分式的概念、性质及简单运算(预习)

合集下载

1第一讲讲稿分式的概念、性质及运算(一)

1第一讲讲稿分式的概念、性质及运算(一)

第一讲 分式的概念、性质及运算(一)分式包括分式的概念、分式的基本性质、分式的运算、简单的分式方程等主要内容. 解分式问题总是在分式有意义的前提下进行的,因此必须考虑字母取值范围;分式运算中的通分和约分是技巧性较强的工作,需要灵活处理.分式的运算与分数的运算相似,是以分式的基本性质、运算法则、通分和约分为基础,是以整式的变形、因式分解为工具.分式的加减运算是分式运算的难点,突破这一难点的关键是能根据问题的特点恰当地通分,常用通分的策略与技巧有:1.化整为零,分组通分; 2,步步为营,分步通分;3.减轻负担,先约分再通分; 4.裂项相消后通分等。

典型例题1.若a d d c cb b a ===,则dc b ad c b a +-+-+-的值是 0或-2 . 点拨:引入参数,利用参数寻找a 、b 、c 、d 的关系.设a d d c c b b a ====k,则d ak =,2c dk ak ==,3b ck ak ==,4a bk ak ==,有41k =,1k =±.当1k =时,a b c d ===,原式= 0;当1k =-时,原式= 2-.2.已知=⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+≠=++y x z z x y z y x xyz z y x 11111100,则, -3 . 原式=3x x y y z z x y z y z x z x y x y z++++++++- =3x y z x y z x y z x y z++++++++-= 3- 3.已知032=-+x x ,那么1332---x x x = . 点拨:由条件得323x x x =-.原式= 3- 4.已知432z y x ==,z y x z y x +--+22求的值. 解:设432z y x ===k ,则x =2k ,y =3k ,z =4k .∴原式=545443224322==+-⨯-⨯+k k k k k k k k . 说明:已知连比,常设比值k 为参数,这种解题方法叫参数法.5.已知31=+xx ,的值求1242++x x x . 分析: 1)1(111222224-+=++=++x x xx x x x ,可先求值式的倒数,再求求值式的值. 解:∵ 1)1(12224-+=++x x xx x 8132=-=, ∴ 811242=++x x x . 6.已知13ab a b =+,14bc b c =+,15ac a c =+,求代数式abc ab bc ca++的值. 解: 由13ab a b =+,得3a b ab +=,即113a b+=……① 同理可得 114b c +=……②, 115a c+=……③①+②+③得22212a b c ++=, ∴1116a b c ++=, ∴6bc ac ab abc++=. ∴abc ab bc ca ++=16. 点拨:巧妙地取倒数是解答此题的关键.由此看来, 对于复杂的分式求值题应考虑从多个角度变形已知条件,当然,这离不开细致的观察、比较和日常方法的积累.7. 化简:2221113256712x x x x x x ++++++++ 分析: 三个分式一齐通分运算量大,可先将每个分式的分母分解因式,然后再化简.解原式=111(2)(1)(3)(2)(4)(3)x x x x x x ++++++++ = 111111()()()122334x x x x x x -+-+-++++++ =1114x x -++= 2354x x ++ 说明 本题利用111()(1)1x n x n x n x n =-++++++将每个分式展开,这样前后两个分式就有可以相互消掉的一对相反数,这种化简的方法叫“拆项相消”法,它是分式化简中常用的技巧.8.化简:222223253452851223a a a a a a a a a a a a ++-----+--+++-- 分析:直接通分算较繁,先把每个假分式化成整式与真分式之和的形式,再化简将简便得多.解原式=222211236112a a a a a a a a +++++--+-++ 22362412626123a a a a a a a a -+----+--+-- =11(21)(3)12a a a a ⎡⎤⎡⎤++--+⎢⎥⎢⎥++⎣⎦⎣⎦ 11(32)(22)23a a a a ⎡⎤⎡⎤-+-+--⎢⎥⎢⎥--⎣⎦⎣⎦=1111()()1223a a a a -+-++-- =84(1)(2)(2)(3)a a a a a -+++-- 说明 本题的关键是正确地将假分式写成整式与真分式之和的形式.9. 化简:222222a b c b c a c a b a ab ac bc b ab bc ac c ac bc ab------++--+--+--+ .(a ,b ,c 互不相等) 分析:本题的关键是搞清楚分式22a b c a ab ac bc ----+的变形,其他两项类似的,对于这个分式,显然分母可以分解因式为(a-b)(a-c),而分子又恰好凑成(a-b)+(a-c),因此有下面的解法.解原式=()()()()()()()()()()()()a b a c b c b a c a c b a b a c b c b a c a c b -+--+--+-++------ =111111a c a b b a b c c b c a+++++------=0说明 本例也是采取“拆项相消”法,所不同的是利用11A B AB A B +=+ 10. 若1abc =,求111a b c ab a bc b ca c ++++++++的值。

新苏科版8下期末2014.6分式的基本性质及运算复习讲义(修改版)

新苏科版8下期末2014.6分式的基本性质及运算复习讲义(修改版)

八下期末复习讲义——分式的基本性质及运算一、知识梳理1、一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么代数式A B叫做 。

2、分式的 时,分式有意义;分式的 时,分式的值为0。

3、用具体的数值代替分式中的字母,按照分式的运算关系计算,所得的结果就是 。

4、分式的基本性质:分式的分子和分母都乘(或除以) 的整式,分式的值 。

5、根据分式的基本性质,把一个分式的分子和分母分别除以它们的 ,叫做分式的约分。

6、根据分式的基本性质,把几个异分母的分式化成同分母的分式,叫做分式的 。

7、同分母的分式相加减,分母 ,把分子 ;异分母的分式相加减,先 , 再 。

8、分式乘分式,用 的积做积的分子,用 的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相 。

9、分式的加、减、乘、除混合运算的顺序是:先 ,后 ,如果有括号,先进行括号内的运算。

二、基础练习1、下列各式中,24,2),(31,23,2,312---+-x x b a y x m x π,分式有 。

2、当x 时,分式31-+x x 有意义;当x 时,分式32-x x 无意义; 当x 时,分式392--x x 的值为零。

3、填空:(1)b a ab b a 2)( =+; (2)21()a a a c ++= ; (3)()()222x y x y x y+=≠-; 4、若分式1232-a a 的值为负数,则a 的取值范围为 。

5、请你写一个关于x 的分式,使此分式当3=x 时,它的值为2。

6、当2a =-时,求分式43a a +的值;7、约分:12122++-a a a8、计算:(3、4两小题写出最简公分母)(1)4233m m +-- (2)1122a a -+-(3)22222x x xx x +-⋅- (4)2222222x y x xy y x y x y -++⋅+-三、课后练习基础部分A :1、填空:()b ab a =; 231()3xy x y =;2、化简112---a a ,其结果为( ) A .1+a B. 1-a C .a -1 D.1--a 3、化简1xx y x ÷⋅,其结果为( ) A. 1 B.xy C.x y D.yx4、通分:)2)(1(++a a a ,31a +;5、计算:(1)22494n m nm ---2294m n m n +-; (2)2211x x x +÷-6、化简求值:22121-÷--a a a ,其中1a =。

华师大版八年级下册数学知识点总结

华师大版八年级下册数学知识点总结

八年级华师大版数学(下)第16章 分式§16.1分式及基本性质一、分式的概念1、分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A 叫做分式。

2、对于分式概念的理解,应把握以下几点:(1)分式是两个整式相除的商。

其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。

3、分式有意义、无意义的条件(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。

4、分式的值为0的条件:当分式的分子等于0,而分母不等于0时,分式的值为0。

即,使BA =0的条件是:A=0,B ≠0。

5、有理式整式和分式统称为有理式。

整式分为单项式和多项式。

分类:有理式 单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。

二、分式的基本性质1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零⎪⎩⎪⎨⎧−→−⎩⎨⎧分式多项项单项式整式的整式,分式的值不变。

用式子表示为:A B = A ·M B ·M= A÷M B÷M ,其中M (M ≠0)为整式。

2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是:确定几个分式的最简公分母。

确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。

(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。

3、约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

分式教案(2)

分式教案(2)

分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。

本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。

二、教学目标1. 理解分式的概念,掌握分式的基本性质。

2. 学会分式的运算方法,提高运算能力。

3. 学会解分式方程,提高解决问题的能力。

三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。

难点:分式方程的解法。

四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。

学具:教材、练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。

问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。

2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。

3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。

4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。

5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。

6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。

7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。

8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。

9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。

10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。

六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。

分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。

(完整版)分式常见题型汇总

(完整版)分式常见题型汇总

知识点:1、能理解因式分解的概念并能正确判别。

2、会用提取公因式,运用公式法分解因式。

重点:1、运用提取公因式法分解因式。

2、运用公式法分解因式。

难点:综合运用提公因式法,公式法分解因式,体会因式分解的作用。

分式的运算【知识要点】1.分式的概念以及基本性质;2.与分式运算有关的运算法则3.分式的化简求值(通分与约分)4.幂的运算法则【主要公式】1.同分母加减法则:()0b c b c a a a a±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac±±=±=≠≠; 3.分式的乘法与除法:b d bd a c ac •=,b c b d bd a d a c ac÷=•= 4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m = a m b n , (a m )n = a mn7.负指数幂: a -p =1p aa 0=1 8.乘法公式与因式分解:平方差与完全平方式(a+b)(a -b)= a 2- b 2 ;(a±b)2= a 2±2ab+b 2(一)分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1,,,21,22π,是分式的有: .题型二:考查分式有意义的条件【例2】当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)xx 11-题型三:考查分式的值为0的条件【例3】当x 取何值时,下列分式的值为0.(1)31+-x x (2)42||2--x x (3)653222----x x x x题型四:考查分式的值为正、负的条件【例4】(1)当x 为何值时,分式x -84为正; (2)当x 为何值时,分式2)1(35-+-x x 为负; (3)当x 为何值时,分式32+-x x 为非负数.练习:1.当x 取何值时,下列分式有意义:(1)3||61-x (2)1)1(32++-x x(3)x 111+2.当x 为何值时,下列分式的值为零:(1)4|1|5+--x x (2)562522+--x x x3.解下列不等式(1)012||≤+-x x (2)03252>+++x x x(二)分式的基本性质及有关题型1.分式的基本性质:M B M A M B M A B A ÷÷=⨯⨯= 2.分式的变号法则:ba b a b a b a =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x y x 41313221+- (2)b a b a +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)yx y x --+- (2)b a a --- (3)b a ---题型三:化简求值题【例3】已知:511=+y x ,求yxy x y xy x +++-2232的值. 提示:整体代入,①xy y x 3=+,②转化出y x 11+.【例4】已知:21=-x x ,求221x x +的值.【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值. 练习:1.不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)y x y x 5.008.02.003.0+- (2)b a b a 10141534.0-+2.已知:31=+x x ,求1242++x x x 的值.3.已知:311=-b a ,求a ab b b ab a ---+232的值.4.若0106222=+-++b b a a ,求ba b a 532+-的值.5.如果21<<x ,试化简x x --2|2|x x x x |||1|1+---.(三)分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母因式取各分母所有字母的最高次幂.2.确定最大公因式的方法:①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂.题型一:通分【例1】将下列各式分别通分.(1)c b a c a b ab c 225,3,2--; (2)a b b b a a 22,--;(3)22,21,1222--+--x x x x x x x ; (4)aa -+21,2题型二:约分【例2】约分:(1)322016xy y x -;(3)n m m n --22;(3)6222---+x x x x .题型三:分式的混合运算【例3】计算:(1)42232)()()(abc ab c c b a ÷-⋅-; (2)22233)()()3(x y x y y x y x a +-÷-⋅+; (3)m n m n m n m n n m ---+-+22; (4)112---a a a ; (5)874321814121111x x x x x x x x +-+-+-+--; (6))5)(3(1)3)(1(1)1)(1(1+++++++-x x x x x x ; (7))12()21444(222+-⋅--+--x x x x x x x题型四:化简求值题【例4】先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432z y x ==,求22232z y x xz yz xy ++-+的值;(3)已知:0132=+-a a ,试求)1)(1(22a a a a --的值.题型五:求待定字母的值【例5】若111312-++=--x N x M x x ,试求N M ,的值.练习:1.计算 (1))1(232)1(21)1(252+-++--++a a a a a a ; (2)ab ab b b a a ----222;(3)ba b b a ++-22; (4))4)(4(b a ab b a b a ab b a +-+-+-;(5)2121111x x x ++++-; (6))2)(1(1)3)(1(2)3)(2(1--+-----x x x x x x .2.先化简后求值(1)1112421222-÷+--⋅+-a a a a a a ,其中a 满足02=-a a . (2)已知3:2:=y x ,求2322])()[()(y x x y x y x xy y x ÷-⋅+÷-的值.3.已知:121)12)(1(45---=---x B x A x x x ,试求A 、B 的值. 4.当a 为何整数时,代数式2805399++a a 的值是整数,并求出这个整数值.分式方程【知识要点】1.分式方程的概念以及解法;2.分式方程产生增根的原因3.分式方程的应用题【主要方法】1.分式方程主要是看分母是否有外未知数;2.解分式方程的关健是化分式方程为整式方程;方程两边同乘以最简公分母.3.解分式方程的应用题关健是准确地找出等量关系,恰当地设末知数.(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程(1)x x 311=-;(2)0132=--x x ;(3)114112=---+x x x ;(4)x x x x -+=++4535 提示易出错的几个问题:①分子不添括号;②漏乘整数项;③约去相同因式至使漏根;④忘记验根.题型二:特殊方法解分式方程【例2】解下列方程(1)4441=+++x x x x ; (2)569108967+++++=+++++x x x x x x x x 提示:(1)换元法,设y x x =+1;(2)裂项法,61167++=++x x x .【例3】解下列方程组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+)3(4111)2(3111)1(2111x z z y y x题型三:求待定字母的值【例4】若关于x 的分式方程3132--=-x m x 有增根,求m 的值. 【例5】若分式方程122-=-+x a x 的解是正数,求a 的取值范围. 提示:032>-=a x 且2≠x ,2<∴a 且4-≠a .题型四:解含有字母系数的方程【例6】解关于x 的方程)0(≠+=--d c dc x b a x 提示:(1)d c b a ,,,是已知数;(2)0≠+d c .题型五:列分式方程解应用题练习:1.解下列方程:(1)021211=-++-x x x x ;(2)3423-=--x x x ; (3)22322=--+x x x ;(4)171372222--+=--+x x x x x x (5)2123524245--+=--x x x x (6)41215111+++=+++x x x x (7)6811792--+-+=--+-x x x x x x x x2.解关于x 的方程:(1)b x a 211+=)2(a b ≠;(2))(11b a xb b x a a ≠+=+.3.如果解关于x 的方程222-=+-x x x k 会产生增根,求k 的值.4.当k 为何值时,关于x 的方程1)2)(1(23++-=++x x k x x 的解为非负数.5.已知关于x 的分式方程a x a =++112无解,试求a 的值.(二)分式方程的特殊解法解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验,但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下:一、交叉相乘法例1.解方程:231+=x x二、化归法例2.解方程:012112=---x x三、左边通分法例3:解方程:87178=----x x x四、分子对等法例4.解方程:)(11b a x b b x a a ≠+=+五、观察比较法例5.解方程:417425254=-+-x x x x六、分离常数法例6.解方程:87329821+++++=+++++x x x x x x x x七、分组通分法例7.解方程:41315121+++=+++x x x x(三)分式方程求待定字母值的方法例1.若分式方程x m x x -=--221无解,求m 的值。

初二数学上册(青岛版)分式基础知识梳理及经典例题分析

初二数学上册(青岛版)分式基础知识梳理及经典例题分析

第三章分式一、基础知识梳理(本章主要与分数、四则运算、幂、方程式、分解因式等结合学习) 1、分式的概念: 一般地,如果A 、B 表示两个整式,并且除式B 中含有字母,那么式子 叫分式。

解析:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;分式A/B 有意义,则B=0(2)分式的分母的值不能等于零.若分母的值为零,则分式无意义;反之,若分式A/B 无意义,则B=0(3)当分子等于零而分母不等于零时,分式的值才是零.反之,若分式A/B=0,则A=0,且B ≠0 分式的相关概念:分式的约分:指把一个分式的分子与分母的公因式约去。

分式约分的根据是 分式的基本性质分式约分的主要步骤是:(1)把分式的分子与分母化为积的形式;(2)约去分子与分母的公因式 约分的关键是确定公因式。

确定公因式分三步:⑴确定因式(如果分母是多项式要首先分解因式):选择所有因式中出现的相同因式;⑵确定指数:选择相同因式中指数最低的次数;⑶确定系数:求各个系数的最大公约数。

最简分式:一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式.分式的通分:指把几个异分母的分式分别化成与原来的分式 相等 的 同分母 的分式.分式通分的根据是分式的基本性质通常取各分母的所有因式的 最高次幂的积作公分母,这样的公分母,叫做最简公分母.确定最简公分母分三步:⑴确定因式(如果分母是多项式要首先因式分解):选择各个分母中出现的所有因式;⑵确定指数:选择各个因式中指数最高的次数;⑶确定系数:求各个系数的最小公倍数。

2、分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB MA MB M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式). 特别提示:(1)在解题过程中,分母不为0是作为隐含条件给出的.若是分式,则说明分母中的字母一定能满足使分母不为0;(2)在运用分式的基本性质时,一定要重点强调C≠0这个条件,没有给出的,要讨论是否等于0.分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如:(1)BA B A B A B A --=--=--=(2)b a b a b a -=-=-;(3)b aba -=---. 但要注意下面的错误:y x y x yx y x ++-=++-=-1是错误的,应该是y x yx y x y x y x y x +--=+--=++-)(. 3、分式的运算:分式的乘法法则:分式乘分式,用分子的积作积的分子,用分母的积作积的分母。

分式(分式的概念、性质及计算)

分式(分式的概念、性质及计算)

学好分式三步走:1.分式的概念,分式何时有意义,何时值为零2.分式的基本性质,约分,通分3.分式的加、减、乘、除、乘方运算1.分式的概念,分式何时有意义,何时值为零①分式的定义:一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式,其中A 叫分子,B 叫分母且B ≠0 。

②分式有意义(或分式存在)的条件:分式的分母不等于零即 B ≠0 。

③分式的值为零的条件:分式的值为零是指分式在有意义的前提下分式的分子为零。

即当A =0且B ≠0时,0AB =。

【例1】 ⑴若分式25x -有意义,则x 的取值范围是( )⑵分式211x x --的值为0,则x 的值为( )2.分式的基本性质,约分,通分①分式的基本性质:分式的分子与分母同乘以(或除以)一个不等于0的整式,分式的值不变。

()0A A M A MM B B M B M ÷==÷×≠×②利用分式的基本性质,约去分子和分母的公因式,但不改变分式的值,这样的分式变形叫做分式的约分。

分子分母中没有公因式的分式叫做最简分式。

③通分:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个分式变成分母相同的分式。

为了通分,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母。

【例2】 ⑴化简222a b a ab -+的结果为( )分 式⑵化简2244xy y x x --+的结果为( )3.分式的加、减、乘、除、乘方运算分式的乘法 a c a c b d b d⋅⋅=⋅ 分式的除法 a c a d a d b d b c b c ⋅÷=⋅=⋅分式的乘方 nnn a a b b ⎛⎫= ⎪⎝⎭同分母分式相加减 a b a bc c c ±±=异分母分式相加减 acadbc ad bcb d bd bd bd ±±=±=0指数幂 01(0)a a =≠ 负整数指数幂 1p p a a -= (a ≠0,且p 为正整数)【例3】 化简22226211296x x x x x x x x -++++÷--+-思想方法吐血大总结:1.分式是否有意义、何时值为零以及基本性质都和分数相近。

分式的概念和性质练习题

分式的概念和性质练习题

1.填空题:(1)当x= 时,分式135-+x x 无意义。

(2)当x= 时,分式123-+x x 的值为零;当分式23+-x x =0时,x= 。

(3)()()333++x x x =x 3成立的条件是 。

(7)当x 时,分式121+-x x 有意义。

2.选择题:(1)下列说法正确的是( )A .形如BA 的式子叫分式B .分母不等于零,分式有意义C .分式的值等于零,分式无意义D .分式等于零,分式的值就等于零(2)已知有理式:x 4、4a 、y x -1、43x 、21x 2、a 1+4,其中分式有 ( ) A .2个 B .3个 C .4个 D .5个(3)使分式ax 45-有意义的x 的值是 ( )A .4aB .-4aC .±4aD .非±4a 的一切实数(4)使分式mx m x 41622--的值为零的x 的值是 ( ) A .4m B .-4m C .±4m D .非±4m 的一切实数3.解答下列各题:(1)当x 取什么数时,分式1132-+x x 有意义? (2)当x 为何值时,分式x x x 32212-++无意义? (3)若分式1642-+x x 无意义,求x 的值。

4.已知分式()()()()22253435232-----+x x x x (1)当x 为何值时,分式无意义?(2)当x 为何值时,分式的值为零?(3)当x 为何值时,分式的值为-1?5.当x 为何值时,下列分式的值为正?(1)432+-x x (2)232-+x x 6.(1)填充分子,使等式成立;()222(2)a a a -=++ (2).填充分母,使等式成立:()2223434254x x x x -+-=--- (3)化简:233812a b c a bc =_______。

6.(1)()2a b ab a b += (2)()21a aa c++=(a ≠0) (3)()22233x x x -=-+-(4)()2232565a a a a a ++=+++7.(1))333()3ax by ax by ax by ax by---=-=---,对吗?为什么? (2)22112x y x y x y x y++==---对吗?为什么? 8.把分式x x y+(x≠0,y≠0)中的分子、分母的x ,y 同时扩大2倍,那么分式的值 ( ) A .扩大2倍 B .缩小2倍 C .改变 D .不改变9.下列等式正确的是 ( )A .22b b a a = B .1a b a b-+=-- C .0a b a b +=+ D .0.10.330.22a b a b a b a b--=++ 10.不改变分式的值,把下列各式的分子和分母中各项系数都化为整数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

情境引入千里江陵几日还?李白《早发白帝城》:“朝辞白帝彩云间,千里江陵一日还.”郦道元《水经注·三峡》:“有时朝发白帝,暮至江陵,其间千二百里,虽乘奔御风,不以疾也.”“千里江陵”能否“一日还”?(1) 如果半日行船530千米,船速约为多少千米/时?(2)如果行船速度为v 千米/时,半日(12小时)行船距离是多少千米? (3)如果行船距离s 千米,船速v 千米/时,用时多少小时? (4)如果距离530千米,船速千米/时,水速10千米/时,则顺水行船需多少小时?(5)如果距离s千米,船速千米/时,水速千米/时,则逆水行船需多少小时?分析 :列式:以上的式子有什么共同点?它们与分数有什么相同点和不同点?知识引入分式的概念、性质及简单运算分式的定义形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.例1下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)yx xy +2; (4)33y x -.分式有意义分式有意义:分母不为0(0B ≠)例2当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x .分式的值为零分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A )例3当x 为何值时,下列分式的值为0?(1)1x x+ (2)213x x -+ (3)288xx +新知学习【巩固】1.列代数式表示下列数量关系,并指出哪些是整式?哪些是分式?(1)甲每小时做x 个零件,则他8小时做零件 个,做80个零件需 小时.(2)轮船在静水中每小时走a 千米,水流的速度是b 千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时. (3)x 与y 的差于4的商是 .2.当x 取何值时,分式 2312-+x x 无意义?3. 当x 为何值时,分式 xx x --21 的值为0?分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示是:MB M A B A M B M A B A ÷÷=⨯⨯=, ( 其中M 是不等于零的整式)。

例4填空:(1)()2ab ba = (2)()32x x xy x y =++(3)()2x y x xyxy ++= (4)()222x y x y x xy y +=--+例5若x ,y 的值扩大为原来的3倍,下列分式的值如何变化?(1)x y x y +- (2)xy x y- (3)22x y x y -+拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即BB A B B --=--=--=A A A例6不改变分式的值,使下列分式的分子、分母均不含“-”号.(1)23b a --- (2)14b - (3)35m n-- (4)273yx -【巩固】不改变分式的值,使下列分式的分子、分母均不含“-”号.(1)32m n - (2)3a b- (3)35yx --分式的约分与通分与分数类似,根据分式的基本性质,可以对分式进行约分和通分.分式的约分什么叫做分式的约分?约分的根据是什么? 下列各式是否正确?为什么? 总结(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分. (2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.例7 约分(1)4322016xy y x -; (2)44422+--x x x【巩固】约分23348a b b -= .【巩固】约分:(1)3______3mnm= (2)227______28x z xy z -= (3)233______26a a a-=-(4)22222______m mn n m n -+=-【巩固】约分:(1)32324______30x y x y -=;(2)262______31x xx +=+分式的通分回顾分数的通分把几个异分母的分数化成同分母的分数,而不改变分数的值,叫做分数的通分。

分数通分的方法及步骤是什么?先求出几个异分母分数的分母的最小公倍数,作为它们的公分母,把原来的各分数化成用这个公分母做分母的分数。

分式的通分和分数的通分是一样的:通分的关键是确定几个分式的最简公分母。

最简公分母:各分式分母中的系数是最小公倍数与所有的字母(或因式)的最高次幂的积,叫做最简公分母。

找最简公分母的步骤:(1).取各分式的分母中系数最小公倍数; (2).各分式的分母中所有字母或因式都要取到; (3).相同字母(或因式)的幂取指数最大的;(4).所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母。

例8通分(1)b a 21,21ab ; (2)y x -1,y x +1; (3)221y x -,xyx +21【巩固】把下列各式通分.(1)222234,,345a ab a b- (2)2212,32x y x xy y --+分式的运算分式的乘除分式的乘除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

式子表示为:db c a d c b a ∙∙=∙分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。

式子表示为cc ∙∙=∙=÷bd a d b a d c b a例9计算:(1)xb ay by x a 2222⋅; (2)222222x b yz a z b xy a ÷.例10计算:493222--⋅+-x x x x .【巩固】计算(1)ab c 2c b a 22⋅ (2)322542n m m n ⋅- (3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy x y 52÷ (5)4411242222++-⋅+--a a a a a a (6))3(2962y y y y -÷++-【巩固】计算(1)⎪⎪⎭⎫ ⎝⎛-⋅y xy x 132 (2)⎪⎭⎫ ⎝⎛-÷a bc ac b 2110352(3)()y x axy 28512-÷ (4)b a ab ab b a 234222-⋅- (5))4(12x x xx -÷-- (6)3222)(35)(42x y x x y x --⋅-分式乘除法的混合运算分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要化成最简的.例11 计算:(1))4(3)98(23232b xb a xy y x ab -÷-⋅ (2)x x x x x x x --+⋅+÷+--3)2)(3()3(444622【巩固】计算(1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25ba c c ab b ac ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(x y x xy y xy x x xy -⋅+-÷-【巩固】计算(1))6(4382642z yx y x y x -÷⋅- (2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244y y y y y y --÷+⋅-+- (4)xyy xyy x xy x xy x -÷+÷-+222)(分式的乘方计算下列各题:(1)2)(ba =⋅b ab a =( ) (2) 3)(b a =⋅b a ⋅b a b a=( ) (3)4)(ba =⋅b a ⋅b a b a ba⋅=( ) 提问:由以上计算的结果你能推出nba )((n 为正整数)的结果吗?分式的乘方:把分子、分母分别乘方。

式子:n n nb a b a =⎪⎭⎫⎝⎛例12判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249a b - (3)3)32(x y -=3398xy (4)2)3(b x x -=2229b x x - 例13计算(1) 22)35(y x (2)332)23(c b a - (3)32223)2()3(x ay xy a -÷ (4)23322)()(z x z y x -÷- 5))()()(422xy xy y x -÷-⋅- (6)232)23()23()2(ayx y x x y -÷-⋅-【巩固】计算(1) 332)2(a b - (2) 212)(+-n ba(3)4234223)()()(c a ba cb ac ÷÷ (4) )()()(2232b a a b a ab b a -⋅--⋅-分式的加减回忆 同分母的分数的加减法法则:同分母的分数相加减,分母不变,把分子相加减。

概括分式的加减法则:同分母分式加减法:分母不变,把分子相加减。

式子表示为cba cb ±=±c a 异分母分式加减法:先通分,化为同分母的分式,然后再加减。

式子表示为bdbc ad d c ±=±b a 整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1的分式,再通分。

例14计算:111a a a +=++ .【巩固】计算:9333a b a bab ab++-例15计算:1624432---x x .【巩固】(1)2222223223yx yx y x y x y x y x --+-+--+ (2)96261312--+-+-x x x x【巩固】计算(1)ba ab b a b a b a b a 22255523--+++ (2)m n mn m n m n n m -+---+22 (3)96312-++a a (4)ba ba b a b a b a b a b a b a ---+-----+-87546563【巩固】计算(1)22233343365cba ba c ba ab bc a b a +--++ (2)2222224323a b ba b a b a b a a b ----+---(3) 122+++-+-b a a b a b a b (4) 22643461461x y xy x y x -----分式的混合运算例16计算(1)x xx x x x x x -÷+----+4)44122(22 (2)2224442yx x y x y x y x y y x x +÷--+⋅-【巩固】 (1) x x x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a【巩固】计算(1) )1)(1(yx x y x y +--+ (2) 22242)44122(aaa a a a a a a a -÷-⋅+----+(3) zxyz xy xy z y x ++⋅++)111(【巩固】计算24)2121(aa a ÷--+,并求出当=a -1的值.【练习1】当x 取何值时,分式5(2)(3)x x x ---有意义?【练习2】当x = 时,分式121x x --无意义.【练习3】当x = 时,分式211x x --的值为零?【练习4】当x = 时,分式26(1)(3)x x x x ----的值为零.【练习5】约分:22412____710x x x x --=++【练习6】约分:2239x xx --【练习7】通分:2223,,35a c bc a b【练习8】把下列各式通分.(1)223,156x x x +-- (2)2212,22x y x xy y ---基础演练【练习9】计算:(1)⎪⎭⎫ ⎝⎛-⋅-22563ab cd c b a , (2)xx yx y y x x +÷-222 .【练习10】计算:22222()x xy y x yxy x xy x-+--÷⋅【练习11】计算:9333a b a bab ab++-【练习12】计算:2222135333x x x x xx x x +--+-++++【练习13】计算:22222621616x x x x x +-++--【练习14】计算:21211x x ---1、下面的说法正确的是( )A .35是分式B .22513x x -+是分式 C . 2125x x -+是分式 D. 2132x +是分式2、当x 取什么值时,分式234x x --有意义?课后作业3、若分式2362x xx --的值为0,则x 的值为4、当x = ,分式363x x--的值为零.5、不改变分式的值,是下列分式的分子、分母均不含“-”号,且系数为整数.(1)23b a --- (2)2(2)x y - (3)11314a b - (4)0.60.70.20.3x y x y -+6、计算2211()a b a b ab--÷7、计算:22282()24a a a a a a+-+÷--8、化简2242()4422x x xx x x x --+÷-++-,其结果是( ) A .82x -- B 82x - C 82x -+ D 82x +9、化简后直接代入求值 【例1】 先化简再求值:2111x x x---,其中2x =10、先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =-11、先化简,再求值:2291333x x x x x⎛⎫-⋅ ⎪--+⎝⎭其中13x =.12、已知:220x -=,求代数式222(1)11x x x x -+-+的值.。

相关文档
最新文档