2017年秋季学期新版新人教版九年级数学上学期第23章、旋转单元复习教案8

合集下载

新人教版九年级数学上册《23章 旋转 数学活动》精品课教案_8

新人教版九年级数学上册《23章 旋转  数学活动》精品课教案_8

特殊三角形中的相似教学目标:掌握等边三角形、等腰直角三角形的一些特殊性质,进一步探讨特殊变换后的一些图形所具有的性质,提高学生的综合分析、解决问题的能力。

教学重点:在变化过程中的不变量、因变量之间的关系,以及一些不变的数量关系。

教学难点:寻找变化过程中的不变的数量关系。

教学过程:一:复习回顾:1.在等边三角形中,你知道多少?2.在等腰直角三角形中,你又知道多少呢?3.你知道两三角形相似,有哪些判定方法呢?二、活动探究探究一:如图,在等边三角形ABC中,过AB边的中点D作一个60度的角,分别与AC、BC边相交于点E、F.(1)这时,图中出现了几个新的三角形?它们之间有什么关系?(2)如果我们试着改变点D在AB边上的位置,两个新的三角形还有上述的关系吗?探究二:在等腰直角三角形ABC中,过直角顶点C做CD垂直于AB.(1)图形中又出现了几个新的三角形?它们之间又有什么关系呢?(2)如果我们试着在BC边上任取一点E,连接DE,做角EDF等于90度,交AC边于点F.那么图中又会出现几个新的三角形?它们之间又有怎样的关系呢?(3)如果我们再试着连接EF,交CD于点P,A.图中又会增加几个三角形呢?它们之间还会有之前相同的关系吗?B.你还会得到哪些线段之间的关系呢?如:你能得到吗?活动小结:1:化动为静,在动态过程中找出变化的量不变的量,及不变的数量关系;2:观察分析图形,在已有的数量关系上,利用转化的数学思想,找到解决问题的关键点;3:利用类比数学思想,在变化的图形中,充分利用已有的条件,构造等腰直角三角形解决问题。

人教版初中数学九年级上册第二十三章:旋转(全章教案)

人教版初中数学九年级上册第二十三章:旋转(全章教案)

第二十三章旋转本章的内容包括:图形的旋转的概念与性质,中心对称(图形)的概念及性质,简单的图案设计.教材通过具体事例认识平面图形的旋转,探索旋转的基本性质;能够按要求画出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;通过具体实例认识中心对称图形的概念,探索它们的基本性质;探索图形之间的变化关系,会用轴对称、平移、旋转的组合进行图案设计.本章内容是中考的必考内容,主要考查图形的旋转的性质,中心对称(图形)的概念及性质.【本章重点】平面图形的旋转变换和中心对称图形的性质.【本章难点】旋转作图、中心对称、旋转等图形变换的灵活运用.【本章思想方法】1.体会对比数学思想.如:本章中要运用对比法学习图形的旋转,将变化前后的图形互相对比,可以发现旋转前后的图形只存在位置上的不同,从而,由旋转的定义及特征,进一步发展空间观念,提升设计图案能力.2.体会和掌握转化思想.如:在利用旋转的性质进行计算和证明时,利用转化法把求线段的相等转化为关于旋转的性质的问题.3.掌握数形结合思想.如:在解旋转知识与平面直角坐标系等知识的综合题时,利用几何图形将“数”与“形”结合起来,运用数形结合的思想解答.23.1图形的旋转1课时23.2中心对称3课时23.3课题学习图案设计1课时23.1图形的旋转一、基本目标【知识与技能】1.了解旋转及其旋转中心、旋转角、对应点的概念及应用它们解决一些实际问题.2.通过具体实例认识旋转,探索它的基本性质.3.了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.【过程与方法】通过具体实例认识平面图形的旋转,通过提问、小组交流等方式探讨旋转的基本性质.【情感态度与价值观】1.通过具体实例认识平面图形的旋转,体会数学知识应用的价值,提高学生学习数学的兴趣.2.了解数学对促进社会进步和发展人类理性精神的作用,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】旋转及对应点的有关概念及其应用.【教学难点】旋转的基本性质.环节1自学提纲,生成问题【5 min阅读】阅读教材P59~P62的内容,完成下面练习.【3 min反馈】1.观察教材P59“思考”,回答问题.(1)教材上面的情景中的转动现象,有什么共同的特征?解:指针、风车叶片分别绕中间点旋转.(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?解:形状、大小不变,位置发生变化.(3)从3时到5时,时针转动了__60__°.(4)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了__60__°。

2017年秋九年级数学上册(人教版)第二十三章旋转(教案)

2017年秋九年级数学上册(人教版)第二十三章旋转(教案)
3.培养学生的创新意识与应用意识,鼓励学生在实际情境中发现旋转的应用,将旋转知识运用到生活实践中,解决实际问题;
4.培养学生的合作交流能力,通过小组讨论、互助学习等方式,让学生在探讨旋转相关问题的过程中,学会倾听、表达、交流与合作。
三、教学难点与重点
1.教学重点
(1)旋转的定义与性质:理解旋转的概念,掌握旋转的三要素(旋转中心、旋转方向、旋转角度),并能够运用这些性质分析旋转图形。
(2)旋转作图的方法:在旋转作图过程中,学生可能会遇到以下难点:如何确定旋转后的点的位置,如何绘制旋转后的图形等。
难点解析:教师可以通过示范、指导、互助学习等方式,帮助学生掌握旋转作图的方法,并能够灵活运用。
(3)旋转知识在实际问题中的应用:学生可能不知道如何将旋转知识应用于实际问题,或者不知转(教案)
一、教学内容
2017年秋九年级数学上册(人教版)第二十三章旋转:本节课主要围绕以下内容进行教学:
1.旋转的定义与性质;
2.旋转对称图形的识别与特征;
3.旋转作图的方法与技巧;
4.旋转在实际问题中的应用。
(1)理解旋转的概念,掌握旋转的基本性质;
2.在实践活动环节,学生们在分组讨论时,有些小组讨论得比较热烈,但也有一些小组显得比较沉默。为了提高学生的参与度,我可以在分组时更加注意成员的搭配,鼓励学生们积极发表自己的观点,提高课堂氛围。
3.学生小组讨论环节,虽然大部分学生能够围绕主题展开讨论,但仍有部分学生显得无从下手。针对这个问题,我可以在讨论前给出一些引导性的问题,帮助学生更好地展开思考和讨论。
4.在教学过程中,我发现有些学生对旋转在实际问题中的应用掌握得不够扎实。为了加强这一点,我可以在课后布置一些与旋转相关的实际问题,让学生们独立思考并解决问题,以提高他们的应用能力。

九年级数学上册23旋转复习教案新版新人教版20170706268高品质版

九年级数学上册23旋转复习教案新版新人教版20170706268高品质版

第23章旋转一、复习目标1.理解旋转、中心对称以及中心对称图形的观点.2.掌握旋转以及中心对称的性质.3.能利用旋转和中心对称的性质作图.4.掌握对于原点对称的点的坐标.二、课时安排课时三、复习重难点要点:旋转以及中心对称的性质以及应用.难点:旋转以及中心对称的性质以及应用.四、教课过程〔一〕知识梳理旋转的观点旋转作图旋转旋转的性质旋转前后的两个图形全等对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于对应角中心对称的观点中心对称作图对称点所连线段都经过对称中心,并且被中心对称中心对称的性质对称中心所均分中心对称的两个图形是全等形中心对称图形平面直角坐标系中的中心对称〔二〕题型、方法概括种类1旋转的观点和性质【主题训练1】(吉林中考)如图,将Rt△ABC绕点A逆时针旋转40°,获得Rt△AB′C′,点C′恰巧落在斜边AB上,连结BB′,那么∠BB′C′=度.【自主解答】由旋转的性质可得:AB=AB′,∠BAB′=40°,∴∠BB′A=(180°-40°)÷2=70°,又∵∠AB′C′=90°-∠BAB′=90°-40°=50°,∴∠BB′C′=∠BB′A-∠AB′C′=70°-50°=20°.答案:20概括:应用旋转性质的两点技巧1.在旋转变换中存在两类相等的角:旋转前后的对应角相等.对应点与旋转中心连线的夹角(即旋转角)相等.2.在旋转中存在两类相等的线段:旋转前后的对应线段相等.对应点与旋转中心所连的线段相等.种类2中心对称图形的辨别【主题训练2】(黄冈中考)跟着人民生活水平的提升,我国拥有汽车的居民家庭也越来越多,以下汽车标记中,是中心对称图形的是 ()【自主解答】选A.在A选项中,图形按此中心旋转180°后能与原图重合,是中心对称图形,而其余三项都按此中心旋转180°后不可以与原图重合,所以不是中心对称图形.【备选例题】(义乌中考)以下列图形中,既是轴对称图形又是中心对称图形的有()个个个个【分析】选C.由于第一、第四个图形不单能够沿某条直线折叠后重合,并且绕圆心旋转180°后也能与原图形重合,所以既是轴对称图形也是中心对称图形.应选 C.概括:中心对称图形与轴对称图形的差别与联系同样点:(1)都是指拥有特别对称性的一个图形;变换后都能够与自己重合.不一样点:中心对称图形是绕一个点进行旋转,而轴对称图形是沿一条直线翻折.【知识概括】三种特别图形的特点中心对称图形:把图形绕着旋转中心旋转180°,能够与本来的图形重合.轴对称图形:把一个图形沿着对称轴折叠,直线两旁的局部能够重合.旋转图形:把图形绕着旋转中心旋转必定的角度,能够与本来的图形重合.种类3旋转、对称与坐标系【主题训练3】(牡丹江中考)如图,△ABO中,AB⊥OB,OB=3,AB=1,把△ABO绕点O旋转150°后获得△A1B1O,那么点A1的坐标为()A.(-1,-3)B.(-1,-3)或(-2,0)C.(-3,-1)或(0,-2) D.(-3,-1)【自主解答】选B.∵OB=3,AB=1,∴OA=2,∠AOB=30°.如图,假定将△ABO绕点O逆时针旋转150°,那么点A落在x轴的负半轴上,易得A的坐标11为(-2,0);假定将△ABO绕点O顺时针旋转,那么点A1落在第三象限,易得此时点A1的坐标为(-1,-3),应选B.概括:旋转中的数学思想1.对于旋转知识与平面直角坐标系等知识的综合题,最好的解题方法是运用数形联合思想.2.运用数形联合思想解题,这样能够把抽象的数学识题转变为直观的形,也能够把复杂的形转变为详细的数.种类4与旋转变换相关的作图【主题训练4】(茂名中考)在方格纸上按以下要求作图,不用写作法:(1)作出“小旗帜〞向右平移6格后的图案.作出“小旗帜〞绕O点按逆时针方向旋转90°后的图案.【分析】作图以下:【备选例题】(厦门中考)在平面直角坐标系中,点A(-4,1),B(-2,0),C(-3,-1),请在图上画出△ABC,并画出与△ABC对于原点O对称的图形.【分析】绘图以下:概括:旋转作图的方法与步骤剖析题目要求,找出旋转中心、旋转角.剖析所作图形,找出构成图形的要点点.沿必定的方向,按必定的角度,经过截取线段的方法,旋转各个要点点.连结所作的各个要点点,并标上相应的字母.写出结论.〔三〕典例精讲例题1.(温州中考)如图,在方格纸中,△ABC的三个极点和点P都在小方格的极点上.按要求画一个三角形,使它的极点在方格的极点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出表示图.(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示企图.【分析】(1)答案不独一,如图示:答案如图示:例题 2.(绥化中考)如图,方格纸中的每个小方格都是边长为一个单位长度的正方形,每个小正方形的极点叫格点,△ABC的极点均在格点上.画出△ABC对于直线OM对称的△A1B1C1.画出将△ABC绕点O按顺时针方向旋转90°后所得的△A2B2C2.(3)△A1B1C1与△A2B2C2构成的图形是轴对称图形吗?假如是轴对称图形,请画出对称轴.【分析】(1),(2)如图.(3)△A1B1C1与△A2B2C2构成的图形是轴对称图形,对称轴如图中两条斜线.〔四〕概括小结知识模块一旋转的观点及性质知识模块二中心对称、中心对称图形的观点以及性质知识模块三旋转、中心对称的作图〔五〕随堂检测1.(长沙中考)在以下某品牌T恤的四个清洗说明图案的设计中,没有运用旋转或轴对称知识的是()2.(烟台中考)以下是回收、绿色包装、节水、低碳四个标记,此中是中心对称图形的是()3.(青海中考)下边的图形中,既是轴对称图形又是中心对称图形的是()4.(玉溪中考)在以下列图形中,既是轴对称图形又是中心对称图形的是()5.(荆门中考)在平面直角坐标系中,线段OP的两个端点坐标分别为O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′地点,那么点P′的坐标为()A.(3,4)B.(-4,3)C.(-3,4)D.(4,-3)6.(安顺中考)如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,获得线段AB′,那么点B′的坐标为.7.如图,在平面直角坐标系中,将线段AB绕点B按顺时针方向旋转90°后,获得线段BA′,那么点A′的坐标为.8.(河池中考)如图(1),两个全等直角三角形的直角极点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的地点,此中A′C交直线AD于点E,A′B′分别交直线AD,AC于点F,G,那么在图(2)中,全等三角形共有()对对对对9.(宁夏中考)如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后获得△EDC,此时点D在AB边上,那么旋转角的大小为.【答案】【分析】选C.选项A中的图形是轴对称图形,也是旋转图形;选项B中的图形是轴对称图形;选项D中的图形是轴对称图形 ,也是旋转图形;选项C中的图形既不是轴对称图形,也不可以由旋转获得.【分析】选B.选项A为旋转对称图形,选项B为中心对称图形,选项C为轴对称图形,选项D不是对称图形.【分析】选C.选项A中图形是中心对称图形,但不是轴对称图形,选项B中图形是中心对称图形,但不是轴对称图形,选项C中图形既是轴对称图形又是中心对称图形,选项D中图形是轴对称图形但不是中心对称图形,应选C.【分析】选A.选项A是轴对称图形,也是中心对称图形;选项B是轴对称图形,不是中心对称图形;选项C是轴对称图形,不是中心对称图形;选项D不是轴对称图形,是中心对称图形.【分析】选C.点P的横坐标是4,纵坐标是3,把线段OP绕点O逆时针旋转90°到OP′地点,点P对应点P′的横坐标绝对值等于点P的纵坐标,点P′的纵坐标等于点P的横坐标,所以答案是(-3,4).6.【分析】作图以下,可知B′的坐标为(4,2).答案:(4,2)【分析】作图以下,可知点A′的坐标为(2,1).答案:(2,1)【分析】选B.由题意,得:△ACB≌△A′CB′≌△ACD,所以∠A=∠A′,∠D=∠B′,∠ACD=∠A′CB′,AC=A′C,DC=B′C,A′B′=AD,所以图中能够成为全等三角形的有:△A′EF≌△AGF,A′CG≌△ACE,△GCB′≌△ECD,△A′CB′≌△ACD,共4对.9.【分析】∵△EDC是由△ABC绕点C按顺时针方向旋转后获得的,∴CB=CD,又点D在AB边上,那么△CBD是等腰三角形,∴底角∠B=∠BDC=(90°-α),∴∠BCD=180°-2(90°-α)=2α,即旋转角的大小为2α.答案:2α五、板书设计第23章旋转知识模块一旋转的观点及性质知识模块二中心对称、中心对称图形的观点以及性质知识模块三旋转、中心对称的作图六、作业部署单元检测试题七、教课反省对爸爸的印象,从记事的时候,就有了,他留给我的印象就是缄默少言的,但是脸上却一直有浅笑,不论家里碰到了什么样的困难,只需有爸爸在,全部都能够雨过天晴的,小时候,家里很穷,但是作为孩子的我们〔我和哥哥〕,却很幸福。

九年级数学上册第二十三章旋转章末复习教案新版新人教版

九年级数学上册第二十三章旋转章末复习教案新版新人教版

第二十三章旋转章末复习【知识与技能】进一步掌握旋转图形、中心对称、中心对称图形的概念及其性质,能够作出旋转图形和中心对称的图形,增强图案设计的能力.【过程与方法】通过对本章知识点的回顾及运用本章知识解决具体问题的过程,进一步增强数学应用的意识和能力,锻炼分析问题和解决问题的能力.【情感态度】在探索图形之间变换关系的过程中,激发学生的学习兴趣,增强数学审美能力.【教学重点】本章涉及的主要知识点和数学思想方法.【教学难点】综合运用本章知识解决相关的几何问题.一、知识框图,整体把握二、释疑解惑,加深理解1.旋转的性质有哪些?你能举出旋转的实例吗?2.在现实生活中,存在着大量的中心对称现象,你能举出一些例子吗?成中心对称的图形有什么特点?3.请列举学过的中心对称图形,说说如何判别一个图形是否是中心对称图形.4.关于原点对称的点的坐标有什么特征?5.用平移、旋转和轴对称的组合进行图案设计的关键是什么?你能进行简单的图案设计吗?【教学说明】针对本章的主要知识点,教师可依次提出上述问题,让学生回顾,并交流结论,然后教师逐一讲解,让学生加深对本章知识的领悟,教学时,可给予适当时间让学生回顾交流.三、典例精析,复习新知例1如图,若△ABC绕点C沿顺时针方向旋转150°后得到△A1B1C,∠A=60°,∠B1=90°,则∠A1CB=______.分析:准确的找到对应角,利用三角形的内角和性质.∠A1CB=∠B1CB-∠A1CB1=150°-30°=120°.例2 在方格纸上建立如图的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点A的对应点A′的坐标为_____.分析:本题是旋转的有关知识,要看清楚旋转的三要素:①绕哪一个点旋转,即旋转中心;②顺(逆)时针,即旋转方向;③旋转角度是多少.本题只要正确找出线段OA绕O点顺时针旋转90°后的位置,就能确定A′点.如图所示,△OA′B′就是旋转后的三角形,A′(2,3).例3如图,写出图形“H”相应各点的坐标.若将A平移到A′的位置,平移后对应各点的坐标分别是多少?两个“H”是否关于原点对称?分析:由题意知,平移后的“H”与平移前的“H”关于原点对称.所以“H”中的任意一点的坐标(x,y)关于原点对称的坐标为(-x,-y).这里需要注意的是要找准对应点,如A点对应的是D′,依次类推.解:A(-3,3),B(-3,2),C(-3,1),D(-1,1),E(-1,2),F(-1,3),A′(1,-1),B′(1,-2),C′(1,-3),D′(3,-3),E′(3,-2),F′(3,-1).比较A与D′,B与E′,C与F′,D与A′,E与B′,F与C′知,两“H”是关于原点对称.例 4 如图,一财主有一块平行四边形的土地,地里有一个圆形池塘,财主立下遗嘱:要把这块土地平均分给他的两个儿子,中间的池塘也平分,但不知道怎么做,你能想个办法吗?解:本题实际上是两个中心对称图形的组合,要想将其面积等分,只要能找到一条直线,使其既平分平行四边形的面积,又等分圆的面积即可,故可连接平行四边形的两条对角线,其交点A就是平行四边形的中心,找出圆的圆心B,过A、B作一条直线,这条直线就将平行四边形地与池塘平分了.例5 已知点P为正△ABC内一点,∠APB=113°,∠APC=123°,求证:以AP、BP、CP为边可以构成一个三角形,并确定所构成的三角形的各个内角的度数.分析:要判断以AP、BP、CP为边是否构成一个三角形,既可以利用三角形任意两边之和大于第三边的方法,也可以将它们通过适当的方法组合在一起,通过图形的直观性来说明.而这些,可将△ABP绕点B顺时针旋转60°,构成新的图形(如图所示),问题可迎刃而解.证明:由图易知,BP1=BP,P1C=PA,且∠P1BP=60°,故△BPP1为等边三角形,从而PP1=BP,而△PP1C是显然存在的,即以AP(P1C)、BP(PP1)、PC为边可以组成一个三角形.故∠PP1C=∠BP1C-∠BP1P=∠BPA-60°=113°-60°=53°.∠P1PC=∠BPC-∠BPP1=(360°-113°-123°)-60°=64°,∴∠P1CP=180°-53°-64°=63°.【教学说明】选取有代表性的5个例题进行评析,可开拓学生的思维,加深对本章知识的理解和运用,起到举一反三的作用.教学时,教师可根据需要选取评讲(也可另选例题).但仍应给予学生充足分析和思考的时间,锻炼学生分析问题和解决问题的能力.四、复习训练,巩固提高1.如右图,已知△AOB与△DOC成中心对称,△AOB的面积是12,AB=3,则△DOC中CD边上的高是()A.3B.6C.8D.122.如图所示,在△ABC中,∠BAC=15°,将△ABC,绕点A按逆时针方向旋转90°到△ADE的位置,然后将△ADE以AD为轴折叠到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.【教学说明】让学生通过自主探究,完成相应习题,进一步巩固对本章知识的理解和掌握.教学时,教师可根据实际情况,选取练习题,在学生练习过程中,教师巡视,对有困难的同学给予帮助,让每个同学都得到发展.【答案】1.C2.解:△ACF是等边三角形,理由如下,由旋转及对称的性质可知∠BAD=90°,∠FAD=∠DAE=∠BAC=15°,AC=AE=AF,∴∠CAF=90°-15°-15°=60°.∴△ACF是等边三角形.五、师生互动,课堂小结通过本节课的学习,你对本章知识有哪些新的认识和体会,说说你的看法,并与同伴交流.【教学说明】让学生反思小结本章内容,巩固知识,提升解题技能.1.布置作业:从教材“复习题23”中选取.2.完成练习册中本课时的热点专题训练.图形的变换是《课标》中增强的部分,加强这部分内容的学习可进一步丰富对空间的认识和感受,体验在现实生活中的应用,发展空间观念,所以是中考的重要内容,题型很丰富,难度也不一致,各层次都有,也可能和其它知识综合出现在压轴题中,所以,同学们要认真学好这部分内容.。

九年级数学上册 第23章 旋转章末复习教案 (新版)新人教版

九年级数学上册 第23章 旋转章末复习教案 (新版)新人教版

旋转章末复习一、复习导入1.导入课题:本节课对全章的知识作一回顾,梳理其知识脉络,弄清其重点和考点.2.复习目标:(1)梳理全章知识要点,能画出它的知识结构框图.(2)进一步明确旋转、中心对称、中心对称图形等概念的含义及它们的性质和作图等.3.复习重、难点:重点:旋转、中心对称的概念和性质.难点:性质的应用及图案的设计.二、分层复习1.复习指导:(1)复习内容:教材第58页至第77页的内容.(2)复习时间:7分钟.(3)复习要求:搜集知识要点,画知识结构框图.(4)复习参考提纲:①梳理知识要点:a.旋转的概念.b.旋转的性质.c.中心对称与中心对称图形的概念.d.中心对称的性质.e.关于原点对称的点的坐标特征.f.旋转和中心对称的作图.②画全章知识结构框图.180180⎧⎪⎨⎪⎩︒⎧⎪⎧⎪⎨⎪⎨⎩⎪︒⎪⎪⎩定义(三要素:旋转中心、旋转方向、旋转角)对应点到旋转中心的距离相等性质对应点与旋转中心连线的夹角等于旋转角旋转不改变图形的形状和大小定义:两个图形旋转后互相重合旋转对称点的连线经过对称中心且被对称中心平分性质特殊的旋转中心对称关于对称中心对称的两个图形是全等图形中心对称图形(一个图形旋转后与其自身重合)关于原点对称的两点:横、纵坐标分别互为相反数⎧⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎩利用平移、轴对称、旋转进行图案设计 2.自主复习:可结合复习指导进行自主复习.3.互助复习:(1)师助生:①明了学情:知识点的梳理是否详细、准确;知识结构框图是否能清晰展现全章的知识脉络.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:生生互动、交流、研讨、改正.4.强化:学习成果展示:画出全章知识结构框图.1.复习指导:(1)复习内容:典例剖析,考点跟踪.(2)复习时间:10分钟.(3)复习要求:注意体会知识点的考查方式,以及所学知识的综合运用.(4)复习参考提纲:①在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作(A )A .先逆时针旋转90°,再向左平移B .先顺时针旋转90°,再向左平移C .先逆时针旋转90°,再向右平移D .先顺时针旋转90°,再向右平移②下列四个图形中,既是轴对称图形又是中心对称图形的有(B )A.4个B.3个C.2个D.1个③若点A(2m-1,2n+3)与B(2-m,2-n)关于原点O对称,则m= -1 ,n= -5 .④如图,在平面直角坐标系中,点A的坐标为(-2,3),点B的坐标为(-5,0),画出点A、点B关于原点的对称点A′、B′,并写出对称点的坐标.A′(2,-3)B′(5,0)⑤如图,在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴、y轴的负半轴上,且OA=2,OB=1,将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的图形沿x轴正方向平移1个单位得到△CDO,写出A、C两点的坐标并求出点A和点C之间的距离.A(-2,0),C(1,2),点A和点C之间的距离AC===.2.自主复习:可结合复习指导自主复习,或相互交流研讨.3.互助复习:(1)师助生:①明了学情:特别关注学生是否对以往学过的旧知识不熟悉.②差异指导:根据学情进行针对性指导.(2)生助生:小组内研讨、总结.4.强化:结合复习参考提纲,让学生明确本章的主要考点有:(1)中心对称图形的识别(或综合轴对称图形);(2)关于原点对称的点的坐标的运用;(3)利用旋转进行相关的计算或证明;(4)平移、轴对称和旋转变换的综合运用;(5)中心对称的性质的应用及相关的作图等.三、评价1.学生的自我评价(围绕三维目标):在这节课的学习中有何新的认识和收获?自我感觉还有什么不足的地方吗?2.教师对学生的评价:(1)表现性评价:点评学生学习的主动参与情况,小组交流协作状况,以及学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):针对本课时的主要问题,从多个角度、分层次引导复习,让学生在复习中得到提升,设置典型的问题考查学生对于基础知识的理解和运用,从课堂反馈来看,大部分学生掌握了本章知识要点,还有部分学生对中心对称(图形)还是有些迷惑,在后面的教学中,要不定时检验他们对这方面知识的掌握情况.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分) 如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为(C)A.60°B.75°C.85°D.90°第1题图第3题图第4题图2.(10分)已知点P(a,a+2)在直线y=2x-1上,则点P关于原点的对称点P′的坐标为(D)A.(3,5)B.(-3,5)C.(3,-5)D.(-3,-5)3.(10分) 如图,边长为4的正方形ABCD的对角线相交于点O,过点O的直线分别交边AD、BC于E、F两点,则阴影部分的面积是(B)A.1B.4C.6D.84.(10分) 如图,在△ABC中,∠C=90°,AC=BC=4cm,若以AC的中点O为旋转中心,将这个三角形旋转180°后,点B落在点B′处,则BB′=cm.5.(10分) 在艺术字中,有些汉字或字母是中心对称图形.下面的汉字或字母是中心对称图形吗?如果是,请标出它们的对称中心.解:都是中心对称图形,对称中心如图所示.6.(10分)如图,在张伯与王叔联合承包的平行四边形田地ABCD中,有块圆形低洼地,现要修建一条笔直的路,将平行四边形田地和圆形低洼地同时平分成两部分,请设计路线.解:连接AC,BD,交于O′,则O′是平行四边形ABCD的对称中心,连接圆心O与O′,则OO′所在的直线将平行四边形田地和圆形低洼地同时分成两部分.7.(10分) 如图,写出△ABC三顶点的坐标,并在图中描出点A1(3,3),B1(2,-2),C1(4,-1),并说明△A1B1C1是△ABC通过怎样的变化得到的?解:A(-2,2),B(-3,-3),C(-1,-2).描点如图.△A1B1C1是由△ABC先向右平移5个单位,再向上平移1个单位得到的.二、综合应用(20分)8.(20分) 如图,有三个菱形位于同一个平面直角坐标系中,解答下列问题:(1)这三个菱形的对称中心坐标分别为:①(8,0),②(0,8),③(-8,0),面积都等于12.(2)菱形②可以看做是由菱形①如何旋转得到的?解:绕点O逆时针旋转90°得到的.(3)菱形③与菱形②可看做是关于直线l对称的,则直线l所对应的函数关系式是y=-x.(4)从菱形①变换到菱形③,可以满足什么几何变换?请你设计两种不同的变换方法.解:第一种:向左平移16个单位长度.第二种:关于原点作中心对称.三、拓展延伸(10分)9.(10分) 如图,平行四边形ABCD中,AB⊥AC,AB=2,BC=25,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC、AD于点F、E.(1)当旋转角度为90°时,四边形ABFE的形状是平行四边形;(2)试说明在旋转过程中,线段AF与EC总是保持相等;(3)在旋转过程中四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由,并求出此时AC绕点O顺时针旋转的度数.解:(2)连接AF,EC.∵四边形ABCD是平行四边形∴AD与CB关于点O中心对称.又E、F分别在AD、BC上.∴AE与CF关于点O中心对称.∴AE=CF,又AE∥CF,∴四边形AFCE是平行四边形.∴AF=CE.(3)可能是菱形,当AC绕点O旋转45°时,∵AC=BC2-AB2=4,∴OA=OC=2,∴OA=AB,又∠BAC=90°,∴△OAB为等腰直角三角形,∴∠AOB=45°.当AC绕点O顺时针旋转45°时,∠AOE=45°,∴∠BOE=90°,EF垂直平分BD,∴BE=ED.易证四边形BEDF为平行四边形. ∴四边形BEDF是菱形.。

九年级数学上册 第二十三章 旋转复习教案 (新版)新人教版

九年级数学上册 第二十三章 旋转复习教案 (新版)新人教版

旋转
教师活动
(一)图形的旋转
1.旋转的定义:
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形变换称为旋转,这个定点称为旋转中心,转动的角称为旋转角
注意:
在旋转过程中保持不动的点是旋转中心.
2.旋转的三个要素:
旋转中心、旋转的角度和方向.
3.旋转的性质:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
.中心对称
边形、圆是中心对称图形.
.下列图形中,中心对称图形是
( )
把一个图形绕着某一点旋转180°后,如果它能和另一个图形完全重合,么称这两个图形成中心对称,
对称中心平分;反之,如果两个图形的对应点连成的线段都经过某一点,将其中的两个关键点和它们的对称点的连线作出来,两条连线的交点就是)确定关键点;
,四边形ABC=
____________.。

新人教版初中数学九年级上册第23章《图形的旋转》教案

新人教版初中数学九年级上册第23章《图形的旋转》教案

�等全形图的后、前转旋�3� �角转旋于等角夹的 段线连所心中转旋与点应对�2� �等 相离距的心中转旋到点应对�1�
6
。法方 的题问决解转旋 用运会体 �形图本 基出炼提中形图 杂复从生学养培
______=FBE∠� mc_____=FB 则 ,mc3=BE 中 其 ,FBC △ 到转旋向方针时顺 B 点绕 EBA△将 ,点一内 DCBA 形方正是 E 图如、3

�置位么什 A 了到 M 点�后转旋的述上过经么 那�点中的上 BA 是 M 果如�3� �度少多了转旋�2� �点一哪是心中转旋�1� 。 置位的 ECA△达到后转 旋过经 DBA△�点一的上边 CB 是 D�形角三边等是 CBA△�图如、2 图题 1 第 O. B A
。质性的转旋固巩 。价评予给师教 �系关转旋的形图 �答回、考思、察观生学 现发 �点特的形图 察观过通生学让
1
片图察观生学 境 情 设 创、一
。垫铺好 作题问究探课节本 为,望欲烈强的究探 步一进换变种这对 生产而从 �象现动转 着在存泛广中活生 、产生,外之换变形 图等换变称对轴 、移 平了除边身们我到 受感身切生学让示 展的面画些这过通
象现转旋 的体物分部中活生实现 示显并片图示展件课用 图 意 计 设 课授新 动 活 生 师 程 型 课
'C
。质性的 转 旋 会 体 步 一 进 。解讲台上生学�流交组 分�答解并考思立独生学
C
图题 3 第 O
'B
B
A
__________ 有 角 的 ° 03 是 数 度 中 图 则, C BA △到得后 °03 转旋针时 / / 逆点 A 绕 CBA△,°03=C∠图如 、3
C E
图题 2 第
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十三章旋转23.1图形的旋转1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.2.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.3.旋转的基本性质.重点旋转及对应点的有关概念及其应用.难点旋转的基本性质.一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了________度,分针转了________度,秒针转了________度.2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1,2两题有什么共同特点呢?共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1 如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A,B分别移动到什么位置?解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.自主探究:请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′的形状和大小有什么关系?老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等.2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC和△A′B′C′形状相同和大小相等,即全等.综合以上的实验操作得出:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例2 如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.解:(1)连接CD;(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.三、课堂小结(学生总结,老师点评)本节课应掌握:1.对应点到旋转中心的距离相等;2.对应点与旋转中心所连线段的夹角等于旋转角;3.旋转前、后的图形全等及其它们的应用.四、作业布置教材第62~63页习题4,5,6.23.2中心对称23.2.1中心对称1.正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点.2.能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形.重点中心对称的概念及性质.难点中心对称性质的推导及理解.复习引入问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题:1.以O为旋转中心,旋转180°后两个图形是否重合?2.各对应点绕O旋转180°后,这三点是否在一条直线上?老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合.像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.探索新知(老师)在黑板上画一个三角形ABC,分两种情况作两个图形:(1)作△ABC一顶点为对称中心的对称图形;(2)作关于一定点O为对称中心的对称图形.第一步,画出△ABC.第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示.从图(1)中可以得出△ABC与△A′B′C是全等三角形;分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段.下面,我们就以图(2)为例来证明这两个结论.证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB≌△A′OB′,∴AB=A′B′,同理可证:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点.同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点.因此,我们就得到1.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.2.关于中心对称的两个图形是全等图形.例题精讲例1 如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称.分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到.解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示.(2)同样画出点B和点C的对称点E和F.(3)顺次连接DE,EF,FD,则△DEF即为所求的三角形.例2 (学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法).课堂小结(学生总结,老师点评)本节课应掌握:中心对称的两条基本性质:1.关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;2.关于中心对称的两个图形是全等图形及其它们的应用.作业布置教材第66页练习23.2.2中心对称图形了解中心对称图形的概念及中心对称图形的对称中心的概念,掌握这两个概念的应用.复习两个图形关于中心对称的有关概念,利用这个所学知识探索一个图形是中心对称图形的有关概念及其他的运用.重点中心对称图形的有关概念及其它们的运用.难点区别关于中心对称的两个图形和中心对称图形.一、复习引入1.(老师口问)口答:关于中心对称的两个图形具有什么性质?(老师口述):关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分.关于中心对称的两个图形是全等图形.2.(学生活动)作图题.(1)作出线段AO关于O点的对称图形,如图所示.(2)作出三角形AOB关于O点的对称图形,如图所示.延长AO使OC=AO,延长BO使OD=BO,连接CD,则△COD即为所求,如图所示.二、探索新知从另一个角度看,上面的(1)题就是将线段AB绕它的中点旋转180°,因为OA=OB,所以,就是线段AB绕它的中点旋转180°后与它本身重合.上面的(2)题,连接AD,BC,则刚才的关于中心O对称的两个图形就成了平行四边形,如图所示.∵AO=OC,BO=OD,∠AOB=∠COD∴△AOB≌△COD∴AB=CD也就是,ABCD绕它的两条对角线交点O旋转180°后与它本身重合.因此,像这样,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.(学生活动)例1 从刚才讲的线段、平行四边形都是中心对称图形外,每一位同学举出三个图形,它们也是中心对称图形.老师点评:老师边提问学生边解答的特点.(学生活动)例2 请说出中心对称图形具有什么特点?老师点评:中心对称图形具有匀称美观、平稳的特点.例3 求证:如图,任何具有对称中心的四边形是平行四边形.分析:中心对称图形的对称中心是对应点连线的交点,也是对应点间的线段中点,因此,直接可得到对角线互相平分.证明:如图,O是四边形ABCD的对称中心,根据中心对称性质,线段AC,BD必过点O,且AO=CO,BO=DO,即四边形ABCD的对角线互相平分,因此,四边形ABCD是平行四边形.三、课堂小结(学生归纳,老师点评)本节课应掌握:1.中心对称图形的有关概念;2.应用中心对称图形解决有关问题.四、作业布置教材第70页习题8,9,10.23.2.3关于原点对称的点的坐标理解点P与点P′关于原点对称时它们的横纵坐标的关系,掌握P(x,y)关于原点的对称点为P′(-x,-y)的运用.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用.重点两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y)及其运用.难点运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.一、复习引入(学生活动)请同学们完成下面三题.1.已知点A和直线l,如图,请画出点A关于l对称的点A′.2.如图,△ABC是正三角形,以点A为中心,把△ABC顺时针旋转60°,画出旋转后的图形.3.如图△ABO,绕点O旋转180°,画出旋转后的图形.老师点评:老师通过巡查,根据学生解答情况进行点评.(略)二、探索新知(学生活动)如图,在直角坐标系中,已知A(-3,1),B(-4,0),C(0,3),D(2,2),E(3,-3),F(-2,-2),作出A,B,C,D,E,F点关于原点O的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?老师点评:画法:(1)连接AO并延长AO;(2)在射线AO上截取OA′=OA;(3)过A作AD′⊥x轴于点D′,过A′作A′D″⊥x轴于点D″.∵△AD′O与△A′D″O全等,∴AD′=A′D″,OA=OA′,∴A′(3,-1),同理可得B,C,D,E,F这些点关于原点的中心对称点的坐标.(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?提问几个同学口述上面的问题.老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即P(x,y)关于原点O的对称点P′(-x,-y).两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点为P′(-x,-y).例1 如图,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形.分析:要作出线段AB关于原点的对称线段,只要作出点A、点B关于原点的对称点A′,B′即可.解:点P(x,y)关于原点的对称点为P′(-x,-y),因此,线段AB的两个端点A(0,1),B(3,0)关于原点的对称点分别为A′(0,-1),B(-3,0).连接A′B′.则就可得到与线段AB关于原点对称的线段A′B′.(学生活动)例2 已知△ABC,A(1,2),B(-1,3),C(-2,4),利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.老师点评分析:先在直角坐标系中画出A,B,C三点并连接组成△ABC,要作出△ABC 关于原点O的对称三角形,只需作出△ABC中的A,B,C三点关于原点的对称点,依次连接,便可得到所求作的△A′B′C′.三、巩固练习教材第69页练习.四、课堂小结点P(x,y)关于原点的对称点为P′(-x,-y).五、作业布置教材第70页习题3,4.23.3课题学习图案设计利用平移、轴对称和旋转的这些图形变换中的一种或组合进行图案设计,设计出称心如意的图案.通过复习平移、轴对称、旋转的知识,然后利用这些知识让学生开动脑筋,敝开胸怀大胆联想,设计出一幅幅美丽的图案.重点设计图案.难点如何利用平移、轴对称、旋转等图形变换中的一种或它们的组合得出图案.一、复习引入(学生活动)请同学们独立完成下面的各题.1.如图,已知线段CD是线段AB平移后的图形,D是B点的对称点,作出线段AB,并回答AB与CD有什么位置关系.错误!,第2题图) ,第3题图) 2.如图,已知线段CD,作出线段CD关于对称轴l的对称线段C′D′,并说明CD与对称线段C′D′之间有什么关系?3.如图,已知线段CD,作出线段CD关于D点旋转90°的旋转后的图形,并说明这两条线段之间有什么关系?老师点评:1.AB与CD平行且相等;2.过D点作DE⊥l,垂足为E并延长,使ED′=ED,同理作出C′点,连接C′D′,则C′D′即为所求.CD的延长线与C′D′的延长线相交于一点,这一点在l上并且CD=C′D′.3.以D点为旋转中心,旋转后CD⊥C′D,垂足为D,并且CD=C′D.二、探索新知请用以上所讲的平移、轴对称、旋转等图形变换中的一种或几种组合完成下面的图案设计.例1 (学生活动)学生亲自动手操作题.按下面的步骤,请每一位同学完成一个别致的图案.(1)准备一张正三角形纸片(课前准备)(如图a);(2)把纸片任意撕成两部分(如图b,如图c);(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形;(4)将(3)得到的图形以正三角形的一个顶点作为旋转中心旋转,得到如图(d)(如图c 保持不动);(5)把如图(d)平移到如图(c)的右边,得到如图(e);(6)对如图(e)进行适当的修饰,使得到一个别致美丽的如图(f)的图案.老师必要时可以给予一定的指导.三、课堂小结本节课应掌握:利用平移、轴对称和旋转的图形变换中的一种或组合设计图案.。

相关文档
最新文档