最新中职数学含绝对值的不等式教案

合集下载

中职数学教案:含绝对值的不等式

中职数学教案:含绝对值的不等式
|a|的几何意义
数a的绝对值|a|,在数轴上等于对应实数a的点到原点的距离.
例如,|-5|=5,|5|=5.
学生结合数轴,理解|a|的几何意义.




二概念新知
问题1
(1)解方程|x|=5,并说明|x|=5的几何意义是什么?
(2)试叙述|x|>5,|x|<5的几何意义,你能写出其解集吗?
对于每个问题都请学生思考后回答,教师给与恰当的评价并给出正确答案.
中等专业学校2024-2025-1教案
编号:
备课组别
数学组
课程名称
基础模块(上)
所在
年级
主备
教师
授课教师
授课系部
授课班级
授课
日期
课题
2.4含绝对值的不等式
教学
目标
1.通过学习理解绝对值的几何意义;掌握简单的含有绝对值的不等式的解
法;掌握含有绝对值的不等式的等价形式.| x |≤a-a≤x≤a;| x |≥ax≤
-a或x≥a(a>0).
2.通过本次教学,体会数形结合、等价转化的数学思想方法.
重点
含有绝对值的不等式的解法
难点
理解绝对值的几何意义
教法
引导探究,讲练结合
教学设备
多媒体一体机
教学
环节
教学活动内容及组织过程
个案补充




一导入
1.提问:不等式的基本性质有哪些?
2. |a|=
教师用课件展示问题,学生回答
(1)|x|=5的几何意义是:在数轴上对应实数5的点到原点的距离等于5,这样的点有二个:对应实数5和5的点;
(2)|x|>5的几何意义是到原点的距离大于5的点,其解集是

《含有绝对值的不等式》 说课稿

《含有绝对值的不等式》 说课稿

《含有绝对值的不等式》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《含有绝对值的不等式》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析《含有绝对值的不等式》是高中数学必修 5 中的重要内容。

它是在学生已经掌握了绝对值的概念和简单的绝对值方程的基础上,进一步研究含有绝对值的不等式的解法。

这部分内容不仅是对绝对值概念的深化和拓展,也为后续学习不等式的证明和函数的最值等知识奠定了基础。

在教材的编排上,通过具体的实例引入含有绝对值的不等式,引导学生从直观感知到抽象概括,逐步掌握其解法。

同时,教材还注重培养学生的数学思维能力和运算能力。

二、学情分析学生在之前的学习中已经掌握了绝对值的定义和基本性质,具备了一定的代数运算能力。

但是,对于含有绝对值的不等式,学生在理解和求解上可能会存在一定的困难。

这主要是因为绝对值的概念较为抽象,而且含有绝对值的不等式的解法需要进行分类讨论,对学生的思维能力要求较高。

此外,学生在学习过程中可能会出现忽略绝对值的非负性、分类讨论不全面等问题。

因此,在教学过程中,要注重引导学生理解绝对值的几何意义,通过数形结合的方法帮助学生掌握解题思路,同时加强对学生解题过程的规范指导。

三、教学目标1、知识与技能目标(1)理解绝对值的几何意义和性质。

(2)掌握含有绝对值的不等式的解法,如|x| < a、|x| > a(a >0)等。

(3)能够运用绝对值不等式解决一些简单的实际问题。

2、过程与方法目标(1)通过探究含有绝对值的不等式的解法,培养学生的分类讨论思想和转化化归能力。

(2)经历从具体到抽象、从特殊到一般的思维过程,提高学生的数学思维能力。

3、情感态度与价值观目标(1)让学生在解决问题的过程中,体验成功的喜悦,增强学习数学的信心。

(2)培养学生严谨的治学态度和勇于探索的精神。

四、教学重难点1、教学重点(1)绝对值不等式|x| < a、|x| > a(a > 0)的解法。

含绝对值不等式优秀教案

含绝对值不等式优秀教案

含绝对值不等式优秀教案(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--【课题】含绝对值的不等式【教学目标】知识目标:(1) 理解含绝对值不等式x a <或x a >的解法; (2)了解ax b c +<或ax b c +>的解法.能力目标:培养学生观察、分析、归纳、概括的能力,以及逻辑推理能力,考察学生思维的积极性和全面性,领悟分类讨论、化归和数形结合的数学思想方法,培养数学理解力,化归能力及运算能力,初步学会用数学思想指导数学思维。

情感目标:激发学生学习兴趣,鼓励学生大胆探索,向学生渗透“具体-抽象-具体”、“未知-已知-未知”的辩证唯物主义的认识论观点,使学生形成良好的个性品质和学习习惯。

【教学重点】(1)不等式x a <或x a >的解法 .(2)利用变量替换解不等式ax b c +<或ax b c +>. 【教学难点】利用变量替换解不等式ax b c +<或ax b c +>.教学方法:主要采取启导式教学,通过对初中不等式知识及绝对值的含义和几何意义等相关知识的学习引入,在教师指导下由实例引出解绝对值不等式的实际意义,导出解决含绝对值不等式的解法这一研究主题。

【教学设计】(1) 从数形结合的认识绝对值入手,有助于学生对知识的理解; (2) 观察图形得到不等式x a <或x a >的解集; (3) 运用变量替换,化繁为简,培养学生的思维能力;(4) 加强解题实践,讨论、探究,培养学生分析与解决问题的能力,培养团队精神. 【教学备品】教学课件.【课时安排】1-2课时.(80分钟)【安全教育:清点人数】教学过程教师行为学生行为教学意图时间*揭示课题含绝对值的不等式*回顾思考复习导入问题任意实数的绝对值是如何定义的其几何意义是什么解决对任意实数x,有,0,0,0,,0.x xx xx x>⎧⎪==⎨⎪-<⎩其几何意义是:数轴上表示实数x的点到原点的距离.拓展不等式2x<和2x>的解集在数轴上如何表示?根据绝对值的意义可知,方程2x=的解是2x=或2x=-,不等式2x<的解集是(2,2)-(如图(1)所示);不等式2x>的解集是(,2)(2,)-∞-+∞(如图(2)所示).介绍提问归纳总结引导分析了解思考回答观察领会复习相关知识点为进一步学习做准备充分借助图像进行分析8(2)(1)试一试:写出不等式巩固知识典型例题x a>的形式后求解.,得13 x>, 3⎫⎝⎭6,得x解下列各不等式:如何通过x a<224x -, 12x-,所以原不等式的解集为 []1,2-. 7.7<-或25x +>1;21x+.122本次课学了哪些内容?重点和难点各是什么?教学反思:本节课内容可以分成两节课来进行,前一节课主要讲解>><>或型的不等式,后一节课主要讲解a a o a ax()x(0)+>>+<>或者型的不等式。

含绝对值不等式教案

含绝对值不等式教案

含绝对值不等式优秀教案一、教学目标1. 理解绝对值不等式的概念和性质。

2. 学会解含绝对值不等式的方法。

3. 能够应用绝对值不等式解决实际问题。

二、教学内容1. 绝对值不等式的概念和性质。

2. 含绝对值不等式的解法。

3. 绝对值不等式在实际问题中的应用。

三、教学重点与难点1. 重点:绝对值不等式的概念和性质,含绝对值不等式的解法。

2. 难点:含绝对值不等式的解法和应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究绝对值不等式的性质和解法。

2. 用实例解释绝对值不等式在实际问题中的应用,提高学生的学习兴趣。

3. 利用小组讨论法,培养学生的合作能力和解决问题的能力。

五、教学过程1. 引入:讲解绝对值的概念,引导学生思考绝对值与不等式之间的关系。

2. 讲解绝对值不等式的概念和性质,让学生理解并掌握绝对值不等式的基本性质。

3. 讲解含绝对值不等式的解法,引导学生学会解这类不等式。

4. 利用实例讲解绝对值不等式在实际问题中的应用,让学生学会将理论知识应用于实际问题。

5. 布置练习题,让学生巩固所学知识,并提供解题思路和技巧。

7. 课后作业:布置适量作业,让学生进一步巩固所学知识。

六、教学评估1. 课堂提问:通过提问了解学生对绝对值不等式的概念、性质和解法的掌握情况。

2. 练习题解答:检查学生作业和课堂练习,评估学生对含绝对值不等式的解法的掌握程度。

3. 小组讨论:观察学生在小组讨论中的表现,评估学生的合作能力和解决问题的能力。

七、教学反思2. 根据学生的反馈,调整教学方法和内容,提高教学效果。

3. 关注学生的学习进度,针对性地进行辅导,帮助学生克服困难。

八、拓展与提高1. 引导学生思考绝对值不等式与其他类型不等式之间的联系和区别。

2. 讲解含绝对值不等式的更高级解法,如使用不等式组、函数等方法。

3. 引导学生关注绝对值不等式在实际生活中的应用,提高学生的实际问题解决能力。

九、教学计划调整1. 根据学生的学习进度和反馈,调整教学计划,确保教学内容和方法的适应性。

试讲教案模板(含绝对值的不等式解法)

试讲教案模板(含绝对值的不等式解法)

试讲教案模板(含绝对值的不等式解法)第一章:绝对值概念介绍1.1 绝对值的定义与性质引入绝对值的概念,解释绝对值表示一个数与零点的距离。

探讨绝对值的性质,如非负性、奇偶性等。

1.2 绝对值不等式介绍绝对值不等式的概念,即含有绝对值符号的不等式。

举例说明绝对值不等式的形式,如|x| > 2 或|x 3| ≤1。

第二章:绝对值不等式的解法2.1 绝对值不等式的基本性质讲解绝对值不等式的基本性质,如|a| ≤b 可以转化为-b ≤a ≤b。

引导学生理解绝对值不等式与普通不等式的区别与联系。

2.2 绝对值不等式的解法步骤介绍解绝对值不等式的步骤,包括正确理解不等式、画出数轴、分类讨论等。

通过具体例子演示解绝对值不等式的过程,如解|x 2| ≤3。

第三章:绝对值不等式的应用3.1 绝对值不等式在实际问题中的应用通过实际问题引入绝对值不等式的应用,如距离问题、温度问题等。

引导学生运用绝对值不等式解决实际问题,培养学生的数学应用能力。

3.2 绝对值不等式的综合应用提供综合性的题目,让学生练习将实际问题转化为绝对值不等式。

引导学生运用解绝对值不等式的技巧,求解综合应用问题。

第四章:含绝对值的不等式组4.1 不等式组的定义与性质引入不等式组的概念,即由多个不等式组成的集合。

探讨不等式组的性质,如解的交集、解的传递性等。

4.2 含绝对值的不等式组的解法讲解含绝对值的不等式组的解法,如先解每个绝对值不等式,再求交集。

提供例子,演示解含绝对值的不等式组的过程。

第五章:含绝对值的不等式解的应用5.1 含绝对值的不等式在实际问题中的应用通过实际问题引入含绝对值的不等式应用,如几何问题、物理问题等。

引导学生运用含绝对值的不等式解决实际问题,培养学生的数学应用能力。

5.2 含绝对值的不等式的综合应用提供综合性的题目,让学生练习将实际问题转化为含绝对值的不等式。

引导学生运用解含绝对值的不等式的技巧,求解综合应用问题。

第六章:绝对值不等式的图形解法6.1 绝对值不等式与数轴介绍如何利用数轴来解绝对值不等式。

中职数学含绝对值的不等式教案培训资料

中职数学含绝对值的不等式教案培训资料

含绝对值的不等式教案一、条件分析1.学情分析本课是开学第一课,学生对上学期的知识已经比较陌生,而本课的内容要以上学期的不等式内容为基础,是不等式内容的提升,所以本课先复习上学期的内容,让学生顺利过渡到新知识中来。

2.教材分析本节教材首先分别讨论含有绝对值的等式的三种情况,从而推导出含有绝对值的不等式的公式,然后例题加以巩固。

由于我校学生基础薄弱,对于理论性的知识掌握不牢固,所以我们在教授的时候从简单的具体的例子推导含有绝对值的不等式的公式,由浅入深,层层递进,符合学生的认知。

二、三维目标知识与技能目标A层:1.理解绝对值的概念;2.了解绝对值不等式的解法;3.会解含有绝对值的不等式;4.通过数轴解不等式培养学生的数形结合的数学思想;5.通过研究含有绝对值不等式,培养分类讨论的思想方法,培养抽象概括能力和辩证思维能力.B层:1.理解绝对值的概念;2.了解绝对值不等式的解法;3.会解含有绝对值的不等式;4.通过数轴解不等式培养学生的数形结合的数学思想.C层:1.理解绝对值的概念;2.了解绝对值不等式的解法;3.会解含有绝对值的不等式.过程与方法目标复习法、讲授法、练习法、自讲法情感态度与价值观目标激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时培养辩证思维能力。

三、教学重点含有绝对值不等式的解法四、教学难点将含有绝对值的不等式等价转化为不含绝对值的不等式五、主要参考资料:中等职业教育课程教材数学基础模块(上)、学生学习指导用书、教学参考书。

六、教学进程:1.复习导入绝对值的含义在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5,-5的绝对值是5。

正数的绝对值是它本身。

负数的绝对值是它的相反数。

0的绝对值还是0。

2.讲授新课(1)求下列各数的绝对值3、-4、12、1-2(2)求下列不等式的解集||4x < 2x < 3x > 1x > 思考:是否由|x|<a 推出-a<x<a 成立?是否由|x|>a 推出a<x 或x<-a 成立?含绝对值不等式解法公式|x|<a <⇒-a<x<a,|x|>a <⇒a<x或x<-a例1:求下列不等式的解集(1)|x-2|<3 (2)|x+3|>1解:(1)由原不等式,得-3<x-2<3.每部分加2的-1<x<5.所以原不等式的解集是{x|-1<x<5}练习:|x|<1,|2x|>4,|3x-2|<5例2:求不等式|3-2x|≥5的解集.解:由原不等式,得3-2x≥5或3-2x≤-5,解这两个不等式,得x≤-1或x≥4.∴原不等式的解集是{x| x≤-1或x≥4}练习:2<|x-3|,|2x+3|>3例题:七、作业:P46习题四(2)(4)(6)(8)。

试讲教案模板(含绝对值的不等式解法)

试讲教案模板(含绝对值的不等式解法)

试讲教案模板(含绝对值的不等式解法)一、教学目标:1. 理解绝对值的概念及其性质。

2. 掌握绝对值不等式的解法。

3. 能够运用绝对值不等式解决实际问题。

二、教学内容:1. 绝对值的概念及性质。

2. 绝对值不等式的解法。

3. 实际问题中的应用。

三、教学重点与难点:1. 教学重点:绝对值的概念及其性质,绝对值不等式的解法。

2. 教学难点:绝对值不等式的解法,实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生探究绝对值的性质。

2. 通过案例分析,让学生掌握绝对值不等式的解法。

3. 利用实际问题,培养学生的应用能力。

五、教学过程:1. 导入:讲解绝对值的概念,引导学生理解绝对值的含义。

2. 探究绝对值的性质:引导学生通过举例分析,总结绝对值的性质。

3. 讲解绝对值不等式的解法:结合实际例子,讲解绝对值不等式的解法。

4. 练习:布置练习题,让学生巩固绝对值不等式的解法。

5. 拓展:利用实际问题,让学生运用绝对值不等式解决实际问题。

6. 总结:对本节课的内容进行总结,强调绝对值的概念、性质和解法。

7. 作业布置:布置相关作业,巩固所学知识。

8. 板书设计:绝对值的概念:|x| = {x, x ≥0-x, x < 0}绝对值的性质:1. |x| ≥02. |x| = |-x|3. |x + y| ≤|x| + |y|绝对值不等式的解法:1. 去掉绝对值符号,转化为一般不等式。

2. 根据绝对值的性质,分情况讨论解不等式。

9. 教学反思:本节课通过问题驱动法和案例分析,使学生掌握了绝对值的概念、性质和解法。

在实际问题中的应用环节,培养了学生的动手能力。

但在讲解绝对值不等式的解法时,部分学生仍存在理解困难,需要在后续教学中加强针对性辅导。

六、教学评价:1. 课堂讲解:评价学生对绝对值概念、性质和绝对值不等式解法的理解程度。

2. 练习题:评价学生运用绝对值不等式解决实际问题的能力。

3. 小组讨论:评价学生在团队合作中的参与度和思考问题的深度。

含绝对值不等式教案

含绝对值不等式教案

含绝对值不等式优秀教案一、教学目标1. 让学生理解绝对值不等式的概念和性质。

2. 培养学生解决含绝对值不等式问题的能力。

3. 提高学生对数学逻辑思维和运算能力的培养。

二、教学内容1. 绝对值不等式的定义和性质2. 含绝对值不等式的解法3. 含绝对值不等式的应用问题三、教学重点与难点1. 绝对值不等式的性质和解法2. 含绝对值不等式的应用问题四、教学方法1. 采用讲解法,引导学生理解绝对值不等式的概念和性质。

2. 采用案例分析法,让学生通过例题掌握含绝对值不等式的解法。

3. 采用练习法,培养学生解决实际问题的能力。

五、教学准备1. 课件和教学素材2. 练习题和答案3. 黑板和粉笔教案内容:第一课时:绝对值不等式的概念和性质一、导入(5分钟)提问:什么是绝对值?绝对值有什么性质?二、新课讲解(20分钟)1. 讲解绝对值不等式的概念举例:解不等式|x| > 2分析:根据绝对值的性质,|x| > 2 等价于x > 2 或x < -22. 讲解绝对值不等式的性质性质1:如果a 是实数,|a| = a 当a ≥0,|a| = -a 当a < 0 性质2:如果a 和b 是实数,|a + b| ≤|a| + |b|性质3:如果a 和b 是实数,|ab| = |a| |b|三、案例分析(10分钟)举例:解不等式|2x 3| ≤12x 3 ≤1 和2x 3 ≥-1解得:x ≤2 和x ≥1原不等式的解集为1 ≤x ≤2四、课堂练习(5分钟)1. 解不等式|3x + 2| > 42. 解不等式|x 5| ≤3第二课时:含绝对值不等式的解法一、导入(5分钟)提问:如何解决含绝对值不等式的问题?二、新课讲解(20分钟)1. 讲解含绝对值不等式的解法步骤1:将含绝对值的不等式转化为两个不等式组步骤2:分别解出每个不等式组的解集步骤3:求出两个解集的交集,即为原不等式的解集2. 举例讲解举例:解不等式组|2x 1| ≤3 和|x + 2| > 1-1 ≤2x 1 ≤3 和x + 2 > 1 或x + 2 < -1根据步骤2和步骤3,解得:x ≤2 和x > -1原不等式组的解集为-1 < x ≤2三、案例分析(10分钟)举例:解不等式|3x 4| + |x + 1| ≤5当x ≤-1 时,3x 4 ≤-x 1当-1 < x ≤4/3 时,3x 4 + x + 1 ≤5当x > 4/3 时,3x 4 + x + 1 > 5四、课堂练习(5分钟)1. 解不等式|x 2| + |x + 3| ≥52. 解不等式|2x + 1x 3| ≤4第三课时:含绝对值不等式的应用问题一六、教学目标1. 让学生能够应用绝对值不等式的解法解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含绝对值的不等式教案
一、条件分析
1.学情分析
本课是开学第一课,学生对上学期的知识已经比较陌生,而本课的内容要以上学期的不等式内容为基础,是不等式内容的提升,所以本课先复习上学期的内容,让学生顺利过渡到新知识中来。

2.教材分析
本节教材首先分别讨论含有绝对值的等式的三种情况,从而推导出含有绝对值的不等式的公式,然后例题加以巩固。

由于我校学生基础薄弱,对于理论性的知识掌握不牢固,所以我们在教授的时候从简单的具体的例子推导含有绝对值的不等式的公式,由浅入深,层层递进,符合学生的认知。

二、三维目标
知识与技能目标
A层:
1.理解绝对值的概念;
2.了解绝对值不等式的解法;
3.会解含有绝对值的不等式;
4.通过数轴解不等式培养学生的数形结合的数学思想;
5.通过研究含有绝对值不等式,培养分类讨论的思想方法,培养抽象概括能力和辩证思维能力.
B层:
1.理解绝对值的概念;
2.了解绝对值不等式的解法;
3.会解含有绝对值的不等式;
4.通过数轴解不等式培养学生的数形结合的数学思想.
C层:
1.理解绝对值的概念;
2.了解绝对值不等式的解法;
3.会解含有绝对值的不等式.
过程与方法目标
复习法、讲授法、练习法、自讲法
情感态度与价值观目标
激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时培养辩证思维能力。

三、教学重点
含有绝对值不等式的解法
四、教学难点
将含有绝对值的不等式等价转化为不含绝对值的不等式
五、主要参考资料:
中等职业教育课程教材数学基础模块(上)、学生学习指导用书、教学参考书。

六、教学进程:
1.复习导入
绝对值的含义
在数轴上,一个数到原点的距离叫做该数的绝对值.如:5指在数轴上表示数5的点与原点的距离,这个距离是5,所以5的绝对值是5,-5的绝对值是5。

正数的绝对值是它本身。

负数的绝对值是它的相反数。

0的绝对值还是0。

2.讲授新课
(1)求下列各数的绝对值
3、-
4、12、1-2
(2)求下列不等式的解集
||4x < 2x < 3x > 1x > 思考:是否由|x|<a 推出-a<x<a 成立?是否由|x|>a 推出a<x 或x<-a 成立?
含绝对值不等式解法公式
|x|<a <⇒-a<x<a,|x|>a <⇒a<x或x<-a
例1:求下列不等式的解集
(1)|x-2|<3 (2)|x+3|>1
解:(1)由原不等式,得-3<x-2<3.
每部分加2的-1<x<5.
所以原不等式的解集是{x|-1<x<5}
练习:|x|<1,|2x|>4,|3x-2|<5
例2:求不等式|3-2x|≥5的解集.
解:由原不等式,得3-2x≥5或3-2x≤-5,
解这两个不等式,得
x≤-1或x≥4.
∴原不等式的解集是{x| x≤-1或x≥4}
练习:2<|x-3|,|2x+3|>3
例题:七、作业:P46习题四(2)(4)(6)(8)。

八、预习导案:
1. 了解函数的概念
2. 了解函数的定义域
第15章弹簧元件
15.1 弹簧元件的的功用和类型
弹簧受外力作用后能产生较大的弹性变形,在机械设备中广泛应用弹簧作为弹性元件。

弹簧的主要功用有:1)控制机构的运动或零件的位置,如凸轮机构、离合器、阀门以及各种调速器中的弹簧;2)缓冲及吸振,如车辆弹簧和各种缓冲器中的弹簧;3)储存能量,如钟表、仪器中的弹簧;4)测量力的大小,如弹簧秤中的弹簧。

弹簧的种类很多,从外形看,有螺旋弹簧、环形弹簧、碟形弹簧、平面涡卷弹簧和板弹簧等。

螺旋弹簧是用金属丝(条)按螺旋线卷饶而成,由于制造简便,所以应用最广。

按其形状可分为:圆柱形(下图a、b、d)、截锥形(下图c)等。

按受载情况又可分为拉伸弹簧(下图a)、压缩弹簧(下图b、c)和扭转弹簧(下图d)。

环形弹簧(下图a)和碟形弹簧(下图b)都是压缩弹簧,在工作过程中,一部分能量消耗在各圈之间的摩擦上,因此具有很高的缓冲吸振能力,多用于重型机械的缓冲装置。

平面涡卷弹簧或称盘簧(下图c),它的轴向尺寸很小,常用作仪器和钟表的储能装置。

板弹簧(下图d)是由许多长度不同的钢板叠合而成,主要用作各种车辆的减振装置。

本章主要介绍圆柱螺旋拉伸、压缩弹簧的结构和设计。

15.2 圆柱螺旋拉伸、压缩弹簧的应力与变形
一、弹簧的应力
圆柱螺旋拉伸及压缩弹簧的外载荷(轴向力)均沿弹簧的轴线作用,它们的应力和变形计算是相同的。

现以圆柱螺旋压缩弹簧为例进行分析。

下左图所示为一圆柱螺旋压缩弹簧,轴向力F作用在弹簧的轴线上,弹簧丝是圆截面的,直径为d,弹簧中径为D2,螺旋升角为a。

相关文档
最新文档