含绝对值的不等式 公开课教案

合集下载

人教版高中数学含绝对值的不等式教案

人教版高中数学含绝对值的不等式教案

人教版高中数学含绝对值的不等式教案一、教学目标1. 知识与技能:(1)理解绝对值不等式的概念;(2)掌握绝对值不等式的解法;(3)能够运用绝对值不等式解决实际问题。

2. 过程与方法:(1)通过实例引导学生认识绝对值不等式;(2)利用数轴分析绝对值不等式的解集;(3)运用转化思想解决含绝对值的不等式问题。

3. 情感态度与价值观:(1)培养学生对数学的兴趣;(2)培养学生勇于探索、积极思考的科学精神;(3)提高学生解决实际问题的能力。

二、教学重点与难点1. 教学重点:(1)绝对值不等式的概念;(2)绝对值不等式的解法;(3)含绝对值的不等式在实际问题中的应用。

2. 教学难点:(1)绝对值不等式的转化;(2)含绝对值的不等式求解过程中的分类讨论。

三、教学过程1. 导入:(1)利用实例引入绝对值不等式的概念;(2)引导学生思考绝对值不等式与普通不等式的区别。

2. 新课讲解:(1)讲解绝对值不等式的定义;(2)通过数轴分析绝对值不等式的解集;(3)介绍绝对值不等式的解法。

3. 案例分析:(1)分析实际问题中的绝对值不等式;(2)引导学生运用转化思想解决含绝对值的不等式问题。

四、课后作业1. 复习本节课所学内容,整理笔记;2. 完成课后练习,巩固知识点;3. 挑选几个实际问题,尝试运用绝对值不等式解决。

五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 课后作业:检查学生的作业完成情况,评估学生对知识的掌握程度;3. 单元测试:进行单元测试,了解学生对含绝对值的不等式知识的运用能力。

六、教学内容与方法1. 教学内容:(1)进一步探究绝对值不等式的性质;(2)学习绝对值不等式的证明方法;(3)解决生活中的实际问题,运用绝对值不等式。

2. 教学方法:(1)采用案例分析法,让学生通过具体例子理解绝对值不等式的性质;(2)运用数形结合法,引导学生利用数轴分析绝对值不等式的解集;(3)采用问题驱动法,激发学生思考,培养学生解决实际问题的能力。

含绝对值的不等式教案

含绝对值的不等式教案

含绝对值的不等式教案课时:一节课(约45分钟)教材:高中数学教材教学目标:学生能够掌握含绝对值的不等式的求解方法,能够解决实际问题。

教学重点:掌握含绝对值的不等式的不同情况求解方法。

教学难点:理解含绝对值的不等式的多种解法。

教学过程:一、导入(5分钟)1. 引入新课:今天我们将学习一个新的不等式——含绝对值的不等式。

它与我们之前学过的不等式不同,带有绝对值符号。

2. 引出问题:如果有一个不等式,如|x - 3| < 5,我们要如何求解呢?二、讲解(25分钟)1. 情况一:|x - a| < b,a和b都是实数,b > 0。

- 将不等式分解为-x + a < b和x - a < b两个不等式。

- 分别求解这两个不等式,得到解区间。

- 讲解示例题目,让学生自主思考解法。

2. 情况二:|x - a| > b,a和b都是实数,b > 0。

- 将不等式分解为-x + a > b和x - a > b两个不等式。

- 分别求解这两个不等式,得到解区间。

- 讲解示例题目,让学生自主思考解法。

3. 情况三:|x - a| < -b,a和b都是实数,b > 0。

- 不存在这种情况,因为绝对值必为非负数。

4. 情况四:|x - a| > -b,a和b都是实数,b > 0。

- 任何一个实数都大于或等于-无穷,所以不等式成立。

- 解集为实数集。

三、练习(10分钟)1. 提供一些含绝对值的不等式,让学生根据所学内容求解。

2. 错题讲解:对于学生犯错较多的题目进行讲解和解析,引导学生找出错误原因。

四、拓展(5分钟)1. 引导学生思考:在实际生活中,含绝对值的不等式有哪些应用场景?2. 提问:你能想到一种含绝对值的不等式的实际问题吗?五、总结(5分钟)1. 总结本节课所学的内容:含绝对值的不等式的求解方法及应用场景。

2. 引导学生进行思考和讨论:学习了含绝对值的不等式后,你对不等式有什么新的理解?六、课后作业(5分钟)1. 完成课后作业册上相关的练习题。

不等式·含绝对值符号的不等式证明·教案

不等式·含绝对值符号的不等式证明·教案

不等式·含绝对值符号的不等式证明·教案一、教学目标1. 让学生理解含绝对值符号的不等式的含义。

2. 让学生掌握含绝对值符号的不等式的解法。

3. 培养学生运用不等式解决实际问题的能力。

二、教学内容1. 绝对值的概念及其性质。

2. 含绝对值符号的不等式的解法。

3. 实际例子中的应用。

三、教学重点与难点1. 教学重点:含绝对值符号的不等式的解法。

2. 教学难点:理解绝对值的概念及其性质。

四、教学方法1. 采用启发式教学法,引导学生自主探究含绝对值符号的不等式的解法。

2. 通过实际例子,让学生了解含绝对值符号的不等式在生活中的应用。

3. 利用小组讨论法,培养学生合作解决问题的能力。

五、教学过程1. 引入绝对值的概念,讲解绝对值的性质。

2. 讲解含绝对值符号的不等式的解法,引导学生进行自主练习。

3. 通过实际例子,让学生了解含绝对值符号的不等式在生活中的应用。

4. 组织小组讨论,让学生合作解决实际问题。

5. 总结本节课的主要内容,布置课后作业。

教案示例:一、教学目标1. 让学生理解绝对值的概念及其性质。

2. 让学生掌握含绝对值符号的不等式的解法。

3. 培养学生运用不等式解决实际问题的能力。

二、教学内容1. 绝对值的概念及其性质。

2. 含绝对值符号的不等式的解法。

3. 实际例子中的应用。

三、教学重点与难点1. 教学重点:含绝对值符号的不等式的解法。

2. 教学难点:理解绝对值的概念及其性质。

四、教学方法1. 采用启发式教学法,引导学生自主探究含绝对值符号的不等式的解法。

2. 通过实际例子,让学生了解含绝对值符号的不等式在生活中的应用。

3. 利用小组讨论法,培养学生合作解决问题的能力。

五、教学过程1. 引入绝对值的概念,讲解绝对值的性质。

讲解绝对值的定义:数轴上某个数与原点的距离称为该数的绝对值。

讲解绝对值的性质:(1) 任何数的绝对值都是非负数。

(2) 正数的绝对值是它本身。

(3) 负数的绝对值是它的相反数。

绝对值不等式市公开课获奖教案省名师优质课赛课一等奖教案

绝对值不等式市公开课获奖教案省名师优质课赛课一等奖教案

绝对值不等式教案导语:绝对值不等式是高中数学中一个重要的概念,也是解决实际问题中常用的工具。

本教案以绝对值不等式为核心,通过理论讲解和实例演练,帮助学生全面了解绝对值不等式的性质、求解方法和应用技巧,提高学生的数学解决问题能力。

一、教学目标:1. 掌握绝对值的定义和性质;2. 理解绝对值不等式的概念;3. 掌握解绝对值不等式的方法;4. 学会将绝对值不等式应用于实际问题。

二、教学内容:1. 绝对值的定义和性质介绍;2. 绝对值不等式的概念和基本形式讲解;3. 解绝对值不等式的方法;4. 绝对值不等式的应用案例。

三、教学步骤:第一步:绝对值的定义和性质介绍(10分钟)1. 绝对值的定义:对于任意实数a,其绝对值表示为|a|,表示a 与0之间的距离。

2. 绝对值的性质:a) |a| ≥ 0,绝对值永远为非负数;b) |a|=0 if and only if a=0,绝对值为0的充要条件是a等于0;c) |-a|=|a|,绝对值的倒数等于原值;d) |ab|=|a|·|b|,绝对值的乘积等于因数绝对值的乘积;e) |a-b| ≤ |a|+|b|,绝对值的差小于等于绝对值的和。

第二步:绝对值不等式的概念和基本形式讲解(15分钟)1. 绝对值不等式的概念:含有绝对值符号的不等式。

2. 绝对值不等式的基本形式:a) |x| > a,x的绝对值大于a;b) |x| ≥ a,x的绝对值大于等于a;c) |x| < a,x的绝对值小于a;d) |x| ≤ a,x的绝对值小于等于a。

第三步:解绝对值不等式的方法(20分钟)1. 分类讨论法:a) 当a≥0时,|x| > a可分解为x > a和x < -a两个不等式;b) 当a<0时,|x| > a可分解为x > a或x < -a两个不等式;c) 当a≥0时,|x| ≥a可分解为x ≥a或x ≤-a两个不等式;d) 当a<0时,|x| ≥ a恒成立;2. 区间法:a) 当a≥0时,|x| > a对应的区间为(-∞, -a) ∪ (a, +∞);b) 当a≥0时,|x| ≥ a对应的区间为(-∞, -a] ∪ [a, +∞);c) 当a<0时,|x| > a对应的区间为(-∞, +∞);d) 当a<0时,|x| ≥ a对应的区间为(-∞, +∞);3. 基本不等式法:a) |a|x + b| < c,其中a≠0,可化简为 -c/a < x + b < c/a;b) |ax + b| ≥ c,其中a≠0,可化简为 x + b ≤ -c/a或x + b≥ c/a。

含有绝对值的不等式 教案

含有绝对值的不等式  教案
设z=2x-3,则由|z|<5,可得-5<z<5,所以-5<2x-3<5,然后求解.
师:在解|ax+b|>c与|ax+b|<c(c>0)型不等式的时候,一定要注意a的正负.当a为负数时,可先把a化成正数再求解.
让全体同学在练习本上做,教师巡视,并请几位同学在黑板上作.
类比旧知识,教师提出新问题,学生解答.
逐步帮助学生推出解含绝对值不等式的方法.
通过启发学生,尽量让学生自己归纳出解法,锻炼学生总结概括能力并加深学生对该知识点的理解.
通过练习,使学生进一步掌握|x|>a与|x|<a两类不等式的解法.
通过这两道例题的分析,使学生能够熟悉并总结出解含绝对值不等式的方法步骤.
通过启发学生,尽量让学生结合两例题自己归纳出解法,锻炼学生的总结概括能力并加深学生对该知识点的理解.
(1)|x|<5;(2)|x|-3>0;(3)3|x|>12.
三、解含有绝对值的不等式
例1解不等式|2x-3|<5
解由|2x3|<5,得-5<2x-3<5,
不等式各边都加3,得-2<2x<8,
不等式各边都除以2,得-1<x<4.
所以原不等式解集为{x|1<x<4}.
例2解不等式|2x-3|≥5.
解由|2x-3|≥5得
教学方法
数形结合法与讲练结合法
【教学过程】
教学环节
教学内容
师生互动
设计意图


1.不等式的基本性质有些?
2. |a|=
教师用课件展示问题,学生回答.
以提问形式复习旧知识,引出新问题.


一、|a|的几何意义
数a的绝对值|a|,在数轴上等于对应实数a的点到原点的距离.
例如,|-3|=3,|3|=3.

含绝对值不等式教案

含绝对值不等式教案

含绝对值不等式优秀教案一、教学目标1. 理解绝对值不等式的概念和性质。

2. 学会解含绝对值不等式的方法。

3. 能够应用绝对值不等式解决实际问题。

二、教学内容1. 绝对值不等式的概念和性质。

2. 含绝对值不等式的解法。

3. 绝对值不等式在实际问题中的应用。

三、教学重点与难点1. 重点:绝对值不等式的概念和性质,含绝对值不等式的解法。

2. 难点:含绝对值不等式的解法和应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究绝对值不等式的性质和解法。

2. 用实例解释绝对值不等式在实际问题中的应用,提高学生的学习兴趣。

3. 利用小组讨论法,培养学生的合作能力和解决问题的能力。

五、教学过程1. 引入:讲解绝对值的概念,引导学生思考绝对值与不等式之间的关系。

2. 讲解绝对值不等式的概念和性质,让学生理解并掌握绝对值不等式的基本性质。

3. 讲解含绝对值不等式的解法,引导学生学会解这类不等式。

4. 利用实例讲解绝对值不等式在实际问题中的应用,让学生学会将理论知识应用于实际问题。

5. 布置练习题,让学生巩固所学知识,并提供解题思路和技巧。

7. 课后作业:布置适量作业,让学生进一步巩固所学知识。

六、教学评估1. 课堂提问:通过提问了解学生对绝对值不等式的概念、性质和解法的掌握情况。

2. 练习题解答:检查学生作业和课堂练习,评估学生对含绝对值不等式的解法的掌握程度。

3. 小组讨论:观察学生在小组讨论中的表现,评估学生的合作能力和解决问题的能力。

七、教学反思2. 根据学生的反馈,调整教学方法和内容,提高教学效果。

3. 关注学生的学习进度,针对性地进行辅导,帮助学生克服困难。

八、拓展与提高1. 引导学生思考绝对值不等式与其他类型不等式之间的联系和区别。

2. 讲解含绝对值不等式的更高级解法,如使用不等式组、函数等方法。

3. 引导学生关注绝对值不等式在实际生活中的应用,提高学生的实际问题解决能力。

九、教学计划调整1. 根据学生的学习进度和反馈,调整教学计划,确保教学内容和方法的适应性。

(完整版)含绝对值的不等式_公开课教案.docx

(完整版)含绝对值的不等式_公开课教案.docx

含绝对值的不等式教学目标1.认知目标(1)掌握 |x|<a 与 |x|>a(a>0 )型的绝对值不等式的解法;(2)理解掌握绝对值的意义和利用数轴表示含绝对值的不等式的解集2.能力目标(1)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;(2)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力;(3)采用分析与综合的方法,培养学生逻辑思维能力;(4)通过学生练习和老师点拨,培养学生的运算能力3.情感目标培养学生的学习兴趣和端正的学习态度,让学生理解学习数学的重要性4.德育教育我们为什么而读书教学重点: |x|<a与|x|>a(a>0)型的不等式的解法;教学难点:利用绝对值的意义分析、解决问题.教学过程设计教师活动学生活动一、导入新课口答【提问】正数的绝对值什么?负数的 a (a>0)绝对值是什么?零的绝对值是什|a|= 0 (a=0)么?举例说明?-a (a<0)二、新课【导入】 2 的绝对值等于几?- 2 的【巩固旧知识】绝对值等于几?绝对值等于2的数有哪些?在数轴上表示出来. 1. 数轴的含义和几何意义设计意图绝对值的概念是解|x|>a与|x|<a (a>0)型绝对值不等式的基础,为解这种类型的绝对值不等式做好铺垫.根据绝对值的意义自然引出绝对值方程 |x|=a ( a>0)的解法.学生口答【讲述】求绝对值等于 2 的数可以用方程 |x|=2来表示,这样的方程叫做归纳:数轴是一条规定了绝对值方程.显然,它有两个解一个原点、方向和单位长度的直是 2,另一个是-2.线。

原点、方向和单位长度称为数轴的三要素。

【绝对值的意义】在数轴上,表示一个数 a 的点到原点的距离叫做这个数的绝对值.【提问】如何解绝对值方程.【设问】由浅入深,循序渐进,在|x|=a ( a>0)型绝对值方程的基础上引出 |x|<a(a>0) 型绝对值方程的解法.1解绝对值不等式|x|<2,并用【笔答并点拨】针对解 |x|>a(a>0)绝对值不数轴表示它的解集。

含有绝对值的不等式教案北师大版

含有绝对值的不等式教案北师大版
4.教室布置:根据教学需要,布置教室环境,如分组讨论区、实验操作台等。可以将教室座位布置成小组讨论的形式,以便学生能够在课堂上进习题,包括基础题、应用题和拓展题,以便在课堂上进行练习和巩固,同时也为学生提供一定的学习资源和挑战机会。
6.教学课件:制作精美的教学课件,包括教学目标、导入案例、知识点讲解、例题解析、练习题等,以便在课堂上进行演示和讲解,提高教学效果和学生的学习兴趣。
解决办法:1.通过实际例子和生活中的情境,引导学生理解绝对值的概念和性质;2.通过讲解、练习和讨论,让学生掌握含有绝对值的不等式的解法;3.提供丰富的练习题,让学生在实践中应用含有绝对值的不等式解决实际问题,加深理解和掌握。
教学资源准备
1.教材:确保每位学生都有北师大版初中数学八年级上册第11章《不等式与不等式组》的教材,以便学生能够跟随教学进度进行学习和复习。
教师总结各组的亮点和不足,并提出进一步的建议和改进方向。
6.课堂小结(5分钟)
目标:回顾本节课的主要内容,强调含有绝对值的不等式的重要性和意义。
过程:
简要回顾本节课的学习内容,包括绝对值的概念、性质、含有绝对值的不等式的解法等。
强调含有绝对值的不等式在实际问题解决中的价值和作用,鼓励学生进一步探索和应用含有绝对值的不等式。
2.绝对值的性质:
(1)非负性:绝对值总是非负的,即|a| ≥ 0。
(2)对称性:对于任意实数a,有|a| = |-a|。
(3)单调性:对于任意实数a和b,如果a < b,则|a| < |b|。
(4)分配律:对于任意实数a、b和c,有|a + b| = |a| + |b|(当a ≥ 0时)和|a + b| = |b| - |a|(当a < 0时)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

含绝对值的不等式
教学目标
1.认知目标
(1)掌握|x|<a与|x|>a(a>0)型的绝对值不等式的解法;
(2)理解掌握绝对值的意义和利用数轴表示含绝对值的不等式的解集
2.能力目标
(1)通过用数轴来表示含绝对值不等式的解集,培养学生数形结合的能力;
(2)通过将含绝对值的不等式同解变形为不含绝对值的不等式,培养学生化归的思想和转化的能力;
(3)采用分析与综合的方法,培养学生逻辑思维能力;
(4)通过学生练习和老师点拨,培养学生的运算能力
3.情感目标
培养学生的学习兴趣和端正的学习态度,让学生理解学习数学的重要性
4.德育教育
我们为什么而读书
教学重点:|x|<a与|x|>a(a>0)型的不等式的解法;
教学难点:利用绝对值的意义分析、解决问题.
教学过程设计
教师活动学生活动设计意图
一、导入新课
【提问】正数的绝对值什么?负数的绝对值是什么?零的绝对值是什么?举例说明?
口答
a (a>0)
|a|= 0 (a=0)
-a (a<0)
绝对值的概念是解|x|>a与
|x|<a(a>0)型绝对值不等
式的基础,为解这种类型的
绝对值不等式做好铺垫.
二、新课
【导入】2的绝对值等于几?-2的绝对值等于几?绝对值等于2的数有哪些?在数轴上表示出来.
【讲述】求绝对值等于2的数可以用方程|x|=2来表示,这样的方程叫做绝对值方程.显然,它有两个解一个是2,另一个是-2.
【绝对值的意义】在数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.
【提问】如何解绝对值方程.
【设问】
1 解绝对值不等式|x|<2,并用数轴表示它的解集。

2 解绝对值不等式|x|>2,并用数轴表示它的解集。

【讲述】根据绝对值的意义,由右面的数轴可以看出,不等式|x|<2的解集就是表示数轴上到原点的距离小于2的点的集合;不等式|x|>2的解集就是表示数轴上到原点的距离大于2的点的集合。

【巩固旧知识】
1.数轴的含义和几何意义
学生口答
归纳:数轴是一条规定了
原点、方向和单位长度的直
线。

原点、方向和单位长度称
为数轴的三要素。

【笔答并点拨】
注意观察数轴上所表示的
集合,理解和区分两种情况
根据绝对值的意义自然引出
绝对值方程|x|=a(a>0)的
解法.
由浅入深,循序渐进,在
|x|=a(a>0)型绝对值方程
的基础上引出|x|<a(a>0)型
绝对值方程的解法.
针对解|x|>a(a>0)绝对值不
等式学生常出现的情况,运
用数轴质疑、解惑.
落实会正确解出|x|<a(a>0)
与|x|>a(a>0)绝对值不等式
的教学目标.
课堂教学设计说明
1.抓住解|x|<a,|x|>a(a>0)型绝对值不等式的关键是绝对值的意义,为此首先通过复习让学生掌握好绝对值的意义,为解绝对值不等式打下牢固的基础.
2.在解|x|<a,|x|>a(a>0)与|ax+b|>c,|ax+b|>c型绝对值不等式中的关键处设问、质疑、点拨,让学生融会贯通的掌握它们解法之间的内在联系,以达到提高学生解题能力的目的.。

相关文档
最新文档