中考数学专题特训第二十八讲:投影与视图(含详细参考答案) 必考 经典试题
初三数学投影与视图试题答案及解析

初三数学投影与视图试题答案及解析1.下列几何体的主视图、左视图、俯视图的图形完全相同的是()A.三棱锥B.长方体C.三棱柱D.球体【答案】D.【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.因此,A、三棱锥的主视图、左视图都是三角形,俯视图为三角形多一点,故本选项错误;B、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形,故本选项错误;C、三棱柱的主视图和左视图是一个矩形,俯视图是一个三角形,故本选项错误;D、球体的主视图、左视图、俯视图都是圆形;故本选项正确.故选D.【考点】简单几何体的三视图.2.如图,几何体的主视图是()A.B.C.D.【答案】B.【解析】从正面看易得第一层有4个正方形,第二层从左起第二个有一个正方形.故选B.【考点】简单组合体的三视图.3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图()A.B.C.D.【答案】A【解析】从主视图可以看出左边的一列有两个,右边的两列只有一个;从左视图可以看出左边的一列后面一行有两个,前面的一行只有一个;从俯视图可以看出右边的一列有两排,左边的两列只有一排,故选A.【考点】三视图4.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是 .【答案】72.【解析】根据主视图与左视图得出长方体的边长,再利用图形的体积得出它的高,进而得出表面积.试题解析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是36,∴设高为h,则6×2×h=36,解得:h=3,∴它的表面积是:2×3×2+2×6×2+3×6×2=72.【考点】由三视图判断几何体.5.下列几何体中,其主视图不是中心对称图形的是()【答案】B【解析】先判断出各图形的主视图,然后结合中心对称的定义进行判断即可:A、主视图是矩形,矩形是中心对称图形,故本选项错误;B、主视图是三角形,三角形不是中心对称图形,故本选项正确;C、主视图是圆,圆是中心对称图形,故本选项错误;D、主视图是正方形,正方形是中心对称图形,故本选项错误.故选B.【考点】1.简单几何体的三视图;2.中心对称图形.6.下列四个几何体中,俯视图为四边形的是().【答案】D.【解析】A、五棱柱的俯视图是五边形,故此选项错误;B、三棱锥的俯视图是,故此选项错误;C、球的俯视图是圆,故此选项错误;D、正方体俯视图是正方形,故此选项正确;故选:D.【考点】简单几何体的三视图.7.如图所示,几何体的主视图是 ()【答案】B【解析】主视图反映的是物体的长和高,是从物体的正面看到的图形,故应选B.8.多媒体教室呈阶梯形状或下坡的形状的原因是()A.减小盲区B.增大盲区C.盲区不变D.为了美观而设计【答案】A.【解析】电影院呈阶梯或下坡形状是为了然后面的观众有更大的视角范围,减小盲区.故选A.考点: 视点、视角和盲区.9.人无论在太阳光照射下,还是在路灯光照射下都会形成影子,那么影子的长短随时间的变化而变化的是___ ___ ,影子的长短随人的位置的变化而变化的是___ .【答案】太阳光下形成的影子;灯光下形成的影子.【解析】根据平行投影和中兴投影的性质分别分析得出答案即可.试题解析:根据太阳光照射角度随时间的变化而变化,得出影子的长短随时间的变化而变化,人从路灯下走过的过程中,人与灯间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.考点: 1.平行投影;2.中心投影.10.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如右图所示,则组成这个几何体的小正方体最少有个.【答案】5.【解析】综合左视图和主视图,这个几何体的底层最少有2+1=3个小正方体,第二层最少有2个小正方体,因此组成这个几何体的小正方体最少有3+2=5个.故答案为:5.考点: 三视图.11.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED【答案】C.【解析】试题解析::根据盲区的定义,视线覆盖不到的地方即为该视点的盲区,由图知,E是视点,找到在E点处看不到的区域即可.由图可知,E视点的盲区应该在△ABD的区域内.故选:C.考点: 视点、视角和盲区.12.下列几何体中,主视图是矩形,俯视图是圆的几何体是A.B.C.D.【答案】A【解析】所给几何体中,主视图是矩形,有圆柱、长方体和三棱柱,其中俯视图是圆的几何体是圆柱。
初三数学投影与视图试题答案及解析

初三数学投影与视图试题答案及解析1.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()A.3B.4C.5D.6【答案】B【解析】根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选B.【考点】三视图2.如图,该几何体的左视图是()A.B.C.D.【答案】D【解析】左视图有2列,从左往右依次有2,1个正方形,其左视图为:.【考点】简单组合体的三视图.3.如下左图是由五个小正方体搭成的几何体,它的左视图是()【答案】A.【解析】从左面可看到从左往右2列小正方形的个数为:2,1,故选A.【考点】简单组合体的三视图.4.如图是由四个小正方体叠成的一个立体图形,那么它的左视图是()【答案】D.【解析】从左面可看到第一列有2个正方形,第一列有一个正方形.故选D.【考点】简单组合体的三视图.5.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为()A.3,2B.2,2C.3,2D.2,3【答案】C【解析】设底面边长为x,则x2+x2=(2)2,解得x=2,即底面边长为2,根据图形,这个长方体的高是3,根据求出的底面边长是2.【考点】1.由三视图判断几何体;2.简单几何体的三视图.6.如图所示的几何体中,俯视图形状相同的是()A.①④B.②④C.①②④D.②③④【答案】B.【解析】找到从上面看所得到的图形比较即可:①的俯视图是圆加中间一点;②的俯视图是一个圆;③的俯视图是一个圆环;④的俯视图是一个圆. 因此,俯视图形状相同的是②④. 故选B.【考点】简单几何体的三视图.7.如图是由相同的小正方体组成的几何体,它的俯视图为()【答案】B【解析】根据几何体的三视图可知,主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,由图可得它的为俯视图第二个,故选B【考点】几何体的三视图.8.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()【答案】A【解析】从几何体上面看,是左边2个,右边1个正方形.故选A.【考点】简单组合体的三视图.9.一个几何体的三视图如图所示,则这个几何体是()【答案】D.【解析】如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选D.【考点】由三视图判断几何体.10.下列四个水平放置的几何体中,三视图如右图所示的是()【答案】D【解析】三视图是指分别从物体的前面、左面、上面看到的平面图形.故选D.11.一个几何体的三视图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【答案】D【解析】根据主视图和左视图可以确定该物体是棱柱,根据俯视图可以确定该物体的底面是三角形,满足上述条件的只有三棱柱,故选D.12.如图所示零件的左视图是()A. B. C. D.【答案】D.【解析】:零件的左视图是两个竖叠的矩形.中间有2条横着的虚线.故选D.【考点】三视图.13.如图是由五个相同的小正方体组成的几何体,则下列说法正确的是( )A.左视图面积最大B.左视图面积和主视图面积相等C.俯视图面积最小D.俯视图面积和主视图面积相等【答案】D.【解析】观察图形可知,几何体的主视图由4个正方形组成,俯视图由4个正方形组成,左视图由3个正方形组成,所以左视图的面积最小,俯视图面积和正视图面积相等.故选D.考点: 简单组合体的三视图.14.某几何体的三视图如下图所示,则该几何体可能为()【答案】D.【解析】试题分析:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体,由俯视图可以得到小圆锥位于圆柱的正中间.故选D.考点:三视图判断几何体.15.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4个B.5个C.6个D.7个【答案】A.【解析】根据给出的几何体,通过动手操作,观察可得答案为4,也可以根据画三视图的方法,发挥空间想象能力,直接想象出每个位置正方体的数目,再加上来.故选A.【考点】三视图.16.如图所示是小红在某天四个时刻看到一个棒及其影子的情况,那么她看到的先后顺序是.【答案】④③①②.【解析】根据平行投影中影子的变化规律:就北半球而言,从早晨到傍晚物体的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.可知先后顺序是④③①②.故答案是④③①②.【考点】平行投影.17.如图下面几何体的左视图是A.B.C.D.【答案】B【解析】左视图即从物体左面看到的图形,从左面看易得三个竖直排列的长方形,且上下两个长方形的长大于高,比较小,中间的长方形的高大于长,比较大。
中考数学总复习《投影与视图》专项提升练习题(附答案)

中考数学总复习《投影与视图》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________知识点一:与投影有关的基本概念1.投影:用光线照射物体,在某个平面上得到的影子叫做物体的投影。
2.平行投影:由平行光线形成的投影是平行投影。
3.中心投影:由同一点发出的光线形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
知识点二:与视图有关的基本概念1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。
视图可以看作物体在某一方向光线下的正投影。
2.主视图、俯视图、左视图(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。
主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。
知识点三:视图知识的应用1.通过三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。
2.由三视图判断几何体形状主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.本章内容要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念。
通过下面知识导图加深对本章内容的了解。
《投影与视图》单元检测试卷一、选择题(每小题3分,共36分)1.下列几何体中,主视图和左视图都为矩形的是( )2.如图所示,小明从左面观察一个圆柱体和一个正方体,看到的是( )3.如果一个圆锥的主视图是正三角形,则其侧面展开图的圆心角为( )A.120°B.约156°C.180°D.约208°4.如图,是由棱长为1的正方体搭成的积木的三视图,则图中棱长为1的正方体的个数是( )A.4个B.5个C.6个D.7个5.有一个正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的结果如图所示.如果记6的对面的数字为a,2的对面的数字为b,那么a+b的值为( )A.3B.7C.8D.116.将一个圆形纸板放在太阳光下,它在地面上所形成的影子的形状不可能是( )A.圆B.三角形C.线段D.椭圆7.身高1.8米的人在阳光下的影长是1.2米,同一时刻一根旗杆的影长是6米,则它的高度是( )A.10米B.9米C.8米D.10.8米8.如图,A、D是电线杆AB上的两个瓷壶,AC和DE分别表示太阳光线,若某一时刻线段AD在地面上的影长CE=1m,BD在地面上的影长BE=3m,瓷壶D到地面的距离DB=20m,则电线杆AB的高为( )A.15mB.803m C.21m D.m9.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明和小强的影子一样长D.无法判断谁的影子长10.这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为( )A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米11.当太阳光线与地面成40°角时,在地面上的一棵树的影长为10m,树高h(单位:m)的范围是()A.3<h<5B.5<h<10C.10<h<15D.15<h<2012.如图是某几何体的三视图及相关数据,则判断正确的是( )A.a>cB.b>cC.4a2+b2=c2D.a2+b2=c2二、填空题(每空3分,共30分)13.如图,四个几何体中,它们各自的三个视图(主视图、左视图和俯视图)有两个相同,而另外一个不同的几何体是 .(填写序号)14.如图是一个三棱柱,它的正投影是下图中的________(填序号).15.如图所示,是一个圆锥在某平面上的正投影,则该圆锥的侧面积是.16.如图,为了测量学校旗杆的高度,小东用长为3.2 m的竹竿做测量工具.移动竹竿使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8 m,与旗杆相距22 m,则旗杆的高为________m.17.三棱柱的三视图如图所示,在△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为________cm.18.一个由小立方块搭成的几何体,其左视图、主视图如图所示, 这个几何体最少由个小立方块搭成的 .三、解答题(7个小题,共66分)19.用7个大小相同的小正方体搭成的几何体如左图所示,请你在右边的方格中画出该几何体的三种视图(用较粗的实线进行描绘):20.如图所示,有甲、乙两根木杆,甲木杆的影子刚好落在乙杆与地面接触点处.(1)你能画出此时太阳光线及乙杆的影子吗?(不能画,说明理由;能画,用线段表示影子)(2)在所画的图形中有相似三角形吗?为什么?(3)从图中分析高杆与低杆的影子与它们的高度之间有什么关系?与同学进行交流.21.如图是某几何体的展开图.(1) 请根据展开图画出该几何体的主视图;(2) 若中间的矩形长为20πcm,宽为20cm,上面扇形的中心角为240°,试求该几何体的表面积.22.如图是一粮仓,其顶部是一圆锥,底部是一圆柱.(1)画出粮仓的三视图;(2)若圆柱的底面圆的半径为1 m,高为2 m,求圆柱的侧面积;(3)假设粮食最多只能装到与圆柱同样高,则最多可以存放多少立方米的粮食?23.如图所示是一个几何体的三视图,一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长度是多少?24.如图,九年级(1)班的小明与小艳两位同学去操场测量旗杆DE 的高度,已知直立在地面上的竹竿AB 的长为3 m.某一时刻,测得竹竿AB 在阳光下的投影BC 的长为2 m.(1)请你在图中画出此时旗杆DE 在阳光下的投影,并写出画图步骤;(2)在测量竹竿AB 的影长时,同时测得旗杆DE 在阳光下的影长为6 m ,请你计算旗杆DE 的高度.25.如图,某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高6 m 的小区超市,超市以上是居民住房.在该楼的前面15 m 处要盖一栋高20 m 的新楼,当冬季正午的阳光与水平线的夹角为32°时 (1)问:超市以上的居民住房的采光是否有影响?(2)若要使超市采光不受影响,两楼应至少相距多少米?(结果保留整数,参考数据:sin 32°≈0.53,cos 32°≈0.85,tan 32°≈58)答案1.B2.D3.C4.C.5.B6.B7.B.8.B.9.D10.B.11.B12.D.13.答案为:③④.14.答案为:②15.答案为:154π.16.答案为:12.17.答案为:618.答案为:519.解:如图所示:20.解:(1)乙杆的影子如图中BC.(2)图中存在相似三角形,即△ABC∽△DCE.因为两条太阳光线AB∥DC,两杆AC∥DE.(3)在同一时刻杆越高,它的影子就越长,反之则短,即影长与杆高成正比.21.解:(1)主视图如图(2)表面积为S 扇形+S 矩形+S 圆. ∵S 扇形=12lR ,而20π=n πR180∴R=20×180240=15(cm). S 扇形=12lR=12×20π×15=150π(cm 2).S 矩形=长×宽=20π×20=400π(cm 2),S 圆=π(20π2π)2=100π(cm 2).S 表=150π+400π+100π=650π(cm 2). 22.解:(1)粮仓的三视图如图所示: (2)S 圆柱侧=2π·1×2=4π m 2(3)V=π×12×2=2π(m 3),即最多可存放2π m 3的粮食 23.解:该几何体为如图所示的长方体.由图知,蚂蚁有三种方式从点A 爬向点B且通过展开该几何体可得到蚂蚁爬行的三种路径长度分别为 l 1=32+4+62=109(cm); l 2=42+3+62=97(cm); l 3=62+3+42=85(cm).通过比较,得最短路径长度是85 cm.24.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.作法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求.(第22题) (2)∵AC ∥DF ∴∠ACB =∠DFE.又∠ABC =∠DEF =90°∴△ABC ∽△DEF.∴AB DE =BCEF.∵AB=3 m,BC=2 m,EF=6 m∴3DE =2 6.∴DE=9 m.∴旗杆DE的高度为9 m.25.解:(1)如图,设CE=x m,则AF=(20-x)m.∵tan 32°=AF:EF,即20-x=15·tan 32°∴x≈11.∵11>6∴超市以上的居民住房的采光有影响.(2)当tan 32°=AB:BC时,BC≈20×1.6=32(m) ∴若要使超市采光不受影响,两楼应至少相距32 m.。
中考数学复习专题精品导学案:第28讲投影与视图含答案详解

2013年中考数学专题复习第二十八讲投影与视图【基础知识回顾】一、投影:1、定义:一般地,用光线照射物体,在某个平面上得到得影子叫做物体的其中照射光线叫做投影所在的平面叫做2、平行投影:太阳光可以近似地看作是光线,像这样的光线所形成的投影称为平行投影3、中心投影:由圆一点(点光源)发出的光线形成的投影叫做如物体在、、等照射下所形成的投影就是中心投影【名师提醒:1、中心投影的光线平行投影的光线2、在同一时刻,不同物体在太阳下的影长与物离成3、物体投影问题有时也会出现计算解答题,解决这类问题首先要根据图形准确找出比例关系,然后求解】三、视图:1、定义:从不同的方向看一个物体,然后描绘出所看到的图形即视图其中,从看到的图形称为立视图,从看到的图形称为左视图,从看到的图形称为俯视图2、三种视图的位置及作用⑴画三视图时,首先确定的位置,然后在主视图的下面画出在主视图的右边画出⑵主视图反映物体的和,左视图反映物体的和俯视图反映物体的和【名师提醒:1、在画几何体的视图时,看得见部分的轮廓线通常画成线,看不见部分的轮廓线通常画成线2、在画几何体的三视图时要注意主俯对正,主左平齐,左俯相等】三、立体图形的展开与折叠:1、许多立体图形是由平面图形围成的,将它们适当展开即为平面展开图,同一个立体图形按不同的方式展开,会得到不同的平面展开图2、常见几何体的展开图:⑴正方体的展开图是⑵几边形的柱展开图是两个几边形和一个⑶圆柱的展开图是一个和两个⑷圆锥的展开图是一个与一个【名师提醒:有时会出现根据物体三视图中标注的数据求原几何体的表面积,体积等题目,这时要注意先根据三种视图还原几何体的形状,然后想象有关尺寸在几何体展开图中标注的是哪些部分,最后再根据公式进行计算】【重点考点例析】考点一:投影例1 (2012•湘潭)如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱考点:平行投影.分析:根据圆柱的左视图的定义直接进行解答即可.解答:解:如图所示圆柱从左面看是矩形,故选:B.点评:本题主要考查了简单几何体的三视图,关键是根据三视图的概念得出是解题关键.对应训练2.(2012•梅州)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是(写出符合题意的两个图形即可)考点:平行投影.专题:开放型.分析:平行投影的特点:在同一时刻,平行物体的投影仍旧平行.解答:解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故答案为:正方形、菱形(答案不唯一).点评:本题考查了平行投影,太阳光线是平行的,那么对边平行的图形得到的投影依旧平行.考点二:几何题的三视图例 2 (2012•咸宁)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B.C.D.考点:简单几何体的三视图.分析:看哪个几何体的三视图中有长方形,圆,及三角形即可.解答:解:A、三视图分别为长方形,三角形,圆,符合题意;B、三视图分别为三角形,三角形,圆及圆心,不符合题意;C、三视图分别为正方形,正方形,正方形,不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,不符合题意;故选A.点评:考查三视图的相关知识;判断出所给几何体的三视图是解决本题的关键.例3 (2012•岳阳)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图()A.主视图改变,俯视图改变B.主视图不变,俯视图不变C.主视图不变,俯视图改变D.主视图改变,俯视图不变考点:简单组合体的三视图.分析:主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.解答:解:根据图形可得,图①及图②的主视图一样,俯视图不一样,即主视图不变,俯视图改变.故选C.点评:此题考查了简单组合体的三视图,掌握主视图及俯视图的观察方法是解答本题的关键,难度一般.对应训练2.(2012•随州)下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个考点:简单几何体的三视图.分析:分别分析四种几何体的三种视图,再找出有两个相同,而另一个不同的几何体.解答:解:①正方体的主视图与左视图都是正方形;②圆柱的主视图和左视图都是长方形;③圆锥主视图与左视图都是三角形;④球的主视图与左视图都是圆;故答案为:D.点评:本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.3.(2012•宜昌)球和圆柱在水平面上紧靠在一起,组成如图所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是()A.两个相交的圆B.两个内切的圆C.两个外切的圆D.两个外离的圆考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到两个外切的圆,故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解决此类问题时既要有丰富的数学知识,又要有一定的生活经验.考点三:判几何体的个数例4(2012•宿迁)如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是()A.2 B.3 C.4 D.5考点:由三视图判断几何体.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再结合题意和三视图的特点找出每行和每列的小正方体的个数再相加即可.解答:解:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.对应训练4.(2012•孝感)几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是()A.4 B.5 C.6 D.7考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数,即可得出这个几何体的体积.解答:解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故选:B.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.考点四:几何体的相关计算例 5 (2012•荆州)如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 cm2.(结果可保留根号)考点:由三视图判断几何体;解直角三角形.分析:根据该几何体的三视图知道其是一个六棱柱,其表面积是六个面的面积加上两个底的面积.解答:解:根据该几何体的三视图知道其是一个六棱柱,∵其高为12cm,底面半径为5,∴其侧面积为6×5×12=360cm2密封纸盒的侧面积为:12×5×6×53=753cm2∴其全面积为:(753+360)cm2.故答案为:(753+360).点评:本题考查了由三视图判断几何体及解直角三角形的知识,解题的关键是正确的判定几何体.对应训练1.(2012•南平)如图所示,水平放置的长方体底面是长为4和宽为2的矩形,它的主视图的面积为12,则长方体的体积等于()A.16 B.24 C.32 D.48考点:简单几何体的三视图.分析:由主视图的面积=长×高,长方体的体积=主视图的面积×宽,得出结论.解答:解:依题意,得长方体的体积=12×2=24.故选B.点评:本题考查了简单几何体的三视图.关键是明确主视图是由长和高组成的.【聚焦山东中考】1.(2012•济南)下面四个立体图形中,主视图是三角形的是()A.B.C.D.考点:简单几何体的三视图.分析:找到立体图形从正面看所得到的图形为三角形即可.解答:解:A、主视图为长方形,不符合题意;B、主视图为中间有一条竖线的长方形,不符合题意;C、主视图为三角形,符合题意;D、主视图为长方形,不符合题意;故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.(2012•烟台)如图是几个小正方体组成的一个几何体,这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:俯视图是从上面看到的图形,共分三列,从左到右小正方形的个数是:1,1,1.解答:解:这个几何体的俯视图从左到右小正方形的个数是:1,1,1,故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图所看的方向:从上面看所得到的图形.3.(2012•潍坊)如图空心圆柱体的主视图的画法正确的是()A.B.C.D.考点:简单组合体的三视图.分析:找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选C.点评:本题考查了三视图的知识,主视图是从物体的前面看得到的视图,考查了学生细心观察能力,属于基础题.4.(2012•威海)如图所示的机器零件的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据左视图的定义,找到从左面看所得到的图形即可.解答:解:机器零件的左视图是一个矩形.中间有1条横着的虚线.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的棱用实线表示,看不到的用虚线表示.5.(2012•泰安)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个大长方形,第二层中间有一个小正方形.故选A.点评:本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,难度适中.6.(2012•济宁)如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个考点:由三视图判断几何体.分析:左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有3个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.解答:解:左视图与主视图相同,可判断出底面最少有3个小正方体,最多有4个小正方体.而第二行则只有1个小正方体.则这个几何体的小立方块可能有4或5个.故选B.点评:本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.7.(2012•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.18cm2 B.20cm2 C.(18+23)cm2 D.(18+43)cm2考点:由三视图判断几何体.专题:数形结合.分析:根据三视图判断出该几何体是底面边长为2cm,侧棱长为3cm的正三棱柱,然后根据矩形的面积公式列式计算即可得解.解答:解:根据三视图判断,该几何体是正三棱柱,底边边长为2cm,侧棱长是3cm,所以侧面积是:(3×2)×3=6×3=18cm2.故选A.点评:本题考查了由三视图判断几何体,熟练掌握三棱柱的三视图,然后判断出该几何体是三棱柱是解本题的关键.【备考真题过关】一、选择题1.(2012•绵阳)把一个正五菱柱如图摆放,当投射线由正前方射到后方时,它的正投影是()A.B.C.D.考点:平行投影.分析:根据正投影的性质:当投射线由正前方射到后方时,其正投影应是矩形.解答:解:根据投影的性质可得,该物体为五棱柱,则正投影应为矩形.故选B.点评:本题考查正投影的定义及正投影形状的确定,解题时要有一定的空间想象能力.2.(2012•益阳)下列命题是假命题的是()A.中心投影下,物高与影长成正比B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径考点:中心投影;三角形中位线定理;切线的性质;命题与定理;平移的性质.分析:分别利用中心投影的性质以及切线的性质、平移的性质、三角形中位线定理等进行判断即可得出答案.解答:解:A.中心投影下,物高与影长取决于物体距光源的距离,故此选项错误,符合题意;B.平移不改变图形的形状和大小,根据平移的性质,故此选项正确,不符合题意;C.三角形的中位线平行于第三边,根据三角形中位线的性质,故此选项正确,不符合题意;D.圆的切线垂直于过切点的半径,利用切线的判定定理,故此选项正确,不符合题意.故选:A.点评:此题主要考查了中心投影的性质以及切线的性质、平移的性质、三角形中位线定理等知识,熟练掌握并区分这些性质是解题关键.3.(2012•玉林)下列基本几何体中,三视图都相同图形的是()A.B.C.D.圆柱三棱柱球长方体考点:简单几何体的三视图.分析:根据三视图的基本知识,分析各个几何体的三视图然后可解答.解答:解:A、圆柱的主视图与左视图均是矩形,俯视图是圆,故本选项错误;B、三棱柱的主视图与左视图均是矩形,俯视图是三角形,故本选项错误;C、球体的三视图均是圆,故本答案正确;D、长方体的主视图与俯视图是矩形,左视图是正方形,故本答案错误.故选C.点评:本题难度一般,主要考查的是三视图的基本知识.解题时也应具有一定的生活经验.4.(2012•永州)如图所示,下列水平放置的几何体中,俯视图是矩形的是()A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体的上面看得到的视图,仔细观察各个简单几何体,便可得出选项.解答:解:A、圆柱的俯视图为矩形,故本选项正确;B、圆锥的俯视图为圆,故本选项错误;C、三棱柱的俯视图为三角形,故本选项错误;D、三棱锥的俯视图为三角形,故本选项错误.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.本题比较简单.5.(2012•义乌市)下列四个立体图形中,主视图为圆的是()A.B.C.D.考点:简单几何体的三视图.分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.解答:解:A、主视图是正方形,故此选项错误;B、主视图是圆,故此选项正确;C、主视图是三角形,故此选项错误;D、主视图是长方形,故此选项错误;故选:B.点评:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.6.(2012•六盘水)如图是教师每天在黑板上书写用的粉笔,它的主视图是()A.B.C.D.考点:简单几何体的三视图.分析:首先判断该几何体是圆台,然后确定从正面看到的图形即可.解答:解:该几何体是圆台,主视图是等腰梯形.故选C.点评:本题考查了简单几何体的三视图,属于基础题,比较简单.7. (2012•黄冈)如图,水平放置的圆柱体的三视图是()A.B.C.D.考点:简单几何体的三视图.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,即可得出答案.解答:解:依据圆柱体放置的方位来说,从正面和上面可看到的长方形是一样的;从左面可看到一个圆.故选A.点评:本题考查了几何体的三种视图,掌握定义是关键,本题是基础题,常规题型.8.(2012•白银)将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.考点:简单几何体的三视图;点、线、面、体.分析:首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.解答:解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选:D.点评:此题主要考查了面动成体,以及简单几何体的三视图,关键是正确判断出Rt△ACB 绕直角边AC旋转一周所得到的几何体的形状9.(2012•资阳)如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A.B.C.D.考点:简单组合体的三视图;截一个几何体.分析:根据俯视图是从上面看到的图形判定则可.解答:解:从上面看,是正方形右边有一条斜线,故选:A.点评:本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.10.(2012•云南)如图是由6个形同的小正方体搭成的一个几何体,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上面看到的识图分析解答.解答:解:从上面看,是1行3列并排在一起的三个正方形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.11.(2012•襄阳)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()A.B.C.D.考点:简单组合体的三视图.分析:主视图是从正面看,注意所有的看到的棱都应表现在主视图中.解答:解:从上面看,圆锥看见的是:三角形,两个正方体看见的是两个正方形.故答案为B.点评:此题主要考查了三视图的知识,关键是掌握三视图的几种看法.12.(2012•西宁)如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画好它的三视图,那么他所画的三视图的俯视图应该是()A.两个外切的圆B.两个内切的圆C.两个相交的圆D.两个外离的圆考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到两个外切的圆.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.13.(2012•武汉)如图,是由4个相同小正方体组合而成的几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.解答:解:从左边看得到的是两个叠在一起的正方形.故选D.点评:此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.14.(2012•温州)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.解答:解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方形,得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.点评:此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.15.(2012•肇庆)如图是某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选A.点评:主视图和左视图的大致轮廓为长方形的几何体为锥体.16.(2012•扬州)如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是()A.4个B.5个C.6个D.7个考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数.解答:解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个.故选B.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.17.(2012•厦门)如图是一个立体图形的三视图,则这个立体图形是()A.圆锥B.球C.圆柱D.三棱锥考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、圆锥的三视图分别为三角形,三角形,圆,故选项正确;B、球的三视图都为圆,错误;C、圆柱的三视图分别为长方形,长方形,圆,故选项错误;D、三棱锥的三视图分别为三角形,三角形,三角形及中心与顶点的连线,故选项错误.故选A.点评:本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析.二、填空题18.(2012•新疆)请你写出一个主视图与左视图相同的立体图形是.考点:简单几何体的三视图.专题:开放型.分析:主视图、左视图是分别从物体正面、左面看,所得到的图形.解答:解:圆柱的主视图与左视图都为长方形.故答案为:圆柱(答案不唯一).点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.19.(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为.考点:由三视图判断几何体.分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故答案为:4.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.20.(2012•鸡西)由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是.考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多7块.故答案为:4或5或6或7.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.21.(2012•大庆)用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是个.考点:由三视图判断几何体;简单组合体的三视图.。
备战中考数学分点透练真题视图与投影(解析版)

第二十四讲视图与投影命题点1 三视图的判断类型一常见几何体视图的判断1.(2021•苏州)如图,圆锥的主视图是()A.B.C.D.【答案】A【解答】解:圆锥的主视图是一个等腰三角形,故选:A.2.(2021•温州)直六棱柱如图所示,它的俯视图是()A.B.C.D.【答案】C【解答】解:从上面看这个几何体,看到的图形是一个正六边形,因此选项C中的图形符合题意,故选:C.3.(2021•湘潭)下列几何体中,三视图不含圆的是()A.B.C.D.【答案】C【解答】解:A、圆柱的俯视图是圆,故不符合题意;B、球的三视图都是圆,故不符合题意;C、正方体的三视图都是正方形,故符合题意;D、圆锥的俯视图是圆,故不符合答题,故选:C.类型二组合体不规则几何体视图的判断4.(2021•江西)如图,几何体的主视图是()A.B.C.D.【答案】C【解答】解:从正面看该组合体,长方体的主视图为长方形,圆柱体的主视图是长方形,因此选项C中的图形符合题意,故选:C.5.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.【答案】C【解答】解:从左边看,是一列两个矩形.故选:C.6.(2021•聊城)如图所示的几何体,其上半部有一个圆孔,则该几何体的俯视图是()A.B.C.D.【答案】A【解答】解:从上面看该几何体,能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示,因此所看到的图形与选项A中的图形相同,故选:A.7.(2021•本溪)如图,该几何体的左视图是()A.B.C.D.【答案】D【解答】解:从左面看该几何体所得到的图形是一个长方形,被挡住的棱用虚线表示,图形如下:故选:D.8.(2021•福建)如图所示的六角螺栓,其俯视图是()A.B.C.D.【答案】A【解答】解:从上边看,是一个正六边形,六边形内部是一个圆,故选:A.9.(2021•吉林)如图,粮仓可以近似地看作由圆锥和圆柱组成,其主视图是()A.B.C.D.【答案】A【解答】解:粮仓主视图上部视图为等腰三角形,下部视图为矩形.故选:A.类型四小正方体组合体视图的判断10.(2020•北碚区自主招生)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【答案】A【解答】解:从正面看有两层,底层两个正方形,上层左边一个正方形,左齐.故选:A.11.(2021•河南)如图是由8个相同的小正方体组成的几何体,其主视图是()A.B.C.D.【答案】A【解答】解:该几何体的主视图有三层,从上而下第一层主视图为一个正方形,第二层主视图为两个正方形,第三层主视图为三个正方形,且左边是对齐的.故选:A.12.(2021•随州)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【解答】解:如图所示:故该组合体的三视图中完全相同的是主视图和左视图,故选:A.13.(2021•泰安)如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【答案】B【解答】解:从左边看从左到右第一列是两个小正方形,第二列有4个小正方形,第三列有3个小正方形,故选:B.14.(2021•齐齐哈尔)由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体的个数最多为()A.7个B.8个C.9个D.10个【答案】A【解答】解:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故选:A.命题点2 三视图还原几何体及其相关计算15.(2021•安徽)几何体的三视图如图所示,这个几何体是()A.B.C.D.【答案】C【解答】解:根据该组合体的三视图发现该几何体为.故选:C.16.(2021•东营)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为()A.214°B.215°C.216°D.217°【答案】C【解答】解:由三视图可知,该几何体为圆锥;由三视图数据知圆锥的底面圆的直径为6、半径为3,高为4,则母线长为=5,所以则该几何体的侧面展开图圆心角的度数为π×6÷(π×5)×180°=216°.故选:C.17.(2021•眉山)我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是()A.7.2πB.11.52πC.12πD.13.44π【答案】C【解答】解:观察图形可知:圆锥母线长为:=2(米),所以该整流罩的侧面积为:π×2.4×4+π×(2.4÷2)×2=12π(平方米).答:该整流罩的侧面积是12π平方米.故选:C.18.(2021•云南)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为.【答案】3π【解答】解:由三视图知几何体为圆柱,且底面圆的半径是1,高是3,∴这个几何体的体积为:π×12×3=3π.故答案为:3π.命题点3 立体图形的展开与折叠类型一常见几何体的展开图19.(2021•扬州)把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱【答案】A【解答】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选:A.20.(2021•金华)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A.B.C.D.【答案】D【解答】解:选项A、B、C均可能是该直棱柱展开图,不符合题意,而选项D中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:D.类型二正方体的展开图21.(2021•自贡)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A.百B.党C.年D.喜【答案】B【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“迎”与“党”相对,面“建”与面“百”相对,“喜”与面“年”相对.故选:B.22.(2021•河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表【答案】A【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.11。
初三数学投影与视图试题答案及解析

初三数学投影与视图试题答案及解析1.如图,由三个小立方块搭成的俯视图是()【答案】A.【解析】从上面看可得到两个相邻的正方形.故选A.【考点】简单组合体的三视图.2.下左图是由八个相同小正方体组合而成的几何体,则其主视图是()【答案】C【解析】主视图是从正面观察所看到的平面图形.根据小正方体的摆放方法,画出图形即可.故选C【考点】简单组合体的三视图的画法.3.如图是由相同的小正方体组成的几何体,它的俯视图为()A.B.C.D.【答案】B.【解析】找到从上面看所得到的图形即可:此几何体的俯视图有4列,从左往右小正方形的个数分别是2,2,1,2. 故选B.【考点】简单组合体的三视图.4.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是A.①②B.②③C.②④D.③④【答案】B【解析】正方体主视图、左视图、俯视图都是正方形;圆柱主视图和左视图是长方形,俯视图是圆;圆锥主视图和左视图是三角形、俯视图是带圆心的圆;球主视图、左视图、俯视图都是圆,故选:B.【考点】简单几何体的三视图.5.下列四个立体图形中,主视图为圆的是()A.B.C.D.【答案】B.【解析】A、主视图是正方形,故此选项错误;B、主视图是圆,故此选项正确;C、主视图是三角形,故此选项错误;D、主视图是长方形,故此选项错误;故选B.考点: 简单几何体的三视图.6.如图所示几何体的左视图是【答案】C.【解析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.从左面看可看到一个矩形里有上下两条虚线.故选C.考点: 简单组合体的三视图.7.如图所示的几何体的主视图是【答案】C.【解析】试题分析:主视图是从立体图形的正面看所得到的图形,找到从正面看所得到的图形即可.注意所有的看到的棱都应表现在主视图中.从正面看,此图形的主视图有3列组成,从左到右小正方形的个数是:1,2,1.故选C.考点:简单组合体的三视图.8.如图所示,快下降到地面的某伞兵在灯光下的影子为AB.试确定灯源P的位置,并画出竖立在地面上木桩的影子EF.(保留作图痕迹,不要求写作法)【答案】作图见解析.【解析】先连接伞兵的头和脚与对应的影子的直线,两直线的交点即为点P,过点P作过木桩顶端的直线与地面的交点即为F.试题解析:作图如下:【考点】1.作图题;2.中心投影.9.下面几何体的左视图是A.B.C.D.【答案】A【解析】左视图是从图形的左面看到的图形,从左面看,是一个等腰三角形。
2023年中考数学解答题专项复习:投影与视图(附答案解析)

第 1 页 共 16 页
2.(2020•丛台区校级一模)如图(1)是一种包装盒的表面展开图,将它围起来可得到一个 几何体的模型.
(1)图(2)是根据 a,h 的取值画出的几何体的主视图和俯视图,请在网格中画出该几 何体的左视图. (2)已知 h=4.求 a 的值和该几何体的表面积.
第 2 页 共 16 页
9.(2021 秋•玄武区期末)如图,是由一些棱长都为 acm 的小正方体组合成的简单几何体.
第 5 页 共 16 页
(1)请在如图的方格中画出该几何体的俯视图和左视图.
(2)该几何体的表面积(含下底面)是
cm2;
(3)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以
再添加
(1)这个几何体的名称是
,其侧面积为
;
(2)画出它的一种表面展开图;
(3)求出左视图中 AB 的长.
6.(2021•抚顺县模拟)某工厂要加工一批上下底密封纸盒,设计者给出了密封纸盒的三视
图,如图 1.
(1)由三视图可知,密封纸盒的形状是
;
(2)根据该几何体的三视图,在图 2 中补全它的表面展开图;
(3)请你根据图 1 中数据,计算这个密封纸盒的表面积.(结果保留根号)
第 4 页 共 16 页
7.(2021 秋•三明期末)在平整的地面上,把棱长都为 1 的若干个小正方体摆成如图的几何 体.
(1)请分别在网格中画出从上面,左面看到的形状图(用签字笔将对应的虚线描为实线 即可); (2)如果在这个几何体上再添加一些同样大小的小正方体,若保持从上面看和从左面看 的形状图不变,那么最多可以再添加几个小正方体?在这样的条件下,当添加最多的小 正方体后,求得到的新几何体的体积. 8.(2021 秋•安居区期末)如图所示的是一个用小正方体搭成的几何体的俯视图,小正方形 中的数字表示在该位置的小正方体的个数,请你画出它的主视图与左视图.
中考数学专题复习题 投影与视图(含解析)

xx中考数学专题复习题:投影与视图一、选择题1.图中三视图对应的几何体是A. B. C. D.2.如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是A. B. C. D.3.如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为A. 320cmB.C.D. 480cm4.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是A.B.C.D.5.有一圆柱形的水池,已知水池的底面直径为4米,水面离池口2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为A. B. C. D.6.如图所示,在房子外的屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区在A. B. C. 四边形BCED D.7.如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得米,米,,在D处测得电线杆顶端A的仰角为,则电线杆AB 的高度为A.B.C.D.8.在阳光下,一名同学测得一根长为1米的垂直地面的竹竿的影长为米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为米,一级台阶高为米,如图所示,若此时落在地面上的影长为米,则树高为A. 米B. 8米C. 米D. 12米9.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是A. B. C. D.10.圆桌面桌面中间有一个直径为的圆洞正上方的灯泡看作一个点发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影已知桌面直径为,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是A. B. C. D.二、填空题11.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,,,,点P到CD的距离是,则AB离地面的距离为______12.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影圆形已知灯泡距离地面,桌面距离地面桌面厚度不计算,若桌面的面积是,则地面上的阴影面积是______.13.如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为______ .14.如图,正三棱柱的底面周长为15,截去一个底面周长为6的正三棱柱,所得几何体的俯视图的周长是______,面积是______.15.如图,AB和DE是直立在地面上的两根立柱,米,某一时刻AB在阳光下的投影米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为______.16.如图,在一面与地面垂直的围墙的同侧有一根高13米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了侧得电线杆的高度,数学兴趣小组的同学进行了如下测量某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为3米,落在地面上的影子BF的长为8米,而电信杆落在围墙上的影子GH的长度为米,落在地面上的银子DH的长为6米,依据这些数据,该小组的同学计算出了电线杆的高度是______米17.如图是王芳同学某一天观察到的一棵树在不同时刻的影子,请你把它们按时间先后顺序进行排列是______ .18.墙壁D处有一盏灯如图,小明站在A处测得他的影长与身长相等都为,小明向墙壁走1m到B处发现影子刚好落在A点,则灯泡与地面的距离______ .19.桌面上放两件物体,它们的三视图图,则这两个物体分别是______ ,它们的位置是______ .20.桌上放着一个三棱锥和一个圆柱体,如图的三幅图分别是从哪个方向看的?按图填写顺序______ 正面、左面、上面三、计算题21.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成角时,第二次是阳光与地面成角时,两次测量的影长相差8米,求树高AB多少米结果保留根号22.如图,是住宅区内的两幢楼,它们的高,两楼间的距离,现需了解甲楼对乙楼的采光的影响情况.当太阳光与水平线的夹角为角时,求甲楼的影子在乙楼上有多高精确到,;若要甲楼的影子刚好不落在乙楼的墙上,此时太阳与水平线的夹角为多少度?23.某兴趣小组开展课外活动如图,小明从点M出发以米秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他在某一灯光下的影长为MB,继续按原速行走2秒到达点D,此时他在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为米,然后他将速度提高到原来的倍,再行走2秒到达点F,此时点A,C,E三点共线.请在图中画出光源O点的位置,并画出小明位于点F时在这个灯光下的影长不写画法;求小明到达点F时的影长FH的长.24.如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积结果保留根号【答案】1. C2. C3. C4. D5. C6. D7. B8. B9. D10. D11.12.13.14. 13;15. 10m16. 1117. B、A、C、D18.19. 长方体和圆柱;圆柱在前,长方体在后20. 左面、上面、正面21. 解:在中,,,在中,,,,,.答:树高AB为米22. 解:如图,延长OB交DC于E,作,交AB于F,在中,,,.设,则.根据勾股定理知,,负值舍去,.因此,.当甲幢楼的影子刚好落在点C处时,为等腰三角形,因此,当太阳光与水平线夹角为时,甲楼的影子刚好不落在乙楼的墙上.23. 解:如图,点O和FH为所作;,,,设,作于K,如图,,∽,,即,,∽,,即,由得,解得,,,,∽,,即,.答:小明到达点F时的影长FH的长为.24. 解:根据该密封纸盒的三视图知道它是一个六棱柱,其高为12cm,底面边长为5cm,其侧面积为,密封纸盒的上、下底面的面积和为:,其表面积为.【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学专题复习第二十八讲投影与视图【基础知识回顾】一、投影:1、定义:一般地,用光线照射物体,在某个平面上得到得影子叫做物体的其中照射光线叫做投影所在的平面叫做2、平行投影:太阳光可以近似地看作是光线,像这样的光线所形成的投影称为平行投影3、中心投影:由圆一点(点光源)发出的光线形成的投影叫做如物体在、、等照射下所形成的投影就是中心投影【赵老师提醒:1、中心投影的光线平行投影的光线2、在同一时刻,不同物体在太阳下的影长与物离成3、物体投影问题有时也会出现计算解答题,解决这类问题首先要根据图形准确找出比例关系,然后求解】三、视图:1、定义:从不同的方向看一个物体,然后描绘出所看到的图形即视图其中,从看到的图形称为立视图,从看到的图形称为左视图,从看到的图形称为俯视图2、三种视图的位置及作用⑴画三视图时,首先确定的位置,然后在主视图的下面画出在主视图的右边画出⑵主视图反映物体的和,左视图反映物体的和俯视图反映物体的和【赵老师提醒:1、在画几何体的视图时,看得见部分的轮廓线通常画成线,看不见部分的轮廓线通常画成线2、在画几何体的三视图时要注意主俯对正,主左平齐,左俯相等】三、立体图形的展开与折叠:1、许多立体图形是由平面图形围成的,将它们适当展开即为平面展开图,同一个立体图形按不同的方式展开,会得到不同的平面展开图2、常见几何体的展开图:⑴正方体的展开图是⑵几边形的柱展开图是两个几边形和一个⑶圆柱的展开图是一个和两个⑷圆锥的展开图是一个与一个【赵老师提醒:有时会出现根据物体三视图中标注的数据求原几何体的表面积,体积等题目,这时要注意先根据三种视图还原几何体的形状,然后想象有关尺寸在几何体展开图中标注的是哪些部分,最后再根据公式进行计算】【重点考点例析】考点一:投影例1 (2012•湘潭)如图,从左面看圆柱,则图中圆柱的投影是()A.圆B.矩形C.梯形D.圆柱考点:平行投影.分析:根据圆柱的左视图的定义直接进行解答即可.解答:解:如图所示圆柱从左面看是矩形,故选:B.点评:本题主要考查了简单几何体的三视图,关键是根据三视图的概念得出是解题关键.对应训练2.(2012•梅州)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是(写出符合题意的两个图形即可)考点:平行投影.专题:开放型.分析:平行投影的特点:在同一时刻,平行物体的投影仍旧平行.解答:解:在同一时刻,平行物体的投影仍旧平行.得到的应是平行四边形或特殊的平行四边形.故答案为:正方形、菱形(答案不唯一).点评:本题考查了平行投影,太阳光线是平行的,那么对边平行的图形得到的投影依旧平行.考点二:几何题的三视图例 2 (2012•咸宁)中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A.B.C.D.考点:简单几何体的三视图.分析:看哪个几何体的三视图中有长方形,圆,及三角形即可.解答:解:A、三视图分别为长方形,三角形,圆,符合题意;B、三视图分别为三角形,三角形,圆及圆心,不符合题意;C、三视图分别为正方形,正方形,正方形,不符合题意;D、三视图分别为三角形,三角形,矩形及对角线,不符合题意;故选A.点评:考查三视图的相关知识;判断出所给几何体的三视图是解决本题的关键.例3 (2012•岳阳)如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A向右平移2个单位,向后平移1个单位后,所得几何体的视图()A.主视图改变,俯视图改变B.主视图不变,俯视图不变C.主视图不变,俯视图改变D.主视图改变,俯视图不变考点:简单组合体的三视图.分析:主视图是从正面观察得到的图形,俯视图是从上面观察得到的图形,结合图形即可作出判断.解答:解:根据图形可得,图①及图②的主视图一样,俯视图不一样,即主视图不变,俯视图改变.故选C.点评:此题考查了简单组合体的三视图,掌握主视图及俯视图的观察方法是解答本题的关键,难度一般.对应训练2.(2012•随州)下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个考点:简单几何体的三视图.分析:分别分析四种几何体的三种视图,再找出有两个相同,而另一个不同的几何体.解答:解:①正方体的主视图与左视图都是正方形;②圆柱的主视图和左视图都是长方形;③圆锥主视图与左视图都是三角形;④球的主视图与左视图都是圆;故答案为:D.点评:本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.3.(2012•宜昌)球和圆柱在水平面上紧靠在一起,组成如图所示的几何体,托尼画出了它的三视图,其中他画的俯视图应该是()A.两个相交的圆B.两个内切的圆C.两个外切的圆D.两个外离的圆考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到两个外切的圆,故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解决此类问题时既要有丰富的数学知识,又要有一定的生活经验.考点三:判几何体的个数例4(2012•宿迁)如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是()A.2 B.3 C.4 D.5考点:由三视图判断几何体.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再结合题意和三视图的特点找出每行和每列的小正方体的个数再相加即可.解答:解:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.点评:本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.对应训练4.(2012•孝感)几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是()A.4 B.5 C.6 D.7考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数,即可得出这个几何体的体积.解答:解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故选:B.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.考点四:几何体的相关计算例 5 (2012•荆州)如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为cm2.(结果可保留根号)考点:由三视图判断几何体;解直角三角形.分析:根据该几何体的三视图知道其是一个六棱柱,其表面积是六个面的面积加上两个底的面积.解答:解:根据该几何体的三视图知道其是一个六棱柱,∵其高为12cm,底面半径为5,∴其侧面积为6×5×12=360cm2密封纸盒的侧面积为:12×5×6×53=753cm2∴其全面积为:(753+360)cm2.故答案为:(753+360).点评:本题考查了由三视图判断几何体及解直角三角形的知识,解题的关键是正确的判定几何体.对应训练1.(2012•南平)如图所示,水平放置的长方体底面是长为4和宽为2的矩形,它的主视图的面积为12,则长方体的体积等于()A.16 B.24 C.32 D.48考点:简单几何体的三视图.分析:由主视图的面积=长×高,长方体的体积=主视图的面积×宽,得出结论.解答:解:依题意,得长方体的体积=12×2=24.故选B.点评:本题考查了简单几何体的三视图.关键是明确主视图是由长和高组成的.【聚焦山东中考】1.(2012•济南)下面四个立体图形中,主视图是三角形的是()A.B.C.D.考点:简单几何体的三视图.分析:找到立体图形从正面看所得到的图形为三角形即可.解答:解:A、主视图为长方形,不符合题意;B、主视图为中间有一条竖线的长方形,不符合题意;C、主视图为三角形,符合题意;D、主视图为长方形,不符合题意;故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.(2012•烟台)如图是几个小正方体组成的一个几何体,这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:俯视图是从上面看到的图形,共分三列,从左到右小正方形的个数是:1,1,1.解答:解:这个几何体的俯视图从左到右小正方形的个数是:1,1,1,故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图所看的方向:从上面看所得到的图形.3.(2012•潍坊)如图空心圆柱体的主视图的画法正确的是()A.B.C.D.考点:简单组合体的三视图.分析:找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选C.点评:本题考查了三视图的知识,主视图是从物体的前面看得到的视图,考查了学生细心观察能力,属于基础题.4.(2012•威海)如图所示的机器零件的左视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据左视图的定义,找到从左面看所得到的图形即可.解答:解:机器零件的左视图是一个矩形.中间有1条横着的虚线.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的棱用实线表示,看不到的用虚线表示.5.(2012•泰安)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有1个大长方形,第二层中间有一个小正方形.故选A.点评:本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,难度适中.6.(2012•济宁)如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是()A.3个或4个B.4个或5个C.5个或6个D.6个或7个考点:由三视图判断几何体.分析:左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有3个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.解答:解:左视图与主视图相同,可判断出底面最少有3个小正方体,最多有4个小正方体.而第二行则只有1个小正方体.则这个几何体的小立方块可能有4或5个.故选B.点评:本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.7.(2012•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.18cm2B.20cm2C.(18+23)cm2 D.(18+43)cm2考点:由三视图判断几何体.专题:数形结合.分析:根据三视图判断出该几何体是底面边长为2cm,侧棱长为3cm的正三棱柱,然后根据矩形的面积公式列式计算即可得解.解答:解:根据三视图判断,该几何体是正三棱柱,底边边长为2cm,侧棱长是3cm,所以侧面积是:(3×2)×3=6×3=18cm2.故选A.点评:本题考查了由三视图判断几何体,熟练掌握三棱柱的三视图,然后判断出该几何体是三棱柱是解本题的关键.【备考真题过关】一、选择题1.(2012•绵阳)把一个正五菱柱如图摆放,当投射线由正前方射到后方时,它的正投影是()A.B.C.D.考点:平行投影.分析:根据正投影的性质:当投射线由正前方射到后方时,其正投影应是矩形.解答:解:根据投影的性质可得,该物体为五棱柱,则正投影应为矩形.故选B.点评:本题考查正投影的定义及正投影形状的确定,解题时要有一定的空间想象能力.2.(2012•益阳)下列命题是假命题的是()A.中心投影下,物高与影长成正比B.平移不改变图形的形状和大小C.三角形的中位线平行于第三边D.圆的切线垂直于过切点的半径考点:中心投影;三角形中位线定理;切线的性质;命题与定理;平移的性质.分析:分别利用中心投影的性质以及切线的性质、平移的性质、三角形中位线定理等进行判断即可得出答案.解答:解:A.中心投影下,物高与影长取决于物体距光源的距离,故此选项错误,符合题意;B.平移不改变图形的形状和大小,根据平移的性质,故此选项正确,不符合题意;C.三角形的中位线平行于第三边,根据三角形中位线的性质,故此选项正确,不符合题意;D.圆的切线垂直于过切点的半径,利用切线的判定定理,故此选项正确,不符合题意.故选:A.点评:此题主要考查了中心投影的性质以及切线的性质、平移的性质、三角形中位线定理等知识,熟练掌握并区分这些性质是解题关键.3.(2012•玉林)下列基本几何体中,三视图都相同图形的是()A.B.C.D.圆柱三棱柱球长方体考点:简单几何体的三视图.分析:根据三视图的基本知识,分析各个几何体的三视图然后可解答.解答:解:A、圆柱的主视图与左视图均是矩形,俯视图是圆,故本选项错误;B、三棱柱的主视图与左视图均是矩形,俯视图是三角形,故本选项错误;C、球体的三视图均是圆,故本答案正确;D、长方体的主视图与俯视图是矩形,左视图是正方形,故本答案错误.故选C.点评:本题难度一般,主要考查的是三视图的基本知识.解题时也应具有一定的生活经验.4.(2012•永州)如图所示,下列水平放置的几何体中,俯视图是矩形的是()A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体的上面看得到的视图,仔细观察各个简单几何体,便可得出选项.解答:解:A、圆柱的俯视图为矩形,故本选项正确;B、圆锥的俯视图为圆,故本选项错误;C、三棱柱的俯视图为三角形,故本选项错误;D、三棱锥的俯视图为三角形,故本选项错误.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.本题比较简单.5.(2012•义乌市)下列四个立体图形中,主视图为圆的是()A.B.C.D.考点:简单几何体的三视图.分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.解答:解:A、主视图是正方形,故此选项错误;B、主视图是圆,故此选项正确;C、主视图是三角形,故此选项错误;D、主视图是长方形,故此选项错误;点评:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.6.(2012•六盘水)如图是教师每天在黑板上书写用的粉笔,它的主视图是()A.B.C.D.考点:简单几何体的三视图.分析:首先判断该几何体是圆台,然后确定从正面看到的图形即可.解答:解:该几何体是圆台,主视图是等腰梯形.故选C.点评:本题考查了简单几何体的三视图,属于基础题,比较简单.7. (2012•黄冈)如图,水平放置的圆柱体的三视图是()A.B.C.D.考点:简单几何体的三视图.分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,即可得出答案.解答:解:依据圆柱体放置的方位来说,从正面和上面可看到的长方形是一样的;从左面可看到一个圆.点评:本题考查了几何体的三种视图,掌握定义是关键,本题是基础题,常规题型.8.(2012•白银)将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.考点:简单几何体的三视图;点、线、面、体.分析:首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.解答:解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选:D.点评:此题主要考查了面动成体,以及简单几何体的三视图,关键是正确判断出Rt△ACB 绕直角边AC旋转一周所得到的几何体的形状9.(2012•资阳)如图是一个正方体被截去一角后得到的几何体,它的俯视图是()A.B.C.D.考点:简单组合体的三视图;截一个几何体.分析:根据俯视图是从上面看到的图形判定则可.解答:解:从上面看,是正方形右边有一条斜线,故选:A.点评:本题考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.10.(2012•云南)如图是由6个形同的小正方体搭成的一个几何体,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上面看到的识图分析解答.解答:解:从上面看,是1行3列并排在一起的三个正方形.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.11.(2012•襄阳)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()A.B.C.D.考点:简单组合体的三视图.分析:主视图是从正面看,注意所有的看到的棱都应表现在主视图中.解答:解:从上面看,圆锥看见的是:三角形,两个正方体看见的是两个正方形.故答案为B.点评:此题主要考查了三视图的知识,关键是掌握三视图的几种看法.12.(2012•西宁)如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画好它的三视图,那么他所画的三视图的俯视图应该是()A.两个外切的圆B.两个内切的圆C.两个相交的圆D.两个外离的圆考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可.解答:解:从上面可看到两个外切的圆.故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.13.(2012•武汉)如图,是由4个相同小正方体组合而成的几何体,它的左视图是()A.B.C.D.考点:简单组合体的三视图.专题:常规题型.分析:左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.解答:解:从左边看得到的是两个叠在一起的正方形.故选D.点评:此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.14.(2012•温州)我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.解答:解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方形,得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.点评:此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.15.(2012•肇庆)如图是某几何体的三视图,则该几何体是()A.圆锥B.圆柱C.三棱柱D.三棱锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选A.点评:主视图和左视图的大致轮廓为长方形的几何体为锥体.16.(2012•扬州)如图是由几个相同的小立方块搭成的几何体的三视图,则这几个几何体的小立方块的个数是()A.4个B.5个C.6个D.7个考点:由三视图判断几何体.分析:根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数.解答:解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个.故选B.点评:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.17.(2012•厦门)如图是一个立体图形的三视图,则这个立体图形是()A.圆锥B.球C.圆柱D.三棱锥考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、圆锥的三视图分别为三角形,三角形,圆,故选项正确;B、球的三视图都为圆,错误;C、圆柱的三视图分别为长方形,长方形,圆,故选项错误;D、三棱锥的三视图分别为三角形,三角形,三角形及中心与顶点的连线,故选项错误.故选A.点评:本题考查了由几何体的三种视图判断出几何体的形状,应从所给几何体入手分析.二、填空题18.(2012•新疆)请你写出一个主视图与左视图相同的立体图形是.考点:简单几何体的三视图.专题:开放型.分析:主视图、左视图是分别从物体正面、左面看,所得到的图形.解答:解:圆柱的主视图与左视图都为长方形.故答案为:圆柱(答案不唯一).点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.19.(2012•内江)由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为.考点:由三视图判断几何体.分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多5块.故答案为:4.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.20.(2012•鸡西)由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是.考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.解答:解:由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由左视图可知左侧两行,右侧一行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.所以图中的小正方体最少4块,最多7块.故答案为:4或5或6或7.点评:本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.21.(2012•大庆)用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是个.考点:由三视图判断几何体;简单组合体的三视图.分析:由于从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图都相同,由主视图可知有2层2列,由左视图可知有2层2行,由俯视图可知。