等腰三角形八年级上数学导学案
新人教版数学八年级上册全册导学案-17

12.3.1等腰三角形(二)P51-P53
【预学目标】1.理解并掌握等腰三角形的判定定理;2. 应用等腰三角形的判定定理解决实际问题;
一、自主学习1、自学P51思考,了解等腰三角形的判定需要的条件。
已知:⊿ABC 中,∠B=∠C 求证:AB=AC
归纳:等腰三角形的判定方法:如果一个三角形
有_________________,那么这两个角所对的____________.(简写成“____________”).
二、例题精讲
1、自学P52例2,∠CAE 是△ABC 的一个外角,∠1=∠2,AD //BC ,求证:AB=AC .(重点理解每一步证明的数学依据。
)
2. 如图,C 表示灯塔,轮船从A 处出发以每小时15海里的速度向
正北(AN 方向)航行,2时后到达B 处,测得C 在A 的北偏西42°
方向,并在B 的北偏西80°方向.求B 处到灯塔C 的距离.
三、课堂检测 1..如图, ∠A=36°,∠DBC=36°, ∠C=72°.分别计算∠1,∠2的度数,并说明图中有哪些等腰三角形.
A B C A B C
N
1 21E D C
B A
2.如图,AC和BD相交于点O,且AB//DC,OA=OB.求证:OC=OD
3.如图,AD//BC,BD平分∠ABC.求证AB=AD
4.如图,∠A=∠B,CE//DA,CE交AB于E。
求证△CEB是等腰三角形。
5.如图,点D,E在△ABC的边BC上,AB=AC,AD=AE。
求证BD=CE。
等腰三角形导学案

等腰三角形导学案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--等腰三角形导学案第一课时教学目标:1、理解等腰三角形的性质和判定定理2、利用定理证明解决实际问题任务一:1、自主学习:(独立完成,组内交流,课堂展示)如图1,已知△ABC中,AB=AC,AD是底边上的中线.(1)求证:∠B=∠C;(2)AD平分∠A,AD⊥BC.图1归纳:等腰三角形的性质有:①性质1:等腰三角形的两底角(简单叙述为:)∵∴②性质2:等腰三角形的互相重合∵∴∵∴∵∴2、课堂练习:①、等腰三角形一个底角为70°,它的顶角为______.A②、等腰三角形一个角为70°,它的另外两个角为。
③如图3,在△ABC 中AB=AD=DC,∠BAD=26°,求∠B和∠C度数。
图3④如图4,∠BAD=1000,ADBC,垂足为点D,AB=AC,求:∠B, ∠1图423任务二1、自主学习:如图:△ABC 中,∠B=∠C ,求证;AB=AC归纳:等腰三角形判定定理: (简单叙述为: )∵ ∴ 思考:要证明△ABC 是等腰三角形,你都有哪些方法?3、巩固练习:如图,已知:△ABC 中,AB=AC ,BD 和CE 分别是∠ABC 和∠ACB 的角平分线,且相交于O 点。
⑴ 试说明△OBC 是等腰三角形;⑵ 连接OA ,试判断直线OA 与线段BC 的关系?并说明理由。
课堂检测:1、等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cm B .22cm C .17cm 或22cm D .18cm2、等腰三角形的顶角是80°,则一腰上的高与底边的夹角是( ) A .40° B .50° C .60° D .30°3.如图,已知∠1=∠2=∠3,∠B=∠C 则图中相等的线段有( )A .2对B .3对C .4对D .5对4、如图所示,∠CAB=∠DBA ,AC=BD,点O 是AD,BC 的交点,点E 是AB 的中点.试判断OE 和AB 的位置关系,并给出证明.CE ABD4等腰三角形导学案第二课时一、 知识回顾:1.如图:△ABC 中,⑴若AB=AC,则___ ____; ⑵若AB=AC, ∠BAD=∠CAD,则 ____ ___,____若AB=AC, BD=CD,则___ __,__ ____; 若AB=AC, AD ⊥BC,则__ ___,__ ____。
八年级上册《等腰三角形》导学案

12.3.1《等腰三角形》导学案责任学校 责任教师一、学习目标1、 巩固等腰三角形的概念,掌握等腰三角形的性质,并能灵活应用等腰三角形的性质解决一些实际问题。
2、 通过独立思考,交流合作,体会探索数学结论的过程,发展推理能力。
二、预习内容自学课本49页至51页,完成下列问题:1、动手操作:把一张长方形的纸片按课本中虚线对折,然后沿实线剪开,再把它展开,得到什么三角形?2、有两边相等的三角形叫 ,相等的两边叫 ,另一边叫 ,两腰的夹角叫 ,腰和底边的夹角叫 。
3、如图,在△ABC 中,AB=AC ,标出各部分名称。
4、(1) 观察剪出的等腰三角形是否为轴对称图形?它的对称轴在哪里?(2) 将等腰三角形沿折痕对折,观察重合的线段和角,你有什么发现?猜想: 。
5、如图,在△ABC 中, (1)如果AB=AC,且∠1=∠2,那么 = ,且 。
(2)如果AB=AC,且BD=DC ,那么 = ,且 。
(3)如果AB=AC,且AD ⊥BC ,那么 = ,且 。
等腰三角形性质: 性质1 等腰三角形的两个 相等(简写成“ ”)。
性质2 等腰三角形 、 、 互相重合。
三、探究学习1、证明等腰三角形性质1、2:B DAC1 22、如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD.求△ABC 各角的度数。
.四、巩固测评1、(1)如图.在△ABC 中,如果AB=AC,那么∠________=∠_______; (2)如图.在△ABC 中, AB=AC,点D 在BC 上。
如果∠BAD=∠CAD,那么 AD ⊥BC , BD=CD 。
如果BD=CD,那么∠________=∠_______, _______⊥______; 如果AD ⊥BC,那么_______________, _____________。
2、(1)如图,在下列等腰三角形中,分别求出其它两角的度数。
(2)等腰三角形一个角为130°,它的另外两个角为 。
等腰三角形的性质(导学案)

等腰三角形的性质学习目标:1、通过剪纸、折纸等活动,知道等腰三角形、腰、底、顶角,底角的概念。
2、理解等腰三角形的性质,并学会应用等腰三角形的性质。
学习重点:等腰三角形的性质的探索和应用。
学习难点:等腰三角形的性质的验证。
学习过程一、做一做,请同学们剪出两个全等的等腰三角形(提前准备剪刀与两张A4纸张)二、新授1、请同学们说出等腰三角形的概念。
三角形中,的三角形是等腰三角形。
2、小练习:1) 已知等腰三角形的腰等于6cm ,底等于8cm ,则此三角形的周长为 。
2)已知等腰三角形的一边等于6cm ,另一边等于8cm ,则此三角形的周长为 。
3)等腰三角形的一边等于4cm ,另一边等于8cm ,则此三角形的周长为 。
3、折纸,请同学们将等腰三角形折叠,折叠后, 它的三条边与三个角等发生了什么变化。
(图13.3-14、猜想,等腰三角形有哪些性质?结论1:等腰三角形的 相等。
结论2:等腰三角形的 , , 相互重合。
5、小练习(将角度标在所剪的等腰三角形中来进行计算。
)1)等腰三角形中,顶角是40°,那么它的底角度数为 . 2)等腰三角形中,底角是40°,那么它的顶角度数为 . 3)等腰三角形中,一个角是36°,那么它的顶角度数为 .课后练习题1、如图,AB=AC BD=BC ,若∠BAC =40, 则∠ABD 的度数是( )A 、20B 、30C 、35D 、402、已知:如图,房屋的顶角∠BAC=100 º, 过屋顶A 的立柱AD 垂直B C , 屋椽AB=AC 。
求顶架上∠B 、∠C 、∠1、∠2的度数.3、如图,△ABC 中,AB =AC ,D ,E 为BC 上两点,AD =AE ,求证:BD =CE.练习步骤区域:证明题步骤区:。
八年级数学 共顶点的等腰(等边)三角形导学案

共顶点的等腰(等边)三角形问题探讨五、精练――当堂训练、提升能力1.如图,已知△ABC,△ADE是等边三角形,点E恰在CB的延长线上,求证:∠ABD=∠AED.2.如图,A点在y轴正半轴上,以OA为边作等边△AOC,点B为x的正半轴上一动点,连AB,在第一象限作等边△ABE.在点B运动过程中,∠ACE的大小是否发生变化?若不变求出其值;若变化,请说明理由.3.如图,在平面直角坐标系中,△AOP为等边三角形,A(0,1),点B为y轴上一动点,以BP为边作等边△PBC.(1)求证:OB=AC;(2)求∠CAP的度数;(3)当B点运动时,AE的长度是否发生变化?4.已知等腰直角△ABC和等腰直角△ADE,∠BAC=∠EAD=90°,AB=AC,AD=AE,F为BE和CD的交点.(1)求证:BE⊥CD;.(2)求∠AFE的度数5.如图,点D 是△ABC 的边BC 上一动点,且AB =AC ,DA =DE ,∠BAC =∠ADE =120°,求∠BCE 的 度数.B6.如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B (a ,b ),且a,b满足(20b -=.D 为y 轴上一动点,以AD 为边作等边三角形ADC ,CB 交y 轴于E .(1)如图1,求A 点的坐标;(2)如图2,D 在y 轴正半轴上, C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点的坐标是否发生变化,若不变,求M 点的坐标,若变化,说明理由;(3)如图3,点D 在y 轴的负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连AE .试求CE ,OD ,AE 三者的数量关系,并证明你的结论。
第十六章等腰三角形及轴对称图形导学案修改稿

大化坪中心学校八年级数学导学案课题:16.1 轴对称图形(1)主备人:吴家兴审核人:刘堂高时间:2012.12 【学习目标】1.感受生活中的轴对称图形,理解轴对称图形的概念、性质(重点)2.能识别简单的轴对称图形,并指出其对称轴(难点)。
【学习过程】一、学前准备1.观察教材第113面图案,用自己的话说说这些图形的特征。
2.列举生活中常见的轴对称图形(至少3个)。
3.画出下面图形的对称轴。
4.画一个轴对称图形,并画出它的对称轴。
二.合作探究1.按教材第114面图16-3右边文字提示折叠蜻蜓图案,如果一个图形沿着____________折叠,_______两旁的_____能够__________,那么这个图形叫做_______________,这条______叫做这个图形的_____________。
2.完成教材第114面“操作”,再完成第116面练习2,轴对称图形有哪些性质?3.完成教材第114面练习1,与同学交流完成情况。
4.试一试如图,把一张纸片对折后,用笔尖在纸上扎出图(3)所示的图案,•将纸打开后铺平,观察你所得的图案.位于折痕两侧的部分有什么关系?•与同伴交流你的想法.【学习检测】1.计算器中的十个数字中,是轴对称图形的有____________________________。
2.26个字母中是轴对称图形的有________________________________________。
3.线段有____条对称轴,是_______________________________,角的对称轴是__________________,等腰三角形的对称轴______________________________。
4.如图,其中是轴对称图形的是()。
5.图中的图形都是轴对称图形,请你试着画出它们的对称轴。
6.完成下面图案创作。
7.习题16.1第2、3题。
【学习小结】1、我的收获:2、我的困惑大化坪中心学校八年级数学导学案课题:16.1 轴对称图形(2)主备人:吴家兴审核人:刘堂高时间:2012.12【学习目标】理解轴对称的概念、性质(重点),轴对称和轴对称图形的区别和联系(难点),能作出简单的平面图形经过一次轴对称变换后的图形,了解线段的垂直平分线的概念。
等腰三角形 导学案

1.4、等腰三角形
Xx市初中教师:
课型
学习
目标
1.经历探索等腰三角形性质的过程,掌握等腰三角形的轴对称性及其相关性质,进一步体验轴对称的特征,发展空间观念.
2.经历探索等边三角形轴对称性和内角性质的过程,掌握这个性质。
学习过程
师生活动
学习笔记
一、复习回顾:
1、什么叫一条角平分线?
2、角平分线的性质是什么?
请你在下面写出等腰三角形的性质:
三、交流与发现:
任意画一个等边三角形ABC
(1)等边三角形是轴对称图形吗?找出它的对称轴.
(2)你能发现它的哪些性质?
学习笔记
师生活动
总结如下:
等边三角形是___对称图形.
等边三角形每个角的平分线和这个角的对边上的中线、高线重合(三线合一),它们所在的直线都是等边三角形的对称轴.等边三角形共有__条对称轴.
2、等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()
A. 9cmB. 12cm
C. 9cm或12cmD.在9cm与12cm之间
师生活动
学习笔记
3、如图,等腰△ABC中,AD⊥BC于D,已知DC=2cm,AB=3cm,则△ABC的周长为___________。
4、已知:等腰三角形的一个角是80°,则它的另外两个角是。
A. 36°B. 32°ቤተ መጻሕፍቲ ባይዱ. 64°D. 72°
3、等腰三角形的对称轴是___________。
4、有一角是60°的等腰三角形是_____________,它有_____________条对称轴。
分别找出如图所示中各个图形的对称轴。
练习二、
1、等腰三角形一腰上的高与底边所成的角等于()
等腰三角形的判定导学案

3、课外拓展:《学法》P39的课后提升
教学反思:
例题2、如图,将△ABC旋转60°至△AED,AB=3,求BE的值。
重难点解读
判定等边三角形的方法:
①从边入手:三边相等
②从角入手:
三角相等三个
角都是
两个角都是60°60°
③从边与角入手:
有一个角是60°的等腰三角形是等边三角形。
总结拓展
1、通过我们共同的努力,对于我们都有了哪些学习成果呢?一起来回顾反思。
等腰三角形的判定
一、等腰三角形的判定
1、定义:有两条边相等的三角形是等腰三角形
2、判定定理:有两个相等的三角形是等腰三角形(简称“等角对等边”)
二、等边三角形的判定
1、定义:三条边都相等的三角形是等边三角形
2、判定定理1:三个角都是60°的三角形是等边三角形
3、判定定理2:有一个角是60°的等腰三角形是等边三角形
2.3.2《等腰三角形的判定》导学案
设计:皮力羽使用时间:第周星期
导学目标:1、探索等腰三角形的判定定理;
2、理解等腰三角形与等边三角形的判定定理,并会运用其进行简单证明。
导学重点:掌握等腰三角形和等边三角形的判定定理。
导学难点:灵活运用等腰三角形和等边三角形的判定定理进行证明和计算。
导学过程:
流程
重难点解读
1、要证明一个三角形是等腰三角形,可以直接证明两条边相等,也可以证明两个角相等。
方法总结:
抽测题让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和。
探究二:等边三角形的判定
1、探究,在△ABC中,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形(1)
学习目标:
1、 巩固等腰三角形的概念,掌握等腰三角形的性质,并能灵
活应用等腰三角形的性质解决一些实际问题。
2、 通过独立思考,交流合作,体会探索数学结论的过程,发
展推理能力。
3、 极度热情、享受成功、感受数学就在身边。
重点:等腰三角形性质的探索及应用。
难点:等腰三角形性质的应用。
预习案
(
使用说明&学法指导
1.诵读教材的内容,进行知识梳理;熟记基础知识,
2.完成教材助读设置的问题,然后结合课本基础知识的例题,完成与预习自测。
3.建议15分钟完成预习案,将预习中不能解决的问题标出来,并填写到后面的我的疑惑处。
Ⅰ 旧知回顾
1、 全等三角的判定
2、 等腰三角形定义
Ⅱ教材助读
认真阅读课本,完成预习自测。
1、性质1:
2、性质2:
[
3、填空:如图1,在△ABC 中
○
1∵AB=AC ,∠BAD=∠CAD ∴BD = , ⊥ 。
○
2∵AB=AC ,BD=CD ∴∠BAD= , ⊥ . ○
3∵AB=AC ,AD ⊥BC ∴∠BAD= , BD= .
探究案
探究:
^
例1、如图2,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD.
求△ABC 各角的度数。
)
例2、已知一个等腰三角形两个内角的度数之比为1:4,
则这个等腰三角形顶角的度数为 。
《
例3、如图3,在△ABC 中,AB=AC ,点D 、E 在BC 上, 且AD=AE.
?
求证:BD=CE
#
自我检测:
1、如图4,AB=AE ,BC=DE,∠B=∠E,AM ⊥CD ,垂足为点M
求证:CM=DM
;
2、等腰三角形一腰上的高和另一腰的夹角为40o ,则底角为 。
3、如图5,在△ABC 中,AB=AC ,∠A=30o ,BF=CE ,BD=CF , 求∠DFE 的度数。
图1
图3
E C
图4
E
D —
C B
A
B
图2
C
图5
B
C。