BDE=α,∴BE=BD,设BE=x,则BD=x,在Rt△ACB中,由勾股定理得:AC2+BC2=AB2,∴,解得:x=,∴BE=BD=,∴CE=2BE=2BD,∴AD=4BD,∴=,∵DT∥BC,∴△ADT∽△ABE,∴=,∵CE=2BE,∴=,∵DT∥CE,∴==,在Rt△ACE中,由勾股定理得:AE===,∴ET=AE=×=,∴EF=ET=×=,过F作FM⊥BC于M,tanα===,设EM=y,则FM=2y,EF=y,∴y=,y=,∴FM=2y=,EM=y=,∴CM=CE﹣EM=﹣=,在Rt△CFM中,由勾股定理得:CF===5;故答案为:5.三.解答题(60分)21.(7分)通过配方,确定抛物线y=ax2+bx+1的顶点坐标及对称轴,其中a=sin30°﹣tan45°,b=4tan30°•sin60°.【解答】解:a=sin30°﹣tan45°=﹣1=﹣;b=4tan30°•sin60°=4××=2;y=ax2+bx+1=﹣x2+2x+1=﹣(x﹣2)2+3;抛物线顶点坐标(2,3),对称轴直线x=2.22.(7分)如图,在小正方形的边长均为1的方格纸中,有线段AB,点A,B 均在小正方形的顶点上.(1)在图1中画出四边形ABCD,四边形ABCD是中心对称图形,且四边形ABCD 的面积为6,点C,D均在小正方形的顶点上;(2)在图2中画一个△ABE,点E在小正方形的顶点上,且BE=BA,请直接写出∠BEA的余弦值.【解答】(1)如图1所示,平行四边形ABCD即为所求;(2)如图2所示,△ABE即为所求;过点B作BF⊥AE于F,则∠BFE=90°,由图可得,BE=,FE=,∴Rt△BEF中,cos∠BEF===,即∠BEA的余弦值为.23.(8分)在平面直角坐标系内,点O为坐标原点,直线y=x+4交x轴于点A,交y轴于点B,点C(2,m)在直线y=x+4上,反比例函数y=经过点C.(1)求m,n的值;(2)点D在反比例函数y=的图象上,过点D作X轴的垂线,点E为垂足,若OE=3,连接AD,求tan∠DAE的值.【解答】解:(1)∵点C(2,m)在直线y=x+4上,∴m=2+4=6,∴点C的坐标为(2,6),把x=2,y=6代入y=,得6=,解得,n=12;(2)∵OE=3,DE⊥x轴,∴点D的横坐标是3,当x=3时,y==4,∴点D的坐标为(3,4),∴DE=4,把y=0代入y=x+4,得,x=﹣4,即OA=4,∴AE=7,∴tan∠DAE==.24.(8分)如图,正方形ABCD,点E在AD上,将△CDE绕点C顺时针旋转90°至△CFG,点F,G分别为点D,E旋转后的对应点,连接EG,DB,DF,DB 与CE交于点M,DF与CG交于点N.(1)求证BM=DN;(2)直接写出图中已经存在的所有等腰直角三角形.【解答】(1)证明:∵四边形ABCD为正方形,∴∠DCB=90°,CD=CB,∵△CDE绕点C顺时针旋转90°至△CFG,∴CF=CD,∠ECG=∠DCF=90°,∴△CDF为等腰直角三角形,∴∠CDF=∠CFD=45°,∵∠BCM+∠DCE=90°,∠DCN+∠DCE=90°,∴∠BCM=∠DCN,∵∠CBM=∠ABC=45°,∴∠CBM=∠CDN,在△BCM和△DCN中,∴△BCM≌△DCN,∴BM=DN;(2)解:∵四边形ABCD为正方形,∴△ABD和△BCD为等腰直角三角形;由(1)得△CDF为等腰三角形;∵△CDE绕点C顺时针旋转90°至△CFG,∴CE=CG,∠ECG=90°,∴△ECG为等腰直角三角形;∵△CBD和△CFD为等腰直角三角形;∴△BDF为等腰直角三角形.25.(10分)如图,在平面直角坐标系内,点O为坐标原点,抛物线y=﹣x2+x+4交x轴负半轴于点A,交x轴正半轴于点B,交y轴于点C.(1)求AB长;(2)同时经过A,B,C三点作⊙D,求点D的坐标;(3)在(2)的条件下,横坐标为10的点E在抛物线y=﹣x2+x+4上,连接AE,BE,求∠AEB的度数.【解答】解:(1)把y=0代入y=﹣x2+x+4,即﹣x2+x+4=0,解得:x=8或2,∴A(﹣2,0),B(8,0),∴OA=2,BO=8,∴AB=10,(2)连接AC,BC,把x=0代入y=﹣x2+x+4,得y=4,∴C(0,4),∴OC=4,∵tan∠ACO===,tan∠CBO===,∴∠ACO=∠CBO,∵∠OBC+∠OCB=90°,∴∠ACO+∠OCB=∠ACB=90°∴AB为⊙D的直径,∵AD=BD=5,∴OD=3,∴D(3,0).(3)设AE交⊙D于点K,连接BK,作ER⊥x轴于R.∵点E的横坐标为10,∴把x=10代入y=﹣x2+x+4,y=﹣6,∴E(10,﹣6),∴ER=6,OR=10,∴AR=12,∴tan∠EAR==,∴∠EAR=∠ACO,∴∠CAE=∠EAR+∠CAO=∠ACO+∠CAO=90°∵AB为⊙D直径∠AKB=∠ACB=∠CAK=90°∴四边形ACBK为矩形,∴BK=AC,AC2=AO2+OC2=20,∴BK=AC=2在Rt△BER中,BE2=BR2=ER2=22+62=40,∴BE=2,∴cos∠KBE===,∴∠KBE=45°,∴∠AEB=∠AKB﹣∠KBE=45°.26.(10分)如图,AB为⊙O的直径,弦CD⊥AB,点E为垂足,点F为的中点,连接DA,DF,DF交AB于点G.(1)如图1,求证:∠AGD=∠ADG;(2)如图2,连接AF交CE于点H,连接HG,求证:CH=HG;(3)如图3,在(2)的条件下,过点O作OP⊥AD,点P为垂足,若OP=BG,DG=4,求HG长.【解答】(1)证明:连接BD.∵F为的中点,∴∠CDF=∠BDF,∵AB为⊙O的直径,CD⊥AB,∴=,∴∠ADC=∠DBA,∴∠AGD=∠DBG+∠BDG,∵∠ADG=∠ADE+∠EDG,∴∠AGD=∠ADG.(2)证明:连接AC.∵=,∴AC=AD,∵∠AGD=∠ADG,∴AG=AD,∴AC=AG,∵F为的中点,∴∠CAH=∠GAH,在△AHC和△AHG中,,∴△ACH≌△GAH,∴CH=HG.(3)解:连接FO,过点F作FK⊥BG于点K,连接FB、AC,连接CG交AF于点R.∵=,∴AC=AD,∵AE⊥CD,∴∠DAE=∠CAE=2∠HAE,∵∠FOB=2∠HAE∴∠DAE=∠FOB,∵OA=OF,∠OPA=∠FKO=90°,∴△OAP≌△FOK,∴FK=OP,∵∠FBA=∠ADF,又∵∠AGD=∠ADG,∠AGD=∠FGB∴∠FBG=∠FGB,∴FG=FB,∵FK⊥BG,∴GK=KB,∵OP=FK=GB,∴FK=2GK∵∠DEG=∠FKG=90°,∴DE∥FK,∴∠GFK=∠CDG,∵EG垂直平分CD,∴CG=DG=4,∴∠GCE=∠GDC,∴∠GCE=∠GFK,∵AC=AG,∠CAH=∠GAH,∴CR=RG=2,∵∠HCR=∠GFK,∴tan∠HCR=tan∠GFK,∴=,即=,∴HR=1,在Rt△HCR中,CH2=HR2+CR2=12+22=5,∴CH=,∴HG=CH=.27.(10分)如图,在平面直角坐标系内,点O为坐标原点,抛物线y=ax2+bx+2交x正半轴于点A,交x轴负半轴于点B,交y轴于点C,OB=OC,连接AC,tan∠OCA=2.(1)求抛物线的解析式;(2)点P是第三象限抛物线y=ax2+bx+2上的一个动点,过点P作y轴的平行线交直线AC于点D,设PD的长为d,点P的横坐标为t,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,连接PA,PC,当△ACP的面积为30时,将△APC沿AP 折叠得△APC′,点C′为点C的对应点,求点C′坐标并判断点C′是否在抛物线y=ax2+bx+2上,说明理由.【解答】解:(1)把x=0代入y=ax2+bx+2,得,y=2,∴C(0,2),∴OC=2∴OB=OC=2,∴B(﹣2,0),∵tan∠OCA=2,即=2,∴OA=4,∴A(4,0),把B(﹣2,0),A(4,0)代入y=ax2+bx+2,即,解得,∴抛物线解析式是y=﹣x2+x+2,(2)如图,设PD交x轴于点N,∵点P的横坐标为t,PN⊥x轴,∴点N的横坐标为t,点P的纵坐标为﹣t2+t+2,∵点P在第三象限,∴PN=t2﹣t﹣2,∴AN=4﹣t,∵∠DNA=∠COA=90°,∴DN∥OC,∴∠ADN=∠ACO∴tan∠ADN=tan∠ACO=2∴,∴AN=2﹣t∴d=PD=DN+PN=2﹣t+t2﹣t﹣2=t2﹣t(t<﹣2)(3)过点C作CR⊥PD于点R,过点C'作C'K⊥x轴于点K,∵∠CRN=∠RNO=∠CON=90°,∴四边形OCRN为矩形,∴CR=ON,∵△ACP的面积为30,=S△APD﹣S△CPD=PD×AN﹣PD×CR=PD(AN﹣CR)=PD(AN﹣ON)∴S△ACP=PD×OA=(t2﹣t)×4=t2﹣2t=30∴x=10 (舍去)x=﹣6把x=﹣6代入y=﹣x2+x+2,∴y=﹣10,∴P(﹣6,﹣10),∴PN=10,ON=6,∴AN=PN=10,∴∠PAN=∠APN=45°,∵将△APC沿AP折叠得△APC'△APC≌△APC',∴∠PAC'=∠PAC,即∠PAC'=∠PAN+∠CAO=45°+∠CAO ∴∠OAC'=∠PAO+∠PAC'=90°+∠CAO∴∠CAK=180°﹣∠OAC'=90°﹣∠CAO=∠ACO∵AC'=AC,∠AKC'=∠COA=90°,∴△AKC'≌△COA∴C'K=OA=4,AK=OC=2,∴OK=OA+AK=6,∴C'(6,﹣4),当x=6时,y=﹣4,∴点C'在抛物线y=ax2+bx+2上.。

2017年黑龙江省哈尔滨市中考数学试卷有答案

2017年黑龙江省哈尔滨市中考数学试卷有答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前黑龙江省哈尔滨市2017年初中升学考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.7-的倒数是( ) A .7B .7-C .17D .17-2.下列运算正确的是( ) A .632a a a ÷= B .336235a a a += C .326()a a -=D .222()a b a b +=+3.下列图形中,既是轴对称图形又是中心对称图形的是( )ABC D 4.抛物线231()352y x =-+-的顶点坐标是( ) A .1(,3)2-B .1(,3)2--C .1(,3)2D .1(,3)2- 5.五个大小相同的正方体搭成的几何体如图所示,其左视图是( )ABC D 6.方程2131x x =+-的解为( ) A .3x =B .4x =C .5x =D .5x =-7.如图,O 中,弦AB ,CD 相交于点P ,42A ∠=,77APD ∠=,则B ∠的大小是 ( )A .43B .35C .34D .448.在Rt ABC △中,90C ∠=,4AB =,1AC =,则cos B 的值为( )AB .14CD9.如图,在ABC △中,D ,E 分别为AB ,AC 边上的点,DE BC ∥,点F 为BC 边上一点,连接AF 交DE 于点G .则下列结论中一定正确的是)A .AD AEAB EC =B .AG GF =C .BD CE AD AE =D .AG AF EC= 10.周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中.小涛离家的距离y (单位:m )与他所用的时间t (单位:min )之间的函数关系如图所示.下列说法中正确的是( )A .小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/min C .小涛从报亭返回家中的平均速度是80m/minD .小涛在报亭看报用了15min毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)第Ⅱ卷(非选择题 共90分)二、填空题(本大题共10小题,每小题3分,共30分.把答案填写在题中的横线上) 11.将57600000用科学记数法表示为 .12.函数212x y x +=-中,自变量x 的取值范围是 . 13.把多项式2249ax ay -分解因式的结果是 .14.的结果是 .15.已知反比例函数31k y x-=的图象经过点(1,2),则k 的值为 .16.不等式组521,30x x -⎧⎨-⎩≤<的解集是 .17.一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率为 . 18.已知扇形的弧长为4π,半径为48,则此扇形的圆心角为 度.19.四边形ABCD 是菱形,60BAD ∠=,6AB =,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE =,则CE 的长为 .20.如图,在矩形ABCD 中,M 为BC 边上一点,连接AM ,过点D 作DE AM ⊥,垂足为E ,若1DE DC ==,2AE EM =,则BM 的长为 .三、解答题(本大题共7题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分7分) 先化简,再求代数式212121+2x xx x x x +÷---+的值,其中4sin602x =-. 22.(本小题满分7分)如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.(1)在图中画出以AB 为底、面积为12的等腰ABC △,且点C 在小正方形的顶点上; (2)在图中画出平行四边形ABDE ,且点D 和点E 均在小正方形的顶点上,3tan 2EAB ∠=.连接CD ,请直接写出线段CD 的长.23.(本小题满分8分)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚.洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图.请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.24.(本小题满分8分)已知:ACB △和DCE △都是等腰直角三角形,90ACB DCE ∠=∠=,连接AE ,BD 交于点O .AE 与DC 交于点M ,BD 与AC 交于点N .(1)如图1,求证:AE BD =;(2)如图2,若AC DC =,在不添加任何辅助线的情况下,请直接写出图2中四对全等数学试卷 第5页(共18页) 数学试卷 第6页(共18页)的直角三角形.25.(本小题满分10分)威丽商场销售,A B 两种商品,售出1件A 种商品和4件B 种商品所得利润为600元;售出3件A 种商品和5件B 种商品所得利润为1100元.(1)求每件A 种商品和每件B 种商品售出后所得利润分别为多少元;(2)由于需求量大,,A B 两种商品很快售完,威丽商场决定再一次购进,A B 两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A 种商品?26.(本小题满分10分)已知:AB 是O 的弦,点C 是AB 的中点,连接OB ,OC ,OC 交AB 于点D .(1)如图1,求证:AD BD =;(2)如图2,过点B 作O 的切线交OC 的延长线于点M ,点P 是AC 上一点,连接AP ,BP ,求证:90APB OMB ∠-∠=;(3)如图3,在(2)的条件下,连接DP ,MP ,延长MP 交O 于点Q ,若6MQ DP =,3sin 5ABO ∠=,求MPMQ 的值.27.(本小题满分10分)如图,在平面直角坐标系中,点O 为坐标原点,抛物线2y x bx c =++交x 轴于A ,B 两点,交y 轴于点C ,直线3y x =-经过B ,C 两点.(1)求抛物线的解析式;(2)过点C 作直线CD y ⊥轴交抛物线于另一点D ,点P 是直线CD 下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P 作PE x ⊥轴于点E ,PE 交CD 于点F ,交BC 于点M ,连接AC ,过点M 作MN AC ⊥于点N ,设点P 的横坐标为t ,线段MN 的长为d ,求d 与t 之间的函数关系式(不要求写出自变量t 的取值范围); (3)在(2)的条件下,连接PC ,过点B 作BQ PC ⊥于点Q (点Q 在线段PC 上),BQ 交CD 于点T ,连接OQ 交CD 于点S ,当ST TD =时,求线段MN 的长.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________【解析】从左边看题中的几何体,看到的图形是故选C。

【5套打包】哈尔滨市初三九年级数学上期末考试检测试题(含答案)

【5套打包】哈尔滨市初三九年级数学上期末考试检测试题(含答案)

人教版数学九年级上册期末考试试题及答案一、选择题(每小题3分,共30分)1.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现在有一个人经过该路口,恰好直行的概率是()A.B.C.D.3.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠04.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S=4,△AOT 则此函数的表达式为()A.B.C.D.5.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)6.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3 7.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.88.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y29.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B.C.D.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8二、填空题(共6小题,每题4份,共24分)11.(4分)用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为.12.(4分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为.13.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】14.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP 长为厘米.15.(4分)如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是km.16.(4分)在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN =时,△AMN与原三角形相似.三、解答题(本题共7小题,共66分)17.(12分)(1)计算:4cos30°﹣3tan60°+2sin45°•cos45°(2)解方程:x2+x﹣1=018.(7分)随着信息技术的迅猛发展,人民去商场购物的支付方式更加多样、便捷.除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.19.(7分)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.20.(9分)如图,一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)分别交于点A(4,1),B(﹣1,a)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出kx+b>的x的取值范围.21.(9分)如图,为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建.如图,A,B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°,开通隧道后,汽车从A地到B地大约可以少走多少千米(结果精确到1千米)?(参考数据:≈1.4,≈1.7)22.(10分)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC 的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.23.(12分)如图,已知抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),与y 轴交于点C.(1)求抛物线解析式;(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.参考答案一、选择题1.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,也是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.经过某路口的行人,可能直行,也可能左拐或右拐,假设这三种可能性相同,现在有一个人经过该路口,恰好直行的概率是()A.B.C.D.【分析】根据根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率即可求出答案.解:∵共有直行、左拐、右拐这3种选择,∴恰好直行的概率是,故选:B.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠0【分析】将原方程变形为一般式,根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.解:原方程可变形为mx2﹣x﹣=0.∵关于x的一元二次方程mx2﹣x=有实数根,∴,解得:m≥﹣1且m≠0.故选:B.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,列出关于m的一元一次不等式是解题的关键.=4,4.如图,点A是反比例函数图象的一点,自点A向y轴作垂线,垂足为T,已知S△AOT 则此函数的表达式为()A.B.C.D.【分析】由图象上的点所构成的三角形面积为可知,该点的横纵坐标的乘积绝对值为2,又因为点M在第二象限内,所以可知反比例函数的系数.=8;解:由题意得: |k|=2S△AOT又因为点M在第二象限内,则k<0;所以反比例函数的系数k为﹣8.故选:D.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.5.如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0)C.(3,﹣3)D.(5,﹣1)【分析】画图可得结论.解:画图如下:则A'(5,﹣1),故选:D.【点评】本题考查了旋转的性质,熟练掌握顺时针或逆时针旋转是解决问题的关键.6.一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=3【分析】方程移项配方后,利用平方根定义开方即可求出解.解:方程整理得:x2﹣6x=6,配方得:x2﹣6x+9=15,即(x﹣3)2=15,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A.B.2C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP =2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.8.若点(﹣2,y 1),(﹣1,y 2),(3,y 3)在双曲线y =(k <0)上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题. 解:∵点(﹣2,y 1),(﹣1,y 2),(3,y 3)在双曲线y =(k <0)上,∴(﹣2,y 1),(﹣1,y 2)分布在第二象限,(3,y 3)在第四象限,每个象限内,y 随x 的增大而增大,∴y 3<y 1<y 2.故选:D .【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.9.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC 的正切值是( )A .2B .C .D .【分析】根据勾股定理,可得AC 、AB 的长,根据正切函数的定义,可得答案.解:如图:,由勾股定理,得AC =,AB =2,BC =,∴△ABC 为直角三角形,∴tan ∠B ==,【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8【分析】由Rt△APB中AB=2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,据此求解可得.解:∵PA⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,【点评】本题主要考查点与圆的位置关系,解题的关键是根据直角三角形斜边上的中线等于斜边的一半得出AB取得最小值时点P的位置.二、填空题(共6小题,每题4份,共24分)11.(4分)用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为.【分析】利用底面周长=展开图的弧长可得.解:,解得r=.故答案为:.【点评】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.12.(4分)如图,在平面直角坐标系中,每个小方格都是边长为1个单位长度的正方形,已知△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,点A,B都在格点上,则点B1的坐标为(﹣2,﹣).【分析】把B的横纵坐标分别乘以﹣得到B′的坐标.解:由题意得:△AOB与△A1OB1位似,位似中心为原点O,且相似比为3:2,又∵B(3,1)∴B′的坐标是[3×(﹣),1×(﹣)],即B′的坐标是(﹣2,﹣);故答案为:(﹣2,﹣).【点评】本题考查了位似变换:先确定点的坐标,及相似比,再分别把横纵坐标与相似比相乘即可,注意原图形与位似图形是同侧还是异侧,来确定所乘以的相似比的正负.13.(4分)如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为 6.2 米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.14.(4分)已知线段AB长是2厘米,P是线段AB上的一点,且满足AP2=AB•BP,那么AP 长为(﹣1)厘米.【分析】根据黄金分割点的定义,知AP是较长线段,得出AP=AB,代入数据即可得出AP的长.解:∵P是线段AB上的一点,且满足AP2=AB•BP,∴P为线段AB的黄金分割点,且AP是较长线段,∴AP=AB=2×=(﹣1)厘米.故答案为(﹣1).【点评】本题考查了黄金分割的概念:如果一个点把一条线段分成两条线段,并且较长线段是较短线段和整个线段的比例中项,那么就说这个点把这条线段黄金分割,这个点叫这条线段的黄金分割点;较长线段是整个线段的倍.15.(4分)如图,在一笔直的海岸线l上有相距2km的A,B两个观测站,B站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C在北偏东30°的方向上,则船C到海岸线l的距离是km.【分析】首先由题意可证得:△ACB是等腰三角形,即可求得BC的长,然后由在Rt△CBD 中,CD=BC•sin60°,求得答案.解:过点C作CD⊥AB于点D,根据题意得:∠CAD=90°﹣60°=30°,∠CBD=90°﹣30°=60°,∴∠ACB=∠CBD﹣∠CAD=30°,∴∠CAB=∠ACB,∴BC=AB=2km,在Rt△CBD中,CD=BC•sin60°=2×=(km).故答案为:.【点评】此题考查了方向角问题.注意证得△ABC是等腰三角形是解此题的关键.16.(4分)在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN =2或4.5 时,△AMN与原三角形相似.【分析】分别从△AMN∽△ABC或△AMN∽△ACB去分析,根据相似三角形的对应边成比例,即可求得答案.解:由题意可知,AB=9,AC=6,AM=3,①若△AMN ∽△ABC ,则=,即=, 解得:AN =2;②若△AMN ∽△ACB ,则=,即=, 解得:AN =4.5;故AN =2或4.5.故答案为:2或4.5.【点评】此题考查了相似三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.三、解答题(本题共7小题,共66分)17.(12分)(1)计算:4cos30°﹣3tan60°+2sin45°•cos45°(2)解方程:x 2+x ﹣1=0【分析】(1)利用特殊角的三角函数值计算;(2)先计算判别式的值,然后利用求根公式解方程.解:(1)原式=4×﹣3×+2××=2﹣3+1 =1﹣; (2)△=12﹣4×(﹣1)=5,x == 所以x 1=,x 2=.【点评】本题考查了解一元二次方程﹣公式法:将一元二次方程配成(x +m )2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了特殊角的三角函数值.18.(7分)随着信息技术的迅猛发展,人民去商场购物的支付方式更加多样、便捷.除了现金、银行卡支付以外,还有微信、支付宝以及其他支付方式.在一次购物中,小明和小亮都想从微信、支付宝、银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两人恰好选择同一种支付方式的情况,再利用概率公式即可求得答案.解:将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为=.【点评】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.19.(7分)如图,已知∠BAE=∠CAD,AB=18,AC=48,AE=15,AD=40.求证:△ABC∽△AED.【分析】由∠BAE=∠CAD知∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,再根据线段的长得出==,据此即可得证.解:∵∠BAE=∠CAD,∴∠BAE+∠EAC=∠CAD+∠EAC,即∠BAC=∠EAD,∵AB=18,AC=48,AE=15,AD=40,∴==,∴△ABC∽△AED.【点评】本题主要考查相似三角形的判定,解题的关键是掌握两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似.20.(9分)如图,一次函数y=kx+b(k≠0)和反比例函数y=(m≠0)分别交于点A(4,1),B(﹣1,a)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出kx+b>的x的取值范围.【分析】(1)利用待定系数法,即可得到反比例函数的解析式,把点A(4,1)与点B(﹣1,﹣4)代入一次函数y=kx+b,即可得到一次函数解析式为y=x﹣3;(2)根据三角形的面积公式即可得到结论;(3)由图象即可得kx+b>的x的取值范围.解:(1)∵点A(4,1)与点B(﹣1,a)在反比例函数y=(m≠0)图象上,∴m=4,即反比例函数的解析式为y=,当x=1时,y=﹣4,即B(﹣1,﹣4),∵点A(4,1)与点B(﹣1,﹣4)在一次函数y=kx+b(k≠0)图象上,∴,解得:,∴一次函数解析式为y=x﹣3;(2)对于y=x﹣3,当y=0时,x=3,∴C(3,0),∴S△AOB =S△AOC+S△BOC=×3×1+×3×4=;(3)由图象可得,当﹣1<x<0或x>4时,kx+b>.【点评】本题考查的是反比例函数与一次函数的交点问题及三角形的面积公式,熟知坐标轴上点的坐标特点是解答此题的关键.21.(9分)如图,为加快城乡对接,建设全域美丽乡村,某地区对A,B两地间的公路进行改建.如图,A,B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°,开通隧道后,汽车从A地到B地大约可以少走多少千米(结果精确到1千米)?(参考数据:≈1.4,≈1.7)【分析】过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD的长度和AC的长度,在直角△CBD中,解直角三角形求出BD的长度,再求出AD的长度,进而求出汽车从A地到B地比原来少走多少路程.解:过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×=40(千米),AC==40≈56.4(千米),∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×=40(千米),∵tan45°=,CD=40(千米),∴AD=40(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2≈27(千米).答:汽车从A地到B地比原来少走的路程为27千米.【点评】本题考查了勾股定理的运用以及解一般三角形的知识,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(10分)如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC 的平分线交于点D,BD与AC交于点E,与⊙O交于点F.(1)求∠DAF的度数;(2)求证:AE2=EF•ED;(3)求证:AD是⊙O的切线.【分析】(1)求出∠ABC、∠ABD、∠CBD的度数,求出∠D度数,根据三角形内角和定理求出∠BAF和∠BAD度数,即可求出答案;(2)求出△AEF∽△DEA,根据相似三角形的性质得出即可;(3)连接AO,求出∠OAD=90°即可.【解答】(1)解:∵AD∥BC,∴∠D=∠CBD,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=∠ABC=72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)证明:∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴=,∴AE2=EF×ED;(3)证明:连接OA、OF,∵∠ABF=36°,∴∠AOF=2∠ABF=72°,∵OA=OF,∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,由(1)知∠DAF=36°,∴∠DAO=36°+54°=90°,即OA⊥AD,∵OA为半径,∴AD是⊙O的切线.【点评】本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.23.(12分)如图,已知抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),与y 轴交于点C.(1)求抛物线解析式;(2)在直线BC上方的抛物线上有点P,使△PBC面积为1,求出点P的坐标.【分析】(1)根据抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),可以求得该抛物线的解析式;(2)根据题意和(1)中的抛物线解析式可以求得点C的坐标,从而可以得到直线BC的函数解析式,然后根据在直线BC上方的抛物线上有点P,使△PBC面积为1,即可求得点P 的坐标.解:(1)∵抛物线y=ax2+bx+1与x轴分别交于A(﹣1,0),B(3,0),∴,解得,,∴抛物线的解析式为y=﹣x2+x+1;(2)∵y=﹣x2+x+1,∴当x=0时,y=1,即点C的坐标为(0,1),∵B(3,0),C(0,1),∴直线BC的解析式为:y=x+1,设点P的坐标为(p,﹣p2+p+1),将x=p代入y=x+1的,y=p+1,∵△PBC面积为1,∴=1,解得,p1=1,p2=2,当p1=1时,点P的坐标为(1,),当p=2时,点P的坐标为(2,1),2即点P的坐标为(1,)或(2,1).【点评】本题考查抛物线与x轴的交点、一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解答本题的关键是明确题意,利用二次函数的性质解答.九年级上学期期末考试数学试题(含答案)一、选择题(下列各题的备选答案中,只有一个是正确的;本题共8个小题,每小题2分,共16分)1.(2分)如图,一个空心圆柱体,其左视图正确的是()A.B.C.D.2.(2分)关于x的一元二次方程x2+x+1=0的根的情况是()A.两个不等的实数根B.两个相等的实数根C.没有实数根D.无法确定3.(2分)有3张纸牌,分别是红桃2,红桃3,黑桃A,把纸牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张,则两人抽的纸牌均为红桃的概率是()A.B.C.D.4.(2分)下列说法正确的是()A.有两个角为直角的四边形是矩形B.矩形的对角线相等C.平行四边形的对角线相等D.对角线互相垂直的四边形是菱形5.(2分)如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是()A.4B.2C.D.6.(2分)已知反比例函数y=,下列结论不正确的是()A.该函数图象经过点(﹣1,1)B.该函数图象在第二、四象限C.当x<0时,y随着x的增大而减小D.当x>1时,﹣1<y<07.(2分)如图,在矩形ABCD中,AB=8厘米,BC=10厘米,点E在边AB上,且AE=2厘米,如果动点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,动点Q 在线段CD上由C点向D点运动,设运动时间为t秒,当△BPE与△CQP全等时,t的值为()A.2B.1.5或2C.2.5D.2或2.58.(2分)如图,已知∠MON=30°,B为OM上一点,BA⊥ON于点A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连接BE,若AB=2,则BE的最小值为()A.+1B.2﹣1C.3D.4﹣二、填空题(本题共8个小题,每小题3分,共24分)9.(3分)方程x2=2x的解是.10.(3分)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊只.11.(3分)小明的身高1.6米,他在阳光下的影长为0.8米,同一时刻,校园的旗杆影长为4.5米,则该旗杆高米.12.(3分)如图,已知点A在反比例函数图象上,AC⊥y轴于点C,点B在x轴的负半轴上,且△ABC的面积为3,则该反比例函数的表达式为.13.(3分)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为.14.(3分)如图,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,连接BE交对角线AC于点F,则∠EFC=°.15.(3分)如图,在平面直角坐标系中,O为坐标原点,点A,B的坐标分别为(0,4),(﹣3,0),E为AB的中点,EF∥AO交OB于点F,AF与EO交于点P,则EP的长为.16.(3分)如图,正方形A1ABC的边长为1,正方形A2A1B1C1边长为2.正方形A3A2B2C2边长为4,…依此规律继续做正方形A n+1A n B n∁n,其中点A,A1,A2,A3,…在同一条直线上,连接AC1交A1B1于点D1,连接A1C2交A2B2于点D2,…,若记△AA1D1的面积为S1,△A1A2D2的面积为S2…,△A n﹣1A n D n的面积为S n,则S2019=.三、解答题(本大题共2个题,17题6分,18题5分,共11分)17.(6分)用适当的方法解下列一元二次方程:(1)(x﹣1)2=2;(2)2x2+5x=﹣218.(5分)如图,在平面直角坐标系中,△ABC的顶点都在小方格的格点上.(1)点A的坐标是;点C的坐标是;(2)以原点O为位似中心,将△ABC缩小,使变换后得到的△A1B1C1与△ABC对应边的比为1:2,请在网格中画出△A1B1C1;(3)△A1B1C1的面积为.四、解答题(本大题共3个题,19题6分,20,21题各8分,共22分)19.(6分)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(单位:千帕)随气体体积V(单位:立方米)的变化而变化,P随V的变化情况如下表所示.(1)写出符合表格数据的P关于V的函数表达式;(2)当气球的体积为20立方米时,气球内气体的气压P为多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,依照(1)中的函数表达式,基于安全考虑,气球的体积至少为多少立方米?20.(8分)小明和小亮两同学做游戏,游戏规则是:有一个不透明的盒子,里面装有两张红卡片,两张绿卡片,卡片除颜色外其它均相同,两人先后从盒子中取出一张卡片(不放回),若两人所取卡片的颜色相同,则小明获胜,否则小亮获胜.(1)请用画树状图或列表法列出游戏所有可能的结果;(2)请根据你的计算结果说明游戏是否公平,若不公平,你认为对谁有利?21.(8分)如图,在△ABC中,D、E分别是边AC、BC的中点,F是BC延长线上一点,∠F=∠B.(1)若AB=10,求FD的长;(2)若AC=BC,求证:△CDE∽△DFE.五、解答题(本大题共3个题,22题8分,23题9分,24题10分,共27分)22.(8分)利民商场经营某种品牌的T恤,购进时的单价是300元,根据市场调查:在一段时间内,销售单价是400元时,销售量是60件,销售单价每涨10元,销售量就减少1件.设这种T恤的销售单价为x元(x>400)时,销售量为y件、销售利润为W元.(1)请分别用含x的代数式表示y和W(把结果填入下表):(2)该商场计划实现销售利润10000元,并尽可能增加销售量,那么x的值应当是多少?23.(9分)如图,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A,B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为点M,BM=OM=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的表达式;(2)直线AB交x轴于点D,过点D作直线l⊥x轴,如果直线l上存在点P,坐标平面内存在点Q.使四边形OP AQ是矩形,求出点P的坐标.24.(10分)如图1,在正方形ABCD中,E是边BC上的点,将线段DE绕点E逆时针旋转90°得到EF,过点C作CG∥EF交BA(或其延长线)于点G,连接DF,FG.(1)FG与CE的数量关系是,位置关系是.(2)如图2,若点E是CB延长线上的点,其它条件不变.①(1)中的结论是否仍然成立?请作出判断,并给予证明;②DE,DF分别交BG于点M,N,若BC=2BE,求.2018-2019学年辽宁省锦州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的;本题共8个小题,每小题2分,共16分)1.【解答】解:一个空心圆柱体,其左视图为.故选:B.2.【解答】解:∵x2+x+1=0,∴△=12﹣4×1×1=﹣3<0,∴该方程无实数根,故选:C.3.【解答】解:列表如下:∴一共有9种等可能的结果,其中两次抽得纸牌均为红桃的有4种结果,∴两次抽得纸牌均为红桃的概率为,故选:A.4.【解答】解:A、错误.有3个角为直角的四边形是矩形.B、正确.矩形的对角线相等.C、错误.平行四边形的对角线不一定相等.D、错误.对角线互相垂直的四边形不一定是菱形.故选:B.5.【解答】解:∵DE∥AC,∴DB:AB=BE:BC,∵DB=4,AB=6,BE=3,∴4:6=3:BC,解得:BC=,∴EC=BC﹣BE=.故选:C.6.【解答】解:对于y=,当x=﹣1时,y=1,∴该函数图象经过点(﹣1,1),A正确,不符合题意;∵k=﹣1<0,∴该函数图象在第二、四象限,B正确,不符合题意;当x<0时,y随着x的增大而增大,C错误,符合题意;当x>1时,﹣1<y<0,D正确,不符合题意,故选:C.7.【解答】解:当点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,BE=CP,∵AB=8厘米,BC=10厘米,AE=2厘米,∴BE=CP=6厘米,∴BP=10﹣6=4厘米,∴运动时间=4÷2=2(秒);当点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴点P,Q运动的时间t=人教版数学九年级上册期末考试试题【答案】(1)人教版七年级数学下册第九章不等式与不等式组单元测试题。

哈尔滨市道里区九年级上期末调研测试数学试题及答案.doc

哈尔滨市道里区九年级上期末调研测试数学试题及答案.doc

2014-2015学年度道里区九年级上学期期末调研数学试题一、选择题(每题3分,共计30分)1.下列图形中,既是轴对称图形又是中心对称图形的是( )2.如果两个相似多边形的相似比为1:5,则它们的面积比为( ) A. 1:25 B.1:5 C.1:2.5 D.1:5 3. 在Rt △ABC 中,∠C=90°,AC=6,BC=8则sinA 的值等于( )A.43 B. 34C. 53D. 454.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是( ).5. 将抛物线y=﹣2x 2+1向右平移1个单位,再向下平移3个单位后所得到的抛物线为( ) A.y=-2(x+1)2-2 B. y=-2(x+1)2-4 C.y=-2(x-1)2-2 D.y=-2(x-1)2-4 6.在不透明的口袋中装有除颜色外其它都相同的3个黑球和4个白球,任意从口袋中摸出一个球来,摸到白球的概率为( )A .43 B .34 C .73 D .74 7.若双曲线y=xk 1的图象经过第二、四象限,则k 的取值范围是 ( )A . k>1B . k≥1C . k<1D . k≤18.如图,在△ABC 中,∠CAB=70°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′=( ) A .30°B .35°C .40°D .50°9 .如图,CD 为⊙O 直径,弦AB ⊥CD 于点E ,CE =1,AB=10,则CD 长为( ) A .12.5 B .13 C .25D .26第8题图 第9题图 第10题图10.如图为二次函数2(0)y ax bx c a =++≠的图象,下面四条信息:①a b c >0;②4a +c <2b ;③240ac b -<;④3b +2c <0,其中正确信息的个数是( ) A 、4个 B 、3个 C 、2个 D 、1个 二、填空题:(每题3分,共30分) 11.将抛物线y =x 2+2x+3化为y =a ()k h x +-2的形式是______________.12. 在半径为6cm 的圆中,长为2πcm 的弧所对的圆心角的度数为______________. 13.如图,AB ∥CD ∥EF ,AD = 4,BC=DF=38cm ,则CE 的长 .14. 如图,在平行四边形ABCD 中,E 是边CD 上一点,AE 的延长线交BC 的延长线于点F ,请写出图中一对相似三角形:15.正六边形的边长为2,则它的边心距为_______.16.等腰三角形的面积为40,底边长为4,则底角的正切值为 . 17.如图,在Rt △ABC 中,∠C=90°,AC=5,以C 为圆心,CA 长为半径的⊙C 恰好经过AB 中点D .则BC 的长等于 .18.如图,PA 、PB 是⊙O 的切线,点A 、B 为切点,AC 是⊙O 的直径,∠P =50°,则∠BAC 的大小是___度. 19.半径为1的⊙O 中,弦AB=2,弦AC=3,则∠BAC= . 20、如图,在△ABC 中,∠C=90°,D 、E 分别为 BC 、AC 上一点,BD=AC ,DC=AE ,BE 与AD交于点P ,则∠ADC+∠BEC=___________度.三、解答题(其中21~22题各7分,23~24题各8分,25~27题各10分,共计60分)21、(本题7分) 先化简,再求值:)21(1222-+÷+-xx x x x ,其中x =2cos30°+tan45.第13题图 第14题图第18题图 第20题图22. (本题7分) 图l 、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A 、B 在小正方形的顶点上.请在网格中按照下列要求画出图形: (1)在图1中以AB 为边作四边形ABCD (点C 、D 在 小正方形的顶点上),使得四边形ABCD 中心对称图形,且△ABD 为轴对称图形(画出一个即可);(2)在图2中以AB 为边作四边形ABEF (点E 、F 在小 正方形的顶点上),使得四边形ABEF 中心对称图形 但不是轴对称图形,且tan ∠FAB=3.23. (本题8分)下图是某校未制作完整的三个年级雷锋志愿者的统计图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有多少名雷锋志愿者, 并将两幅统计图补充完整;(2)要求从一年级、三年级志愿者中各推荐一名队长候选人,二年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是二年级志愿者的概率是多少?24.(本题8分)如图,放置在水平桌面上的台灯的灯臂AB 长为30cm ,灯罩BC 长为20cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°. 使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ? (结果精确到0.1cm ,参考数据:3≈1.732)25. (本题10分)利民商店经销甲、乙两种商品. 现有如下信息:信息1:甲、乙两种信息3:按零售单价购买甲商品3件和乙商品2件,共付了19元.商品的进货单价之和是5元;信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元.信息3:按零售单价购买甲商品3件和乙商品2件请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元. 在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?26.(本题10分)在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F,AC∥BF.(1)如图1,求证:FG=FB;(2)如图2,连接BD、AC,若BD=BG,求证:AC∥BF;(3)在(2)的条件下,若tan∠F=34,CD=1,求⊙O的半径.27. (本题10分) 如图,在平面直角坐标系xOy 中,直线7y kx =-与y 轴交于点C ,与x 轴交于点B ,抛物线214y ax bx a =++经过B 、C 两点,与x 轴的正半轴交于另一点A ,且OA :OC=2 :7.(1)求抛物线的解析式;(2)点D 为线段CB 上,点P 在对称轴的右侧抛物线上,PD=PB ,当tan ∠PDB =2,求P 点的坐标;(3)在(2)的条件下,点Q(7,m)在第四象限内,点R 在对称轴的右侧抛物线上,若以点P 、D 、Q 、R 为顶点的四边形为平行四边形,求点Q 、R 的坐标.道里区2014-2015学年度上学期期末九年级数学调研试题参考答案及评分标准一、选择题1.C;2.A;3.D;4.A;5.C;6.D;7.C;8.C;9.D;10.B 二、填空题11.2)1(2++=x y ;12.60;13.49;14.FEC ,FAB.;15.3;16.10;17.35;18.25 ;19.15°或75°;20.6. 三、解答题21.解:)21(1222-+÷+-xx x x x)12()1()1)(1(2xx x x x x x +-÷+-+=2)1(1-⋅-=x x x x ………1分11-=x ………1分………1分当x =2cos30°+tan45°=131232+=+⨯时 ………2分原式=33311131==-+ ………2分22.解:(1)图4分,(2)图3分.23.解:(1)三个年级雷锋志愿者的总人数=30÷50%=60(人), 所以三年级志愿者的人数=60×20%=12(人). ………2分 (2)一年级志愿者的人数所占的百分比=1﹣50%﹣20%=30%; 如图所示:………3分(3)用A 表示一年级队长候选人,B 、C 表示二年级队长候选人,D 表示三年级队长候选人,画树状图为:,可能出现的结果有12种,并且它们出现的可能性相等,其中两人都是二年级志愿者的结果有2种,所以P (两名队长都是二年级志愿者)61122==.………3分 24.解:过点B 作BF ⊥CD 于点F ,作BG ⊥AD 于点G . ∴四边形BFDG 矩形 ∴BG=FD ………1分在Rt △BCF 中,∠CBF =30°,∴CF =BC·sin 30°= 20×12 =10 ………2分在Rt △ABG 中,∠BAG =60°,∴BG =AB·sin 60°= 30×32 = 15 3 . ……2分∴CE =CF +FD +DE =10+153+2=12+153≈37.98≈38.0(cm ) ………3分答:此时灯罩顶端C 到桌面的高度CE 约是38.0cm.25.解:(1)设甲商品的进货单价是x 元,乙商品的进货单价是y 元.由题意得⎩⎨⎧x +y =53(x +1)+2(2y -1)=19………3分解得⎩⎨⎧x =2y =3 ………2分答:甲商品的进货单价是2元,乙商品的进货单价是3元.(2)由题意知甲种商品每件获取的利润为1元,乙种商品每件获取的 利润为2元, 设商店每天销售甲、乙两种商品获取的利润为s 元,则s =(1-m )(500+100×m 0.1)+(2-m )(300+100×m0.1) ………3分即 s =-2000m 2+2200m +1100 =-2000(m -0.55)2+1705.∵-2000<0∴当m =0.55时,s 有最大值,最大值为1705. ………2分答:当m 定为0.55元时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1705元. 26.证明:(1)如图1连接OB ∵BF 是⊙O 的切线 ∴∠OBF=90° ∴∠OBA+∠GBF=90° ………1分 ∵OA ⊥CD ∴∠AEG=90° ∴∠AGE+∠EAG=90° ∵OA=OB∴∠OAB=∠OBA∴∠AGE=∠FBG ………1分 ∵∠AGE=∠FGB∴∠FGB=∠FBG∴FG=FB ………1分(2)∵BD=BG ∴∠DGB=∠GDB ……1分 ∵∠CAB 和∠BDC 都是弧BC 所对的圆周角 ∴∠CAB=∠BDC∴∠CAB=∠FGB ………1分 ∵∠FGB=∠FBG∴∠CAB=∠GBF∴AC ∥FB ………1分 解:(3) 由(2)得∠FBG=∠CAG ∵∠FGB=∠FBG ∴∠CAG=∠FGB ∵∠FGB=∠CGA∴∠CGA=∠CAG ∴CA=CG ………1分∵AC ∥BF ∴∠ACE=∠F ∴ tan ∠ACE=tan ∠F ∵tan ∠F=∴tan ∠ACE=∴43=CE AE ………1分 设AE=3k ,则CE=4k. 在Rt △ACE 中, 2222)4()3(AC k k CE AE +=+==5k∴CG=5k∴EG=CG-CE=5k-4k=k∴k=1 ………1分 ∴CE=4,AE=3连接OC,设⊙O 的半径为R ,在Rt △CEO 中, CO 2=CE 2+OE2R 2=42+(R-3)2解得R=625………1分即⊙O 的半径为625.27. 解:(1)∵直线y=kx-7与y 轴的负半轴交于点C ∴C (0,-7) ∴OC=7∵抛物线y=ax 2+bx+14a 经过点C ,∴14a=-7,∴a =-21……1分 ∴y =-21x 2+bx-7 ∵OA :OC=2 :7. ∴OA=2,∴A (2,0)∵抛物线y =-21x 2+bx-7经过点A ∴b=29 ∴抛物线的解析式为y =-21x 2+29x-7 ………1分(2)如图1,∵抛物线y =-21x 2+29x-7经过B 点,令y=0解得x=7或x=2(舍) ∴B (7,0) ∴ OB=7∴OC=OB ∴∠OCB=∠OBC=45°过点P 作PF ⊥x 轴于点G ,交CB 延长线于点F ,则PF ∥y 轴,∴∠CFG=∠OCB==45°∴BF=2GF过P 作PE ⊥BC 于点E ,∵PD=PB∴∠PBD=∠PDB∴tan ∠PBD=tan ∠PDB=2∴PE=2BE ………1分 ∵EF=PE ∴BF=BE∴PF=2PE=22BE=22BF=4GF , ∴PG=3GF ………1分 ∵直线y=kx-7过B 点 ∴ k=1 ∴y=x-7 设F(7,-m m ),则P()7(3,--m m ) ………1分因为点P 在抛物线y =-21x 2+29x-7上, 所以,72921)7(32-+-=--m m m解得m=7(舍)或m=8∴P (8,-3) ………1分(3)如图2,当DP ∥QR 时,即四边形DQRP 是平行四边形 ∵B (7,0),Q (7,n ) ∴BQ ∥y 轴过P 作PN ∥BQ ,过D 作DN ⊥BQ 交PN 于点N , 过R 作RM ⊥BQ 于点M.设PD 交BQ 于点T ,DN 交BM 于点I∴∠DTB=∠DPN ,∠PTQ=∠RQM, ∵∠DTB=∠PTQ ∴∠DPN=∠RQM∵四边形DPRQ 是平行四边形 ∴DP=RQ∵∠RMQ=∠DNP ,∴△RMQ ≌△DNP………1分 ∴RM=DN ,MQ=PN由(2)可求F (8,1),GF=1,BD=2BE=22BF=22 ∵∠QBC=45°,∴BI=DI=2 ∴D (5,-2) 设R 点的横坐标为t ,∵RM=DN ,∴t-7=8-5 解得t=10∵点R 在抛物线y =-21x 2+29x-7 上, ∴当t=10时 , 127102910212-=-⨯+⨯-∴R(10,-12) ………1分∵MQ=PN∴3-2=-12-n,∴n=-11∴R(10,-12),Q(7,-11)………1分如图3,当DR∥QP时,即四边形DQPR是平行四边形同理可求得R(6,2),Q(7,-7)………1分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈尔滨市道里区2017届九年级上期末考试数学试题含答案道里区2016—2017学年度上学期九年级期末调研测试数学学科一.选择题(每小题3分,共计30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()(A) (B) (C) (D) 2.在△ABC 中,∠C=90°,下列选项中的关系式正确的是( ) (A)sinA=AB AC (B)cosB=BC AC (C)tanA=ABBC(D)AC=A AB cos ⋅ 3.如图的几何体是由一些小正方体组合而成的,则这个几何体的主视图是()4.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AD 、DB 、BC , 若∠ABD=55°,则∠BCD 的度数为( ) (A )65° (B )55° (C )45°(D )35°5.如图,将△ABC 绕点A 逆时针旋转得到C B A ''∆,若B '落 在BC 边上, ∠B=50°,则C B C ''∠为( ) (A )50° (B )60° (C )70°(D )80°6.在反比例函数xmy 31-=图象上有两点A ),(11y x ,B ),22y x (,1x <0<2x ,1y <2y , 则m 的取值范围是()(第3题图)(A )m >13 (B )m <13 (C )m ≥13 (D )m ≤137.一个袋中里有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从 这个袋中任取2个珠子,都是蓝色珠子的概率是( )(A)21(B)31 (C)41 (D)618.如图,543l l l ∥∥,1l 交543,,l l l 于E,A,C, 2l 交543,,l l l 于D,A,B,以 下结论的错误的为( )(A)AB DA AC EA = (B)CE CA BD BA = (C)DB DA CE CA = (D)DBDAEC EA =9. 如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E 且分别交PA 、PB 于点C ,D ,若PA=4,则△PCD 的周长为( ) (A )8(B )7(C )6 (D )510.如图是抛物线y 1=ax 2+bx+c (a≠0)的一部分,抛物线的顶点坐标 A (1,3),与x 轴的一个公共点B (4,0),直线y 2=mx+n (m≠0) 与抛物线交于A ,B 两点,下列结论:①2a-b=0;②abc <0;③方程 ax 2+bx+c=3有两个相等的实数根;④抛物线与x 轴的另一个公共点是(﹣1,0);⑤当1<x <4时,有y 2>y 1 ;其中正确的有( )个. (A)1 (B)2 (C)3 (D)4二.填空题(每题3分,共30分)11.点(-4,1)关于原点的对称点的坐标为 . 12.若反比例函数xky =的图象经过点(﹣2,3),则k= . 13.将二次函数y=x 2+1的图象向左平移2个单位,再向下平移3个单位长度得到的图象对应的二次函数的解析式为b ax x y ++=2,则ab = . 14.在△ABC 中,∠C=90°,cosA=23,AC=36,则BC=. (第8题图)(第9题图)(第10题图)15.如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为4, ∠B=135°,则 AC 的长为 .16.在围棋盒中有x 颗白色棋子和y 颗黑色棋子,从盒中随机取出一 颗棋子,取得白色棋子的概率是31,如再往盒中放进4颗黑色棋子, 取得白色棋子的概率变为51,则22y x += . 17.如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15° 方向的A 处,若渔船沿北偏西75°方向以60海里/小时的速度 航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60°方向上,则B 、C 之间的距离为 海里 .18.某种商品的进价为40元,在某段时间内若以每件x 元出售,可卖 出(100-x)件,当x= 时才能使利润最大.19.如图,⊙O 的弦AB 与半径OC 垂直,点D 为垂足,OD=DC, 32=AB ,点E 在⊙O 上,∠EOA=30°,则△EOC 的面积为 . 20. 如图,△ABC,∠ACB=90°,点D,E 分别在AB, BC 上, AC=AD,∠CDE=45°,CD 与AE 交于点F,若 ∠AEC=∠DEB, CE=4107,则CF= .三.解答题(60分)21.(本题7分)通过配方,确定抛物线12++=bx ax y 的顶点坐标及对称轴,其中︒-︒=45tan 30sin a ,︒⋅︒=60sin 30tan 4b .(第19题图)(第17题图)(第20题图)22.(本题7分)如图,在小正方形的边长均为1的方格纸中,有线段AB ,点A ,B 均在小正方形的顶点上.(1)在图1中画出四边形ABCD ,四边形ABCD 是中心对称图形,且四边形ABCD 的面积为6,点C ,D 均在小正方形的顶点上;(2)在图2中画一个△ABE ,点E 在小正方形的顶点上,且BE=BA,请直接写出∠BEA 的余弦值.23.(本题8分)在平面直角坐标系内,点O 为坐标原点,直线4+=x y 交x 轴于点A,交y 轴于点B, 点C(2,m)在直线4+=x y 上,反比例函数xny =经过点C. (1)求m ,n 的值 ; (2)点D 在反比例函数xny =的图象上,过点D 作X 轴的垂线,点E 为垂足,若OE=3, 连接AD,求tan ∠DAE 的值(第23题图)24.(本题8分)如图,正方形ABCD,点E 在AD 上,将△CDE 绕点C 顺时针旋转90°至△CFG ,点F,G 分别为点D,E 旋转后的对应点,连接EG ,DB,DF, DB 与CE 交于点M,DF 与CG 交于点N.(1)求证BM=DN;(2)直接写出图中已经存在的所有等腰直角三角形.25.(本题10分)如图,在平面直角坐标系内,点O 为坐标原点,抛物线423412++-=x x y 交x 轴负半轴于点A,交x 轴正半轴于点B,交y 轴于点C. (1)求AB 长 ;(2)同时经过A,B,C 三点作⊙D ,求点D 的坐标 ; (3)在(2)的条件下,横坐标为10的点E 在抛物线423412++-=x x y 上,连接AE,BE, 求∠AEB 的度数.26.(本题10分)如图,AB 为⊙O 的直径,弦CD ⊥AB,点E 为垂足,点F 为 BC的中点,连接DA,DF,DF 交AB 于点G.(1)如图1,求证:∠AGD=∠ADG ;(2)如图2,连接AF 交CE 于点H,连接HG,求证:CH=HG ;(3)如图3,在(2)的条件下,过点O 作OP ⊥AD,点P 为垂足,若OP=BG ,DG=4,求HG 长 .27.(本题10分)如图,在平面直角坐标系内,点O 为坐标原点,抛物线22++=bx ax y 交x 正半轴 于点A,交x 轴负半轴于点B,交y 轴于点C,OB=OC,连接AC, tan ∠OCA=2. (1)求抛物线的解析式 ;(2)点P 是第三象限抛物线22++=bx ax y 上的一个动点,过点P 作y 轴的平行线交直 线AC 于点D,设PD 的长为d,点P 的横坐标为t,求d 与t 之间的函数关系式(不要求 写出自变量t 的取值范围);(3)在(2)的条件下,连接PA,PC,当△ACP 的面积为30时,将△APC 沿AP 折叠得C AP '∆, 点C '为点C 的对应点,求点C '坐标并判断点C '是否在抛物线22++=bx ax y 上, 说明理由.九年级数学参考答案一.1.D 2.D 3.C 4.D 5.D 6.B 7.D 8.C 9.A 10.B二.11.(4,-1) 12.-6 13.8 14.6 15.2p 16.20 17.302 18.70 19.1或2;20. 5三.21.解:︒-︒=45tan 30sin a 11122=-=-1分︒⋅︒=60sin 30tan 4b 334232=创=1分2211212y ax bx x x =++=-++21(4)12x x =--+21(444)12x x =--+-+ 21(44)212x x =--+++21(2)32x =--+ 3分抛物线顶点坐标(2,3) 1分 对称轴直线x=2 1分 22.(1)正确画图 3分 (2)正确画图2分 ∠BEA 的余弦值为552分 23.(1)点C(2,m)在直线4+=x y 上,即m=2+4=6 2分∴C(2,6) 把6,2==y x 代入x ny =即62n =解得n=12 2分 (2) ∵OE=3,DE ⊥x 轴∴点D 的横坐标是3,当x=3时,121243y x ===∴D(3,4) 2分 ∴DE=4,把y=0代入4+=x y 即04x =+解得x=-4,∴OA=4,∴AE=7 1分 ∴4tan 7DE DAEAE ?= 1分24.(1) ∵正方形ABCD ∴ ∠DCB=90°∵△CDE 绕点C 顺时针旋转90°至△CFG ∴CF=CD ,∠ECG=∠DCF=90° 1分 ∵DC=CF ∴∠CDF=∠CFD=45°, ∵∠BCM+∠DCE=∠DCN+∠DCE=90°∴∠BCM=∠DCN 1分 ∵∠CBM=21∠ABC= 45° ∴∠CBM=∠CDN ∵正方形ABCD ∴CD=CB ∴△BCM ≌△DCN ∴BM=DN 1分(2) △ABD,△BCD,△CDF,△ECG, △BDF 每对1个1分 共5分 25.解:(1)把y=0代入423412++-=x x y ,即2130442x x =-++ 解得:1x =8 , 2x =2 1分 ∴A (-2,0),B (8,0)∴OA=2,BO=8∴AB=10 1分(2)连接AC,BC ,把x=0代入423412++-=x x y 即213004442y =-??=,解得y=4 ∴C (0,4)∴OC=4, 1分 ∵21tan 42OA ACOOC ?==,41tan 82OC CBO OB ?==∴∠ACO=∠CBO 1分∵∠OBC+∠OCB=90°∴∠ACO+∠OCB=∠ACB=90° ∴AB 为⊙D 的直径 1分∵AD=BD=5 ∴OD=3 ∴D (3,0)1分(3)∵点E 的横坐标为10,∴把x=10代入423412++-=x x y , 21310104642y =-??=-∴E (10,-6) 1分∴ER=6,OR=10∴AR=12 tan ∠EAR=AR ER =21∴∠EAR=∠ACO ∴∠CAE=∠EAR+∠CAO=∠ACO +∠CAO=90°设AE 交⊙D 于点K,连接BK ∵ AB 为⊙D 直径 ∠AKB=∠ACB=∠CAK=90° ∴四边形ACBK 为矩形,∴BK=AC, 222OC AO AC += BK=AC=52 1分 在Rt △BER 中,222222640BE BR ER =+=+= ∴210BE = 1分 ∴252cos 2210BK KBEBE ?==∴∠KBE=45°,∴∠AEB=∠AKB-∠KBE=45° 1分26.(1)证明:连接BD. ∵F 为 BC的中点∴∠CDF=∠BDF 1分 ∵AB 为⊙O 的直径,CD ⊥AB ∴ =AC AD ∴∠ADC=∠DBA 1分 ∴∠AGD=∠DBG+∠BDG ∵∠ADG=∠ADE+∠EDG ∴∠AGD=∠ADG 1分 (2)证明:连接AC. =AC AD ∴AC=AD ∵∠AGD=∠ADG ∴AG=AD ∴AC=AG 1分∵F 为 BC的中点∴∠CAH=∠GAH ∵AH 为公共边 ∴△ACH ≌△GAH 1分 ∴CH=HG 1分(3)解: =AC AD AC=AD,AE ⊥CD ∠DAE=∠CAE=2∠HAE 连接FO,过点F 作FK ⊥BG 于点K. ∵∠FOB=2∠HAE ∴∠DAE=∠FOB ∵OA=OF ∠OPA=∠FKO=90°∴△OAP ≌△FOK ∴FK=OP 1分连接FB,∵∠FBA=∠ADF 又∵∠AGD=∠ADG, ∠AGD=∠FGB∴∠FBG=∠FGB ∴FG=FB ∵FK ⊥BG ∴GK=KB ∵OP=FK ∴FK=2GK ∵∠DEG=∠FKG=90°∴DE ∥FK 连接CG 交AF 于点R,∴∠GFK=∠CDG ∵EG 垂直平分CD ∴CG=DG=4∴∠GCE=∠GDC ∴∠GCE=∠GFK ∵AC=AG ∠CAH=∠GAH CR=RG=2 1分 ∵∠HCR=∠GFK ∴tan ∠HCR=tan ∠GFK ∴HR GK CR FK = 即122HR =∴HR=1 在Rt △HCR 中,22222125CH HR CR =+=+=∴5CH =∴HG=5CH = 1分方法二:证明△MGB ≌△APO,27.解:(1)把x=0代入22++=bx ax y 即2002=2y a b =??∴C(0,2) ∴OC=2∴OB=OC=2∴B(-2,0) 1分 ∵tan ∠OCA=2即22OA OAOC == ∴OA=4∴A(4,0)1分 把B(-2,0),A(4,0)代入22++=bx ax y 即422016420a b a b ì-+=ïí++=ïî解得1412a b ì=-ïïíï=ïî∴抛物线解析式是211422y x x =-++1分 (2)设PD 交x 轴于点N,∵点P 的横坐标为t,PN ⊥x 轴∴点N 的横坐标为t ,点P 的纵坐标为211422t t -++ ∵点P 在第三象限 ∴PN=21142t t 2--1分 ∴AN=4-t ∵∠DNA=∠COA=90°∴DN ∥OC ∴∠ADN=∠ACO ∴tan ∠ADN= tan ∠ACO=2∴42AN t DN DN -==∴122DN t =-1分 ∴d=PD=DN+PN=122t -+21142t t 2--=214t t -1分(3)过点C 作CR ⊥PD 于点R ,过点K C '⊥x 轴于点K ,∵∠CRN=∠RNO=∠CON=90° ∴四边形OCRN 为矩形 ∴CR=ON11111()()22222APC APD CPD S S S PD AN PD CR PD AN CR PD AN ON PD OA D D D =-=??-=-=? 22111()4230242t t t t =??-=解得1x =10 (舍去) 2x = - 6 把x= - 6代入211422y x x =-++即211(6)(6)422=-10y =-?+?+∴P (-6,-10) 1分∴PN=10,ON=6∴AN=PN=10∴∠PAN=∠APN=45°∵将△APC 沿AP 折叠得C AP '∆△APC ≌C AP '∆∴∠PA C '=∠PAC 即∠PA C '=∠PAN+∠CAO=45°+∠CAO ∴∠OAC’=∠PAO+∠PA C '=90°+∠CAO ∴∠CAK=180°-∠OA C '=90°-∠CAO=∠ACO ∵A C '=AC, ∠AK C '=∠COA=90°∴△AK C '≌△COA 1分 ∴C 'K=OA=4,AK=OC=2∴C '(6,-4),1分 当x=6时,21166422=-4y =-??∴点C’ 在抛物线22++=bx ax y 上 1分。

相关文档
最新文档