海南省2018届高三第二次联考理科数学试题
2018年海南省高三理科数学下册调研考试卷

2018年海南省高三理科数学调研考试理科数学参考公式球的表面积公式 棱柱的体积公式24R S π= Sh V =球的体积公式 其中S 表示棱柱的底面积,h 表示棱柱的高334R V π=棱台的体积公式 其中R 表示球的半径 )(312211S S S S h V ++=棱锥的体积公式 其中1S ,2S 分别表示棱台的上、下底面积,Sh V 31=h 表示棱台的高 其中S 表示棱锥的底面积,h 表示棱锥的高 如果事件A ,B 互斥,那么 )()()(B P A P B A P +=+一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选顶中,只有一个符合题目要求的) 1. ()U x MN ∈ð成立的充要条件是( )()U A x M ∈ð ()U B x N ∈ð ()U UC x M x N ∈∈且痧 ()U UD x M x N ∈∈或痧2. 要从10名女生和5名男生中选出6名学生组成课外兴趣小组,如果按性别依比例分层随机抽样,则组成此课外兴趣小组的概率为( )()42105615C C A C ()33105615C C B C ()615615C C A ()42105615A A D C 3.己知随机变量ξ服从正态分布),2(2σN ,84.0)4(=≤ξP ,则=≤)0(ξP ( )A .16.0B .32.0C .68.0D .84.04.已知α、β是两个不重合的平面,m 、n 是两条不重合的直线,下列命题中不正确...的是( )A .若n m //,α⊥m ,则α⊥nB .若α||m ,n =βα ,则n m ||C .若α⊥m ,β⊥m ,则βα//D .若α⊥m , β⊂m ,则βα⊥ 5.已知函数m x A y ++=)sin(ϕω的最大值为4,最小值为0,最小正周期为2π,直线3π=x 是其图象的一条对称轴,则下面各式中符合条件的解析式是( )A .)64sin(4π+=x y B .2)32sin(2++=πx yC .2)34sin(2++=πx y D .2)64sin(2++=πx y6.设O 在ABC ∆的内部,且02=++,则ABC ∆的面积与错误!不能通过编辑域代码创建对象。
海口市高考数学二模试卷(理科)

海口市高考数学二模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2018高一上·河北月考) 设集合,则=()A .B .C .D .2. (2分)已知,若(其中i为虚数单位),则()A . a=-1,b=1B . a=-1,b=-1C . a=1,b=-1D . a=1,b=13. (2分)(2017·万载模拟) 下列说法正确的是()A . 若命题p:∃x0∈R,x02﹣x0+1<0,则¬p:∀x∉R,x2﹣x+1≥0B . 已知相关变量(x,y)满足回归方程 =2﹣4x,若变量x增加一个单位,则y平均增加4个单位C . 命题“若圆C:(x﹣m+1)2+(y﹣m)2=1与两坐标轴都有公共点,则实数m∈[0,1]为真命题D . 已知随机变量X~N(2,σ2),若P(X<a)=0.32,则P(X>4﹣a)=0.684. (2分)(2017·潍坊模拟) 已知椭圆C1与双曲线C2有相同的左右焦点F1、F2 , P为椭圆C1与双曲线C2在第一象限内的一个公共点,设椭圆C1与双曲线C2的离心率为e1 , e2 ,且 = ,若∠F1PF2= ,则双曲线C2的渐近线方程为()A . x±y=0B . x± y=0C . x± y=0D . x±2y=05. (2分)等差数列{an}中,a4+a8=10,a10=6,则公差d等于()A .B .C . 2D . -6. (2分)如图是某一几何体的三视图,则这个几何体的体积为()A . 4B . 8C . 16D . 207. (2分)(2017·安庆模拟) 已知定义域为R的函数f(x)=a+ (a,b∈R)有最大值和最小值,且最大值与最小值之和为6,则3a﹣2b=()A . 7B . 8C . 9D . 108. (2分)一个算法的程序框图如图,则其输出结果是()A . 0B .C .D .9. (2分) (2016高二下·黑龙江开学考) 曲线在x=0处的切线方程为()A .B .C .D .10. (2分)若点O和点F(-2,0)分别为双曲线(a>0)的中心和左焦点,点P为双曲线右支上的任意一点,则的取值范围为()A . [3- ,)B . [3+ ,)C . [,)D . [,)11. (2分) (2018高二上·黑龙江月考) 已知、为等轴双曲线的左、右焦点,且焦距为,点是的右支上动点,过点向的一条渐近线作垂线,垂足为,则的最小值是().A . 6B .C . 12D .12. (2分) (2019高一上·宁波期中) 函数的零点所在的大致区间是()A .B .C .D .二、填空题: (共4题;共4分)13. (1分)(2017·盐城模拟) 设x,y满足,则z=x+y的最大值为________.14. (1分)(2017·红桥模拟) 在(2x2﹣)5的二项展开式中,x的系数为________.15. (1分)(2017·南通模拟) 一个封闭的正三棱柱容器,高为8,内装水若干(如图甲,底面处于水平状态).将容器放倒(如图乙,一个侧面处于水平状态),这时水面所在的平面与各棱交点E,F,F1 , E1分别为所在棱的中点,则图甲中水面的高度为________.16. (1分) (2016高二上·浦东期中) 数列{an}中,an+1= ,a1=2,则数列{an}的前2015项的积等于________.三、解答题: (共7题;共50分)17. (10分) (2016高一下·义乌期末) 已知△ABC中,角A,B,C的对边分别是a,b,c,且2cos2 = sinB,a=3c.(1)求角B的大小和tanC的值;(2)若b=1,求△ABC的面积.18. (10分)(2018·兰州模拟) 某智能共享单车备有两种车型,采用分段计费的方式营用型单车每分钟收费元(不足分钟的部分按分钟计算),型单车每分钟收费元(不足分钟的部分按分钟计算),现有甲乙丙三人,分别相互独立第到租车点租车骑行(各租一车一次),设甲乙丙不超过分钟还车的概率分别为,并且三个人每人租车都不会超过分钟,甲乙均租用型单车,丙租用型单车.(1)求甲乙两人所付的费用之和等于丙所付的费用的概率;(2)设甲乙丙三人所付费用之和为随机变量,求的分布列和数学期望.19. (5分) (2018高二上·嘉兴期末) 如图,已知三棱柱,侧面 .(Ⅰ)若分别是的中点,求证:;(Ⅱ)若三棱柱的各棱长均为2,侧棱与底面所成的角为,问在线段上是否存在一点,使得平面 ?若存在,求与的比值,若不存在,说明理由.20. (10分) (2016高二上·长春期中) 已知抛物线C:y2=8x的焦点为F,过F作倾斜角为60°的直线l.(1)求直线l的方程;(2)求直线l被抛物线C所截得的弦长.21. (5分)(2018·济南模拟) 已知函数(I)若函数处取得极值,求实数的值;并求此时上的最大值;(Ⅱ)若函数不存在零点,求实数a的取值范围;22. (5分)(2017·焦作模拟) 在平面直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2sinθ.(Ⅰ)判断直线l与圆C的交点个数;(Ⅱ)若圆C与直线l交于A,B两点,求线段AB的长度.23. (5分)(2016高三上·苏州期中) 已知a,b,c,d都是正实数,且a+b+c+d=1,求证:.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题: (共7题;共50分) 17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、22-1、23-1、。
推荐-全国大联考2018届高三第二次联考·数学(理)试卷-人教版[特约][整理] 精品
![推荐-全国大联考2018届高三第二次联考·数学(理)试卷-人教版[特约][整理] 精品](https://img.taocdn.com/s3/m/6823a093cc22bcd126ff0ce0.png)
全国大联考(湖南专用)2018届高三第二次联考·数学试卷(理)命题:湖南师大附中、长沙市雅礼中学等校:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 2. 答题前,考生务必将密封线内的项目填写清楚.3. 请将第Ⅰ卷答案填在第Ⅱ卷前的答题卡上,第Ⅱ用蓝黑钢笔或圆珠笔答题. 4. 本试卷主要考试内容:函数、集合、映射、简易逻辑.第Ⅰ卷 (选择题 共50分)一、选择题: 本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列函数中是同一函数的是A .y =1与y =x 0B .y =x 与y =log a xaC .y =2lg x 与y =lg x 2D . y =2x +1-2x 与y =2x2.若集合M ={y |y =x 2,x ∈Z},N ={x ||x -3|≥6,x ∈R},全集U =R ,则M ∩ðU N 的真子集个数是A .15B .7C .16D .8 3.已知a ,b 为实数,集合M ={ba ,1},N ={a ,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于 A .-1 B .0C .1D .±14.已知f (x )=-4-x 2在区间M 上的反函数是其本身,则M 可以是 A .[-2,2] B .[-2,0] C .[0,2] D .(-2,2) 5.已知f (x )是R 上的增函数,令F (x )=f (1-x )-f (3+x ),则F (x )在R 上是A .增函数B .减函数C .先增后减D .先减后增6.已知p :关于x 的方程x 2-ax +4=0有实根,q :二次函数y =2x 2+ax +4在[3,+∞)上是增函数,若“p 或q ”是真命题,而“p 且q 是假命题”,则a 的取值范围是 A.(-12,-4]∪[4,+∞) B.[-12,-4]∪[4,+∞) C .(-∞,-12)∪(-4,4) D .[-12,+∞) 7.设a >1,实数x ,y 满足|x |-log a 1y=0,则y 关于x 的函数的图象形状大致是8.点P 是曲线y =2-ln2x 上任意一点,则点P 到直线y =-x 的最小距离为A .54 2B .34 2 C .3-2ln2 2 D .3-ln2 29.设f (x )=|2-x 2|,若0<a <b ,且f (a )=f (b ),则ab 的取值范围是A .(0,2)B .(0,2]C .(0,4]D .(0,2)10.设定义域为R 的函数f (x )=⎩⎪⎨⎪⎧1|x -1|,x ≠11,x =1,若关于x 的方程f 2(x )+bf (x )+c =0有3个不同的实数解x 1、x 2、x 3,则222123x x x ++等于 A .5 B .2b 2+2b2C .13D .3c 2+2c 2第Ⅱ卷 ( 非选择题 共100 分)二、填空题: 本大题共5小题,每小题4分,共20分.把答案填在题中的横线上. 11.函数y =(49)x +(23)x -109的定义域为 . 12.已知函数f (x )=bx2-3x,若方程f (x )=-2x 有两个相等的实根,则函数解析式为 . 13.某种汽车安全行驶的稳定性系数μ随使用年数t 的变化规律是μ=μ0e -λt ,其中μ0、λ是正常数.经检测,当t =2时,μ=0.18μ0,则当稳定系数降为0.50μ0时,该种汽车的使用年数为 (结果精确到1,参考数据:lg2=0.3010,lg3=0.4771). 14.已知实数a ,b 满足等式log 2a =log 3b ,给出下列五个等式:①a >b >1;②b >a >1;③a <b <1;④b <a <1;⑤a =b . 其中可能成立的关系式是 (填序号). 15.已知n 元集合M ={1,2,…,n },设M 所有的3元子集的元素之和为S n ,则l imn →∞S nn 2= 三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程及演算步骤. 16.(本小题满分12分)已知集合A ={x |log 13(x -a 2)<0},B ={x ||x -3|<a },若A ∪B =A ,求实数a 的取值范围.已知函数f (x )=a ·2x -12x +1为R 上的奇函数.⑴求f (x )及f -1(x )的解析式;⑵若当x ∈(-1,1)时,不等式f -1(x )≥log 21+x m 恒成立,试求m 的取值范围.18.(本小题满分14分)已知f (x )=xx -a(x ≠a )⑴若a =-2,试证f (x )在(-∞,-2)内单调递增;⑵若a >0且f (x )在(1,+∞)内单调增减,求a 的取值范围.某水库进入汛期的水位升高量h n (标高)与进入汛期的天数n 的关系是h n =205n 2+6n ,汛期共计约40天,当前水库水位为220(标高),而水库警戒水位是400(标高),水库共有水闸15个,每开启一个泄洪,一天可使水位下降4(标高).⑴若不开启水闸泄洪,这个汛期水库是否有危险?若有危险,将发生在第几天? ⑵若要保证水库安全,则在进入汛期的第一天起每天至少应开启多少个水闸泄洪? (参考数据:2.272=5.1529,2.312=5.3361)20. (本小题满分14分)设f (x )=|x +1|+|ax +1|.⑴若f (-1)=f (1),f (-1a )=f (1a )(a ∈R 且a ≠0),试求a 的值;⑵设a >0,求f (x )的最小值g (a )关于a 的表达式.定义函数f n(x)=(1+x)n-1,x>-2,n∈N+,其导函数记为f n′(x).⑴求证:f n(x)≥nx;⑵设f′n (x0)f′n+1 (x0)=f n(1)f n+1(1),求证:0<x0<1;⑶是否在在区间[a,b] (-∞,0],使函数h(x)=f3(x)-f2(x)在区间[a,b]上的值域为[ka,kb]?若存在,求出最小的k值及相应的区间[a,b].2018届高三第二次联考·数学试卷(理)参考答案(湖南专用)11.(-∞,1] 12.f (x )=4x 3x -213.13 14.②④⑤ 15.12提示:1.D A 、B 、C 定义域不同,选D . 2.BM ={0,1,4,9,…},ðU N ={-3,9},∴M ∩ðU N ={0,1,4},∴M ∩ðU N 的真子集个数为23-1=7.3.C 由已知可得M =N ,故⎩⎪⎨⎪⎧a =1,b a =0,解得⎩⎨⎧a =1,b =0,∴a +b =1.4.B定义域和值域相等,图象本身关于直线y =x 对称,故原函数图象为圆x 2+y 2=4在第三象限的14圆.5.B 由f (x )的任意性,可用特例,令f (x )=x ,则F (x )=1-x -(3+x )=-2-2x , ∴F (x )是减函数.6.C p :△=a 2-16≥0,a ∈(-∞,-4]∪[4,∞). q :-a4≤3,a ≥-12,a ∈[-12,+∞).p 真q 假:(-∞,-12),p 假q 真:a ∈(-4,4), 故a 的取值范围是(-∞,-12)∪(-4,4)7.By =(1a )|x |=⎩⎪⎨⎪⎧(1a )x ,x ≥0,a x,x <0。
2018届海南省数学(理)试题(解析版)资料

2018届海南省(海南中学、文昌中学等)八校高三上学期新起点联盟考试数学(理)试题一、选择题 1.已知集合,,则中的元素的个数为( )A. 0B. 1C. 2D. 3 【答案】C【解析】因为或,所以,应选答案C 。
2.已知,为虚数单位,,则( )A. 9B.C. 24D.【答案】A【解析】因为,所以,则,应选答案A 。
3.某高校调查了400名大学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组[)17.5,20, [)20,22.5,[)22.5,25, [)25,27.5, []27.5,30.则这400名大学生中每周的自习时间不少于20小时的人数是( )A. 380B. 360C. 340D. 320 【答案】A 【解析】解:由频率分布直方图得这400名大学生中每周的自习时间不少于20小时的频率为: (0.08+0.04+0.16+0.1)×2.5=0.95,∴这400名大学生中每周的自习时间不少于25小时的人数为: 400×0.95=380, 点睛:由频率分布直方图求出这400名大学生中每周的自习时间不少于20小时的频率,由此能求出这400名大学生中每周的自习时间不少于20小时的人数. 4.设D 为线段BC 的中点,且6AB AC AE +=-,则( )A. 2AD AE =B. 3AD AE =C. 2AD EA =D. 3AD EA = 【答案】D【解析】由D 为线段BC 的中点,且6AB AC AE +=-,得:26AD AE =-, 3AD AE =-,即3AD EA =故选:D5.执行如图所示的程序框图,若输入的5x =-,则输出的y = ( )A. 2B. 4C. 10D. 28 【答案】B【解析】5x =-, 5x =,符合题意, 从而有x 4x =-=1,不符合题意, ∴1314y =+=,故选:B点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 6.若323a =, 523b =, 0.5log 3c =,则( )A. a b c <<B. b a c <<C. b c a <<D. c a b << 【答案】D【解析】由条件知 0.5log 30c =<, a = b = a b <,故选择为D . 点睛:对数中,指对在1的同侧时,对数值大于零,在1的异侧时,对数小于零,再者就是a b ,化成次数一样的,比较底数即可.7.n S 为等差数列{}n a 的前n 项和, 37S S =, 27a =,则5a = ( ) A. 5 B. 3 C. 1 D. 1- 【答案】C 【解析】,由等差数列性质知道32743721S a S a ====, 43a ∴=,又27a =,所以d 2=-, 已知5231a a d =+=.8.设实数,x y 满足约束条件{260 430y xx y x y ≤+-≤--≤,则3z x y =+的取值范围为( )A. []4,8-B. []4,9-C. []8,9D. []8,10 【答案】B【解析】在平面直角坐标系中画出可行域, y x ≤和260x y +-≤交于 A(3,0),y x ≤和430x y --≤交于C 11--,, 3y x z =-+,在A(3,0)处截距最大,目标函数取得最大值,在C 11--,处,截距最小,目标函数最小,带入坐标求得[]4,9-. 9.如图是一个几何体的三视图,则该几何体的表面积为( )A. 46B. 48C. 50D. 52 【答案】B【解析】该几何体是如图所示的一个四棱锥P-ABCD ,所以表面积为本题选择B 选项.点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.10.直线l 过点()3,1P 且与双曲线22:12x C y -=交于,M N 两点,若线段MN 的中点恰好为点P ,则直线l 的斜率为( ) A.13 B. 54 C. 34 D. 32【答案】D【解析】设()11M x y =,, ()22N x y =,则222212121122x x y y -=-=, 两式作差,得:222212122x x y y -=- 即()21212121k 2y y x x x x y y -+==-+,又线段MN 的中点恰好为点()3,1P∴k =32故选:D11.在三棱锥P ABC -中, 1PA AB BC ===, AC PB == PC ,则异面直线PC 与AB 所成角的余弦值为( )A.3 B.4 C. 3 D. 4【答案】A【解析】解:由条件知: PA AB PA AC ⊥⊥,,取BC,PB,AC,AB 中点分别为:F,E,H,K,FE 为PAB 的中位线,FE=2,同理H F=12,EHK 中,EH=12,E K=12,EH=2,EFH 中,三边关系满足勾股定理,角EFH 为所求角,在直角三角形中,角的余弦值点睛:发现三棱锥的线线间的垂直关系,将异面直线通过做平行线移到同一平面中,将要求的角放到了直角三角形中求解.12.已知函数在区间上有最大值,则实数的取值范围是( )A. B. C. D.【答案】B【解析】因为,所以由题设在只有一个零点且单调递减,则问题转化为,即,应选答案B 。
2018年海南数学(理科)高考试题

要求的。
1.
1 1
2i 2i
A. 4 3 i 55
B. 4 3 i 55
C. 3 4 i 55
D. 3 4 i 55
2.已知集合 A x ,y x2 y2≤3,x Z ,y Z ,则 A 中元素的个数为
A.9
B.8
3.函数
f
x
ex
ex x2
的图像大致为
C.5
D.4
4.已知向量 a , b 满足 | a | 1 , a b 1 ,则 a (2a b)
20.(12 分) 如图,在三棱锥 P ABC 中, AB BC 2 2 , PA PB PC AC 4 , O 为 AC 的中点. (1)证明: PO 平面 ABC ; (2)若点 M 在棱 BC 上,且二面角 M PA C 为 30 ,求 PC 与平面 PAM 所成角的正弦值. P
23.[选修 4-5:不等式选讲](10 分) 设函数 f (x) 5 | x a | | x 2 | .
(1)当 a 1 时,求不等式 f (x) 0 的解集;
(2)若 f (x) 1 ,求 a 的取值范围.
1
2 D. 2 5
7.为计算 S 1 1 1 1 … 1 1 ,设计了右侧的程序框图,
234
99 100
则在空白框中应填入
开ቤተ መጻሕፍቲ ባይዱ N 0, T 0
A. i i 1
i 1
B. i i 2 C. i i 3 D. i i 4
是 i 100 否
N N 1 i
S N T
T T 1 i 1
22.[选修 4-4:坐标系与参数方程](10 分)
x 2 cos θ ,
在直角坐标系
2018年海南高考理科数学真题及答案

2018年海南高考理科数学真题及答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.12i12i+=- A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为 A .9B .8C .5D .43.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b -=>>A.y = B.y =C.y = D.y = 6.在ABC △中,cos 2C =1BC =,5AC =,则AB = A.BCD.7.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA ,则异面直线1AD 与1DB 所成角的余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左、右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分. 13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.14.若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,,则z x y =+的最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为,则该圆锥的侧面积为__________.三、解答题:共70分。
海南省2018届高三数学二模试卷理科附答案

海南省2018届高三数学二模试卷(理科附答案)海南省2017—2018学年高中毕业班阶段性测试数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.2.已知复数满足,为的共轭复数,则()A.B.C.D.3.如图,当输出时,输入的可以是()A.B.C.D.4.已知为锐角,,则的取值范围为()A.B.C.D.5.把一枚质地均匀、半径为的圆形硬币抛掷在一个边长为的正方形托盘上,已知硬币平放在托盘上且没有掉下去,则该硬币完全落在托盘上(即没有任何部分在托盘以外)的概率为()A.B.C.D.6.的展开式中,的系数为()A.B.C.D.7.已知正项数列满足,设,则数列的前项和为()A.B.C.D.8.如图,网格纸上正方形小格的边长为,粗线画出的是某几何体的三视图,则该几何体的最长棱的长度为()A.B.C.D.9.已知数列的前项和为,且满足,,则()A.B.C.D.10.已知函数是定义在上的偶函数,,当时,,若,则的最大值是()A.B.C.D.11.已知抛物线的焦点为,过点作互相垂直的两直线,与抛物线分别相交于,以及,,若,则四边形的面积的最小值为()A.B.C.D.12.已知,方程与的根分别为,,则的取值范围为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.已知,,,且向量,的夹角是,则.14.已知实数,满足,则的最大值是.15.已知双曲线的左、右焦点分别为,,过且垂直于轴的直线与该双曲线的左支交于,两点,,分别交轴于,两点,若的周长为,则的最大值为.16.如图,在三棱锥中,平面,,已知,,则当最大时,三棱锥的表面积为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知在中,,,分别为内角,,的对边,且.(1)求角的大小;(2)若,,求的面积.18.如图,在直三棱柱中,,,点为的中点,点为上一动点.(1)是否存在一点,使得线段平面?若存在,指出点的位置,若不存在,请说明理由.(2)若点为的中点且,求二面角的正弦值.19.某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:乘坐站数票价(元)现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站.甲、乙乘坐不超过站的概率分别为,;甲、乙乘坐超过站的概率分别为,.(1)求甲、乙两人付费相同的概率;(2)设甲、乙两人所付费用之和为随机变量,求的分布列和数学期望.20.在平面直角坐标系中,已知椭圆的离心率为,,分别为椭圆的上顶点和右焦点,的面积为,直线与椭圆交于另一个点,线段的中点为.(1)求直线的斜率;(2)设平行于的直线与椭圆交于不同的两点,,且与直线交于点,求证:存在常数,使得.21.已知函数,.(1)求函数的单调区间;(2)证明:.(二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程]在平面直角坐标系中,已知直线:(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的极坐标为,直线与曲线的交点为,,求的值.23.[选修4-5:不等式选讲]已知函数.(1)当时,求不等式的解集;(2)若不等式对恒成立,求实数的取值范围.海南省2017—2018学年高中毕业班阶段性测试数学(理科)答案一、选择题1-5:DABCB6-10:BCDAD11、12:CA二、填空题13.14.15.16.三、解答题17.(1)由及正弦定理得,,即,又,所以,又,所以.(2)由(1)知,又,易求得,在中,由正弦定理得,所以.所以的面积为.18.(1)存在点,且为的中点.证明如下:如图,连接,,点,分别为,的中点,所以为的一条中位线,,平面,平面,所以平面.(2)设,则,,,由,得,解得.由题意以点为坐标原点,为轴,为轴,为轴建立如图所示的空间直角坐标系,可得,,,,故,,,,.设为平面的一个法向量,则得令,得平面的一个法向量,同理可得平面的一个法向量为,故二面角的余弦值为.故二面角的正弦值为.19.(1)由题意知甲乘坐超过站且不超过站的概率为,乙乘坐超过站且不超过站的概率为,设“甲、乙两人付费相同”为事件,则,所以甲、乙两人付费相同的概率是.(2)由题意可知的所有可能取值为:,,,,.,,,,.因此的分布列如下:所以的数学期望.20.(1)因为椭圆的离心率为,所以,即,,所以,,所以,所以,所以椭圆的方程为.直线的方程为,联立消去得,所以或,所以,从而得线段的中点.所以直线的斜率为.(2)由(1)知,直线的方程为,直线的斜率为,设直线的方程为.联立得所以点的坐标为.所以,.所以.联立消去得,由已知得,又,得.设,,则,,,.所以,,故.所以.所以存在常数,使得.21.(1)由题易知,当时,,当时,,所以的单调递减区间为,单调递增区间为. (2)的定义域为,要证,即证.由(1)可知在上递减,在上递增,所以. 设,,因为,当时,,当时,,所以在上单调递增,在上单调递减,所以,而,所以.22.(1)把展开得,两边同乘得①.将,,代入①即得曲线的直角坐标方程为②.(2)将代入②式,得,易知点的直角坐标为.设这个方程的两个实数根分别为,,则由参数的几何意义即得.23.(1)当时,原不等式可化为.若,则,即,解得;若,则原不等式等价于,不成立;若,则,解得.综上所述,原不等式的解集为:.(2)由不等式的性质可知,所以要使不等式恒成立,则,所以或,解得,所以实数的取值范围是.。
2018届海南省高三阶段性测试(二模)数学理试题(解析版)

2018届海南省高三阶段性测试(二模)数学理试题(解析版)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B.C. D.【答案】D【解析】由题意得:,∴故选:D2. 已知复数满足,为的共轭复数,则()A. B. C. D.【答案】A【解析】由题意得:∴,,故选:A3. 如图,当输出时,输入的可以是()A. B. C. D.【答案】B【解析】当输出时,此时4=,即,由,可得:,即,同理:。
故选:B4. 已知为锐角,,则的取值范围为()A. B. C. D.【答案】C【解析】由,可得:又,∴∴的取值范围为故选:C5. 把一枚质地均匀、半径为的圆形硬币抛掷在一个边长为的正方形托盘上,已知硬币平放在托盘上且没有掉下去,则该硬币完全落在托盘上(即没有任何部分在托盘以外)的概率为()A. B. C. D.【答案】B【解析】由题意可知,硬币的圆心必须落在小正方形中,如图:该硬币完全落在托盘上(即没有任何部分在托盘以外)的概率为,故选:B6. 的展开式中,的系数为()A. B. C. D.【答案】B【解析】的通项为:的展开式中,的系数为故选:B点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r 值,最后求出其参数.7. 已知正项数列满足,设,则数列的前项和为()A. B.C. D.【答案】C【解析】由,可得:,又,∴,∴∴∴数列的前项和故选:C8. 如图,网格纸上正方形小格的边长为,粗线画出的是某几何体的三视图,则该几何体的最长棱的长度为()A. B. C. D.【答案】D【解析】由三视图可知,该几何体为三棱锥,如图所示:,故选:D点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽. 9. 已知数列的前项和为,且满足,,则( )A.B.C. D.【答案】A 【解析】,、,,∴故选:A 10. 已知函数是定义在上的偶函数,,当时,,若,则的最大值是( )A.B.C.D.【答案】D 【解析】由函数是定义在上的偶函数,,可得:,即,故函数的周期为12. 令,解得,∴在上的根为5,7; 又,∴的最大值在上,即.故选:D 11. 已知抛物线的焦点为,过点作互相垂直的两直线,与抛物线分别相交于,以及,,若,则四边形的面积的最小值为( )A. B. C. D. 【答案】C【解析】由抛物线性质可知:,又,∴,即设直线AB 的斜率为k (k ≠0),则直线CD 的斜率为.直线AB 的方程为y=k (x ﹣1),联立,消去y 得k 2x 2﹣(2k 2+4)x +k 2=0,从而,=1, 由弦长公式得|AB |=,以换k 得|CD |=4+4k 2,故所求面积为≥32(当k 2=1时取等号),即面积的最小值为32. 故选:C12. 已知,方程与的根分别为,,则的取值范围为( )A. B.C.D.【答案】A 【解析】方程的根,即与图象交点的横坐标,方程的根,即与图象交点的横坐标,而的图象关于直线轴对称,如图所示:∴,∴,又,∴故选:A点睛:本题充分利用了方程的根与图象交点的关系,把问题转化为“形”的问题,而的图象关于直线轴对称,从而两根之间满足,目标函数即可转化为关于的函数的最值问题.二、填空题:本题共4小题,每小题5分,共20分.13. 已知,,,且向量,的夹角是,则__________.【答案】【解析】设,由,可得,,又向量,的夹角是,∴,解得:∴,即故答案为:14. 已知实数,满足,则的最大值是__________.【答案】7【解析】作出可行域,如图所示:当直线经过点B时,最大,即,故答案为:7点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.15. 已知双曲线的左、右焦点分别为,,过且垂直于轴的直线与该双曲线的左支交于,两点,,分别交轴于,两点,若的周长为,则的最大值为__________.【答案】【解析】由题意,△ABF2的周长为32,∵|AF2|+|BF2|+|AB|=32,∵|AF2|+|BF2|﹣|AB|=4a,|AB|=,∴=32﹣4a,∴,∴,令,则,...........................令m=,则当m=时,的最大值为故答案为:16. 如图,在三棱锥中,平面,,已知,,则当最大时,三棱锥的表面积为__________.【答案】【解析】设,则,,,,当且仅当,即时,等号成立.,故答案为:4三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知在中,,,分别为内角,,的对边,且.(1)求角的大小;(2)若,,求的面积.【答案】(1) (2)【解析】试题分析:(1)利用正弦定理及两角和正弦公式即可求得角的大小;(2) 由(1)知,又,易求得,由正弦定理求得,进而得到的面积.试题解析:(1)由及正弦定理得,,即,又,所以,又,所以.(2)由(1)知,又,易求得,在中,由正弦定理得,所以.所以的面积为.18. 如图,在直三棱柱中,,,点为的中点,点为上一动点.(1)是否存在一点,使得线段平面?若存在,指出点的位置,若不存在,请说明理由. (2)若点为的中点且,求二面角的正弦值.【答案】(1) 存在点,且为的中点,证明见解析(2)【解析】试题分析:(1)存在点,且为的中点.要证平面,连接,,点,分别为,的中点,转证即可;(2)设点,分别为,的中点,连接,,,易得平面,,从而得到三棱锥的体积.试题解析:(1)存在点,且为的中点.证明如下:如图,连接,,点,分别为,的中点,所以为的一条中位线,,平面,平面,所以平面.(2)如图,设点,分别为,的中点,连接,,,并设,则,,,由,得,解得,又易得平面,,.所以三棱锥的体积为.点睛:求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法. ①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.19. 某城市为鼓励人们绿色出行,乘坐地铁,地铁公司决定按照乘客经过地铁站的数量实施分段优惠政策,不超过站的地铁票价如下表:乘坐站数现有甲、乙两位乘客同时从起点乘坐同一辆地铁,已知他们乘坐地铁都不超过站.甲、乙乘坐不超过站的概率分别为,;甲、乙乘坐超过站的概率分别为,.(1)求甲、乙两人付费相同的概率;(2)设甲、乙两人所付费用之和为随机变量,求的分布列和数学期望.【答案】(1) (2)【解析】试题分析:(1) 由题意知甲乘坐超过站且不超过站的概率为,乙乘坐超过站且不超过站的概率为,利用乘法概率公式及互斥原理得到甲、乙两人付费相同的概率;(2) 由题意可知的所有可能取值为:,,,,.求得相应的概率值,即可得到的分布列和数学期望.试题解析:(1)由题意知甲乘坐超过站且不超过站的概率为,乙乘坐超过站且不超过站的概率为,设“甲、乙两人付费相同”为事件,则,所以甲、乙两人付费相同的概率是.(2)由题意可知的所有可能取值为:,,,,.,,,,.因此的分布列如下:所以的数学期望.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.20. 在平面直角坐标系中,已知椭圆的离心率为,,分别为椭圆的上顶点和右焦点,的面积为,直线与椭圆交于另一个点,线段的中点为.(1)求直线的斜率;(2)设平行于的直线与椭圆交于不同的两点,,且与直线交于点,求证:存在常数,使得.【答案】(1) (2) 存在常数【解析】试题分析:(1)由题意得到椭圆的方程为. 直线的方程为,联立消去得,从而得线段的中点,进而得到直线的斜率;(2) 设直线的方程为. 联立方程得到同理得到,∴存在常数,使得.试题解析:(1)因为椭圆的离心率为,所以,即,,所以,,所以,所以,所以椭圆的方程为.直线的方程为,联立消去得,所以或,所以,从而得线段的中点.所以直线的斜率为.(2)由(1)知,直线的方程为,直线的斜率为,设直线的方程为.联立得所以点的坐标为.所以,.所以.联立消去得,由已知得,又,得.设,,则,,,.所以,,故.所以.所以存在常数,使得.21. 已知函数,.(1)求函数的单调区间;(2)证明:.【答案】(1) 的单调递减区间为,单调递增区间为 (2)见解析【解析】试题分析:(1) 由题易知解不等式得到函数的单调区间;(2) 要证,即证.易知:,,从而得证.试题解析:(1)由题易知,当时,,当时,,所以的单调递减区间为,单调递增区间为.(2)的定义域为,要证,即证.由(1)可知在上递减,在上递增,所以.设,,因为,当时,,当时,,所以在上单调递增,在上单调递减,所以,而,所以.(二)选考题:共10分.请考生在22,23题中任选一题作答.如果多做,则按所做的第一题计分.22. [选修4-4:坐标系与参数方程]在平面直角坐标系中,已知直线:(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的极坐标为,直线与曲线的交点为,,求的值.【答案】(1) (2)【解析】试题分析:(Ⅰ)直接由直线的参数方程消去参数t得到直线的普通方程;把等式两边同时乘以ρ,代入x=ρcosθ,ρ2=x2+y2得答案;(Ⅱ)把直线的参数方程代入圆的普通方程,利用直线参数方程中参数t的几何意义求得的值.试题解析:(1)把展开得,两边同乘得①.将,,代入①即得曲线的直角坐标方程为②.(2)将代入②式,得,易知点的直角坐标为.设这个方程的两个实数根分别为,,则由参数的几何意义即得.23. [选修4-5:不等式选讲]已知函数.(1)当时,求不等式的解集;(2)若不等式对恒成立,求实数的取值范围.【答案】(1) (2)【解析】试题分析:(1)通过讨论x的范围,得到各个区间上的x的范围,取并集即可;(2)根据绝对值的几何意义求出m的范围即可.试题解析:(1)当时,原不等式可化为.若,则,即,解得;若,则原不等式等价于,不成立;若,则,解得.综上所述,原不等式的解集为:.(2)由不等式的性质可知,所以要使不等式恒成立,则,所以或,解得,所以实数的取值范围是.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。