一轮复习---函数与方程及零点

合集下载

高考数学一轮复习 函数与方程教案

高考数学一轮复习 函数与方程教案

山东省泰安市肥城市第三中学高考数学一轮复习函数与方程教案几个等价关系上的图象是连续不断的一条曲线,并且有轴的交点但不宜用二分法求交点横坐标的是( B )、方程125x x +-=的解所在区间( B )A (0,1)B (1,2)C (2,3) D(3,4)则下一个有根区间是(精确度即函数只有一个解。

的交点。

个不同实数解,即0(C<=(4m)^2-8(m+1)(2m-1)>0 -m+1>0,则二次函数,取值范围是,精美句子1、善思则能“从无字句处读书”。

读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。

读大海,读出了它气势磅礴的豪情。

读石灰,读出了它粉身碎骨不变色的清白。

2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。

幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。

幸福是“零落成泥碾作尘,只有香如故”的圣洁。

幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。

幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。

幸福是“人生自古谁无死,留取丹心照汗青”的气节。

3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。

4、成功与失败种子,如果害怕埋没,那它永远不能发芽。

鲜花,如果害怕凋谢,那它永远不能开放。

矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。

蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。

航船,如果害怕风浪,那它永远不能到达彼岸。

5、墙角的花,当你孤芳自赏时,天地便小了。

井底的蛙,当你自我欢唱时,视野便窄了。

笼中的鸟,当你安于供养时,自由便没了。

高考数学一轮复习第二章函数的概念基本初等函数(Ⅰ)及函数的应用2.6函数与方程习题理

高考数学一轮复习第二章函数的概念基本初等函数(Ⅰ)及函数的应用2.6函数与方程习题理

§2.6函数与方程1.函数的零点(1)定义:对于函数y=f(x),我们把使的实数x叫做函数y=f(x)的零点.函数y=f(x)的零点就是方程f(x)=0的________,也是函数y=f(x)的图象与x轴的________.(2)函数有零点的几个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴⇔函数y=f(x) .由此可知,求方程f(x)=0的实数根,就是确定函数y=f(x)的________.一般地,对于不能用公式求根的方程f(x)=0来说,我们可以将它与________联系起来,利用函数的性质找出零点,从而求出方程的根.2.函数的零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有,那么,函数y=f(x)在区间内有零点,即存在c∈,使得,这个c 也就是方程f(x)=0的根.3.二次函数的零点分布(即一元二次方程根的分布,见2.4节“考点梳理”5)自查自纠1.(1)f(x)=0 实数根交点的横坐标(2)有交点有零点零点函数y=f(x)2.f(a)·f(b)<0 (a,b) (a,b) f(c)=0(2015·安徽)下列函数中,既是偶函数又存在零点的是( )A.y=cos x B.y=sin xC.y=ln x D.y=x2+1解:y=cos x是偶函数且有无数多个零点,y=sin x为奇函数,y=ln x既不是奇函数也不是偶函数,y=x2+1是偶函数但没有零点.故选A.函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( )A .0B .1C .2D .3解:易知函数f (x )=2x+x 3-2单调递增,∵f (0)=1-2=-1<0,f (1)=2+1-2=1>0,∴函数f (x )在区间(0,1)内零点的个数为1.故选B .(2014·山东)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1 C .(1,2)D .(2,+∞)解:在同一平面直角坐标系中分别画出函数y =f (x ),y =g (x )的图象.如图所示,方程f (x )=g (x )有两个不相等的实根,等价于两个函数的图象有两个不同的交点.结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.故选B .方程ln x =8-2x 的实数根x ∈(k ,k+1),k ∈Z ,则k =________.解:构造函数f (x )=ln x +2x -8,∴f ′(x )=1x+2>0(x >0),则f (x )在(0,+∞)上单调递增,又f (1)=-6<0,f (2)=ln2-4<0,f (3)=ln3-2<0,f (4)=ln4>0,∴f (x )的唯一零点在(3,4)内,因此k =3.故填3.(2014·苏锡模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (x 2)+f (k -x )只有一个零点,则实数k 的值是________.解:由f (x 2)+f (k -x )=0得f (x 2)=-f (k -x ),因为f (x )是奇函数,有-f (k -x )=f (x -k ),故有f (x 2)=f (x -k ),又f (x )是R 上的单调函数,所以方程x 2=x -k 即x 2-x +k=0有唯一解,由Δ=0解得k =14,故填14.类型一 判断函数零点所在的区间(2014·北京)已知函数f (x )=6x-log 2x .在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解:f (x )在(0,+∞)为减函数,又f (1)=6>0,f (2)=2>0,f (4)=32-2=-12<0.故选C .【点拨】要判断在给定区间连续的函数是否存在零点,只需计算区间端点的函数值是否满足零点存在性定理的条件;如果题目没有给出具体区间,则需要估算函数值并利用函数的单调性等性质来求.但应注意到:不满足f (a )·f (b )<0的函数也可能有零点,此时,应结合函数性质分析判断.(2013·北京朝阳检测)函数f (x )=ln x -2x的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(1,e)和(3,4)D .(e ,+∞)解:∵f ′(x )=1x +2x 2>0(x >0),∴f (x )在(0,+∞)上单调递增,又f (3)=ln3-23>0,f (2)=ln2-1<0,∴f (2)·f (3)<0,∴f (x )唯一的零点在区间(2,3)内.故选B .类型二 零点个数的判断(2015·江苏)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0, 0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.解:由题意知,方程|f (x )+g (x )|=1实根的个数即为函数y =f (x )与y =1-g (x )交点个数及函数y =f (x )与y =-1-g (x )交点个数之和,而y =1-g (x )=⎩⎪⎨⎪⎧1, 0<x ≤1,7-x 2,x ≥2,x 2-1,1<x <2,作图易知函数y =f (x )与y =1-g (x )有两个交点,又y =-1-g (x )=⎩⎪⎨⎪⎧-1, 0<x <1,5-x 2,x ≥2,x 2-3,1<x <2,作图易知函数y =f (x )与y =-1-g (x )有两个交点,因此共有4个交点.故填4.【点拨】(1)连续函数在区间[a ,b ]上满足f (a )·f (b )<0时,函数在(a ,b )内的零点至少有一个,但不能确定究竟有多少个.要更准确地判断函数在(a ,b )内零点的个数,还得结合函数在该区间的单调性、极值等性质进行判断;(2)对于解析式较复杂的函数,可根据解析式特征化为f (x )=g (x )的形式,通过考察两个函数图象的交点个数来求原函数的零点个数;(3)有时求两函数图象交点的个数,不仅要研究其走势(单调性、极值点、渐近线等),而且要明确其变化速度快慢.(2014·福建)函数f (x )=⎩⎪⎨⎪⎧x 2-2, x ≤0,2x -6+ln x ,x >0的零点个数是________. 解:当x ≤0时,f (x )=x 2-2,令x 2-2=0,得x =2(舍)或x =-2, 即在区间(-∞,0]上,函数只有一个零点. 当x >0时,f (x )=2x -6+ln x ,解法一:令2x -6+ln x =0,得ln x =6-2x .作出函数y =ln x 与y =6-2x 在区间(0,+∞)上的图象,易得两函数图象只有一个交点,即函数f (x )=2x -6+ln x (x >0)只有一个零点.解法二:f ′(x )=2+1x,由x >0知f ′(x )>0,∴f (x )在(0,+∞)上单调递增, 而f (1)=-4<0,f (e)=2e -5>0,f (1)f (e)<0,从而f (x )在(0,+∞)上只有一个零点.综上可知,函数f (x )的零点个数是2.故填2.类型三 已知零点情况求参数范围(2014·江苏)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪⎪⎪x 2-2x +12,若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.解:函数y =f (x )-a 在区间[-3,4]上有互不相同的10个零点,即函数y =f (x ),x ∈[-3,4]与y =a 的图象有10个不同交点.在坐标系中作出函数f (x )在一个周期[0,3)上的图象如图,可知当0<a <12时满足题意.故填⎝ ⎛⎭⎪⎫0,12. 【点拨】(1)解答本题的关键在于依据函数的对称性、周期性等知识作出函数图象,将函数的零点个数问题转化为求两个函数的交点个数问题;(2)对于含参数的函数零点问题,一般先分离参数,针对参数进行分类讨论,按照题目所给零点的条件,找出符合要求的参数值或范围,但讨论要注意全面及数形结合.(2015·河南模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +2, x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,1)B .[0,2]C .[-2,2)D .[-1,2)解:∵f (x )=⎩⎪⎨⎪⎧x +2, x >a ,x 2+5x +2,x ≤a ,∴g (x )=f (x )-2x =⎩⎪⎨⎪⎧-x +2, x >a ,x 2+3x +2,x ≤a .方程-x +2=0的解为x =2,方程x 2+3x +2=0的解为x =-1或-2.若函数g (x )=f (x )-2x 恰有三个不同的零点,则⎩⎪⎨⎪⎧a <2,-1≤a ,-2≤a ,解得-1≤a <2,即实数a的取值范围是[-1,2).故选D .1.函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x 轴交点的横坐标,注意它是数而不是点.2.判断函数在给定区间零点的步骤(1)确定函数的图象在闭区间[a,b]上连续;(2)计算f(a),f(b)的值并判断f(a)·f(b)的符号;(3)若f(a)·f(b)<0,则有实数解.除了用上面的零点存在性定理判断外,有时还需结合相应函数的图象来作出判断.3.确定函数f(x)零点个数(方程f(x)=0的实根个数)的方法:(1)判断二次函数f(x)在R上的零点个数,一般由对应的二次方程f(x)=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f(x)在[a,b]上的图象是连续不断的一条曲线,且是单调函数,又f(a)·f(b)<0,则y=f(x)在区间(a,b)内有唯一零点.1.函数y =x 12-⎝ ⎛⎭⎪⎫12x 的零点个数为( ) A .0B .1C .2D .3解:在同一坐标系内分别做出y 1=x ,y 2=⎝ ⎛⎭⎪⎫12x的图象,根据图象可以看出交点的个数为1.故选B .2.(2015·青岛模拟)若函数f (x )=3ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是( )A .a >15B .a >15或a <-1C .-1<a <15D .a <-1解:由题可知函数f (x )的图象是一条直线,所以f (x )在区间(-1,1)上存在一个零点等价于f (-1)f (1)<0,即(1-5a )(a +1)<0.解得a >15或a <-1.故选B .3.(2013·天津)函数f (x )=2x|log 0.5x |-1的零点个数为( ) A .1B .2C .3D .4解:判断函数f (x )的零点个数可转化为判断方程f (x )=2x|log 0.5x |-1=0的根的个数,由此得到|log 0.5x |=⎝ ⎛⎭⎪⎫12x ,设y 1=|log 0.5x |,y 2=⎝ ⎛⎭⎪⎫12x,则两个函数y 1与y 2的交点个数即为所求,如图所示,可知交点有两个.故选B .4.已知x 0是函数f (x )=2x+11-x的一个零点,若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解:由于函数g (x )=11-x =-1x -1在(1,+∞)上单调递增,函数h (x )=2x在(1,+∞)上单调递增,故函数f (x )=h (x )+g (x )在(1,+∞)上单调递增,所以函数在(1,+∞)上只有唯一的零点x 0,且在(1,x 0)上,f (x 1)<f (x 0)=0;在(x 0,+∞)上,f (x 2)>f (x 0)=0.故选B .5.(2014·黄冈九月质检)函数f (x )=⎝ ⎛⎭⎪⎫1+x -x 22+x 33cos2x 在区间[-3,3]上零点的个数为( )A .3B .4C .5D .6解:令g (x )=1+x -x22+x33, 则g ′(x )=1-x +x 2>0,故g (x )在R 上单调递增,而g (-3)g (3)<0,故g (x )在(-3,3)上仅有1个零点.作图易知y =cos2x 在[-3,3]上有4个零点,且易判断这5个零点互不相同.故选C .6.(2015·浙江模拟)函数y =ln|x -1|的图象与函数y =-2cos πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .8B .6C .4D .2解:作出两函数的大致图象如图所示.两函数图象都关于直线x =1对称,且共有6个交点, 故所有交点的横坐标之和为6.故选B .7.设f (x )=2x-x -4,x 0是函数f (x )的一个正数零点,且x 0∈(a ,a +1),其中a ∈N ,则a = .解:∵x 0是函数f (x )的一个正数零点,即f (x 0)=2x 0-x 0-4=0,知f (2)=22-2-4<0,f (3)=23-3-4>0,∴x 0∈(2,3),再由y =2x与y =x +4在(0,+∞)上只有一个交点知a 值惟一.又∵a ∈N ,∴a =2.故填2.8.(2014·安庆六校联考)已知函数f (x )=⎩⎪⎨⎪⎧|x |, x >0,-x 2-2x +1,x ≤0, 若函数g (x )=f (x )+2m 有三个零点,则实数m 的取值范围是________.解:作出函数f (x )=⎩⎪⎨⎪⎧|x |,x >0,-x 2-2x +1,x ≤0 的图象如图所示,令g (x )=f (x )+2m =0,则f (x )=-2m ,由图象知,当1≤-2m <2,即-1<m ≤-12时,直线y =-2m 与y =f (x )的图象有三个交点.故填⎝⎛⎦⎥⎤-1,-12.9.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,求函数y =f (f (x ))+1的所有零点构成的集合.解:先解方程f (t )=-1,即⎩⎪⎨⎪⎧t ≤0,t +1=-1或⎩⎪⎨⎪⎧t >0,log 2t =-1. 得t =-2或t =12.再解方程f (x )=-2和f (x )=12.即⎩⎪⎨⎪⎧x ≤0,x +1=-2或⎩⎪⎨⎪⎧x >0,log 2x =-2和⎩⎪⎨⎪⎧x ≤0,x +1=12或⎩⎪⎨⎪⎧x >0,log 2x =12. 得x =-3或x =14和x =-12或x = 2.故所求为⎩⎨⎧⎭⎬⎫-3,-12,14,2.10.若函数f (x )=2ax 2-x -1在(0,1)上恰有一个零点,求实数a 的取值范围. 解:f (x )在(0,1)上恰有一个零点,显然a ≠0. ∴有两种情形:①f (0)f (1)<0,得(-1)·(2a -2)<0⇒a >1;②Δ=0且方程f (x )=0的根在(0,1)内,令Δ=0⇒1+8a =0⇒a =-18,得f (x )=-14(x 2+4x +4),此时f (x )=0的根x 0=-2∉(0,1).综上知a >1,即实数a 的取值范围为(1,+∞). 11.已知二次函数f (x )=ax 2+bx +c (a ≠0). (1)若f (-1)=0,试判断函数f (x )的零点个数;(2)若对任意x 1,x 2∈R ,且x 1<x 2,f (x 1)≠f (x 2),试证明存在x 0∈(x 1,x 2),使f (x 0)=12[f (x 1)+f (x 2)]成立. 解:(1)∵f (-1)=0,∴a -b +c =0,b =a +c . ∵Δ=b 2-4ac =(a +c )2-4ac =(a -c )2, 当a =c 时,Δ=0,函数f (x )有一个零点; 当a ≠c 时,Δ>0,函数f (x )有两个零点.(2)证明:令g (x )=f (x )-12[f (x 1)+f (x 2)],则g (x 1)=f (x 1)-12[f (x 1)+f (x 2)]=f (x 1)-f (x 2)2,g (x 2)=f (x 2)-12[f (x 1)+f (x 2)]=f (x 2)-f (x 1)2,∴g (x 1)·g (x 2)=-14[f (x 1)-f (x 2)]2.∵f (x 1)≠f (x 2),∴g (x 1)·g (x 2)<0,即g (x )=0在(x 1,x 2)内必有一个实根.即存在x 0∈(x 1,x 2),使f (x 0)=12[f (x 1)+f (x 2)]成立.设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=||x cos (πx ),则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为( ) A .5B .6C .7D .8解:原问题可转化为函数f (x )与g (x )的图象在[-12,32]上的交点个数问题.由题意知函数f (x )为偶函数,且周期为2.当x =32,12,0,-12时,g (x )=0,当x =1时,g (x )=1,且g (x )是偶函数,g (x )≥0,由此可画出函数y =g (x )和函数y =f (x )的大致图象如图所示,由图可知在⎣⎢⎡⎦⎥⎤-12,32上两函数图象有6个交点,故选B .。

第一轮复习11----函数与方程

第一轮复习11----函数与方程

k , k 1k N , 求k的值。 在的区间为
3
零点位置 若a b c, 则函数f x x a x b x b x c x c x a 的两个零点分
别位于区间( C.b, c 和c, 内 A.a, b 和b, c 内 B.- , a 和a, b 内 ) D.- , a 和c, 内
x
个数为( ) A.1 B.2
C.3
D.4
B
若定义在R上的偶函数f x 满足 f x 2 f x , 且当x 0,1时, ) D.2个 f x x, 则函数y f x log3 | x | 的零点个数是( A.多于4个 B.4个 C.3个
零点个数
3
若函数g x f x loga | x | 至少有5个零 点,则a的取值范围是( A.1,5 1 C. 0, 5, 5 ) 1 B. 0, 5, 5 1 D. ,1 1,5 5
f x 2 f x , 当 - 1 x 1时,f x x ,
5 1 a 4
零点问题的取值范围
1 若存在负实数使得方程 2 a x 1 成立,则实数a的取值范围是( ) A.2, B.0, C.0,2 D.0,1
x
C
零点问题的取值范围
若函数f x a x aa 0且a 1
x
有2个零点,则实数 a的取值范围是__
第一轮复习-函数与方程
上饶中学数学组 俞振
函数的零点:函数 y f x 的图像与x轴的 交点的横坐标。
方程f x 0有实数根 函数y f x 的图像
函数的零点存在性定理 若函数y f x 在区间a, b上的图像是连续曲线, 并且在区间端点的函数 值符号相反即 f a f b 0, 则在区间a, b 内,函数y f x 至少有一个零点,即 相应方程f x 0在区间a, b 内至少有一个实数解。

高考数学一轮复习函数与方程

高考数学一轮复习函数与方程
3.二分法的定义
对于在区间[a,b]如图象连续不断且f(a)f(b)<0的函数y=f(x),通过不
断地把它的零点所在区间 一分为二 ,使所得区间的两个端点逐步逼近零

点,进而得到零点近似值的方法叫做二分法.
目录
4.用二分法求函数y=f(x)零点x0的近似值的一般步骤
(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0;
目录

(多选)有如下说法,其中正确的有


A.函数f(x)的零点为x0,则函数f(x)的图象经过点(x0,0)时,函数值一定
变号
B.连续不断的函数,相邻两个零点之间的所有函数值保持同号
C.函数f(x)在区间[a,b]上连续,若满足f(a)·f(b)<0,则方程f(x)=0
在区间[a,b]上一定有实根
c)(x-a)的两个零点分别位于区间 (

A.(a,b)和(b,c)内
B.(-∞,a)和(a,b)内
C.(b,c)和(c,+∞)内
D.(-∞,a)和(c,+∞)内
解析:A 函数y=f(x)是开口向上的二次函数,最多有两个零点,由于a<b
<c,则a-b<0,a-c<0,b-c<0,因此f(a)=(a-b)(a-c)>0,f
知,当直线y=2mx的斜率在kOA,kOB之间时,有三个交点,即kOA<2m<
1
1
1
1
kOB,因为kOA=- ,kOB=1,所以- <2m<1,解得- <m< .
3
3
6
2
答案 (2)A
目录
|解题技法|
利用函数零点求参数(范围)的方法
目录
考向2 探究函数多个零点(方程根)问题
− 2 −2, ≤ 0,

2024年高考数学第一轮复习专题训练第二章 §2.11 函数的零点与方程的解

2024年高考数学第一轮复习专题训练第二章 §2.11 函数的零点与方程的解

§2.11函数的零点与方程的解考试要求 1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念对于一般函数y=f(x),我们把使的实数x叫做函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有⇔函数y=f(x)的图象与有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有,那么,函数y=f(x)在区间内至少有一个零点,即存在c∈(a,b),使得,这个c 也就是方程f(x)=0的解.2.二分法对于在区间[a,b]上图象连续不断且的函数y=f(x),通过不断地把它的零点所在区间,使所得区间的两个端点逐步逼近,进而得到零点近似值的方法叫做二分法.常用结论1.若连续不断的函数f(x)是定义域上的单调函数,则f(x)至多有一个零点.2.连续不断的函数,其相邻两个零点之间的所有函数值保持同号.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.()(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)·f(b)<0.()(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.()(4)用二分法求函数零点的近似值适合于变号零点.()教材改编题1.观察下列函数的图象,判断能用二分法求其零点的是()2.函数y =3x-ln x 的零点所在区间是( ) A .(3,4) B .(2,3) C .(1,2) D .(0,1)3.函数f (x )=e x +3x 的零点个数是( )A .0B .1C .2D .3题型一 函数零点所在区间的判定例1 (1)函数f (x )=ln x +2x -6的零点所在的区间是( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)延伸探究 用二分法求函数f (x )=ln x +2x -6在区间(2,3)内的零点近似值,至少经过________次二分后精确度达到0.1( )A .2B .3C .4D .5(2)(2023·蚌埠模拟)已知x 1+12x =0,x 2+log 2x 2=0,33x --log 2x 3=0,则( )A .x 1<x 2<x 3B .x 2<x 1<x 3C .x 1<x 3<x 2D .x 2<x 3<x 1 听课记录:______________________________________________________________ ________________________________________________________________________ 思维升华 确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 跟踪训练1 (1)(多选)函数f (x )=e x -x -2在下列哪个区间内必有零点( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)(2)若a <b <c ,则函数f (x )=(x -a )·(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内题型二 函数零点个数的判定例2 (1)若函数f (x )=|x |,则函数y =f (x )-12log |x |的零点个数是( )A .5B .4C .3D .2(2)已知在R 上的函数f (x )满足对于任意实数x 都有f (2+x )=f (2-x ),f (7+x )=f (7-x ),且在区间[0,7]上只有x =1和x =3两个零点,则f (x )=0在区间[0,2 023]上根的个数为( )A .404B .405C .406D .203听课记录:______________________________________________________________ ________________________________________________________________________ 思维升华 求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点;(2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2 (1)(2022·泉州模拟)设定义域为R 的函数f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,-x 2-2x ,x ≤0,则关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为( )A .3B .7C .5D .6(2)函数f (x )=36-x 2·cos x 的零点个数为______.题型三 函数零点的应用命题点1 根据零点个数求参数例3 (2023·黄冈模拟)函数f (x )=⎩⎪⎨⎪⎧4-x 2,x ≤2,log 3(x -1),x >2,g (x )=kx -3k ,若函数f (x )与g (x )的图象有三个交点,则实数k 的取值范围为( )A .(22-6,0)B .(23-6,0)C .(-2,0)D .(25-6,0)听课记录:______________________________________________________________命题点2 根据函数零点的范围求参数例4 (2023·北京模拟)已知函数f (x )=3x -1+ax x.若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,43 B.⎝⎛⎭⎫0,43 C .(-∞,0) D.⎝⎛⎭⎫43,+∞ 听课记录:______________________________________________________________ ________________________________________________________________________ 思维升华 根据函数零点的情况求参数的三种常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.跟踪训练3 (1)函数f (x )=2x -2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( ) A .0<a <3B .1<a <3C .1<a <2D .a ≥2(2)(2023·唐山模拟)已知函数f (x )=⎩⎪⎨⎪⎧ln x x ,x >0,x 2+2x ,x ≤0,若g (x )=f (x )-a 有3个零点,则实数a 的取值范围为( )A .(-1,0)B.⎝⎛⎭⎫-1,1eC.⎣⎡⎭⎫0,1eD.⎝⎛⎭⎫0,1e ∪{-1}。

函数的零点与方程的解+课件——2025届高三数学一轮复习

函数的零点与方程的解+课件——2025届高三数学一轮复习
f(c)=0,这个 c 也就是方程 f(x)=0 的根.
注意:①根据该定理,能确定 f(x)在(a,b)内有零点,但零点不一定唯一.
②若 f(x)在[a,b]上的图象是连续的,且是单调函数,f(a)f(b)<0 ,则 f(x)在
(a,b)内有唯一零点.
③零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点
函数的零点与方程的解
小太阳☀7232
2024.06.11
目录
Contents
01
02
课前准备
理论基础
▪ 掌握函数图像的绘制
▪ 零点存在性定理
▪ 二分法
03
04
基础题型
综合运用
▪ 一元二次函数以及由常见函数组成的分段函数
▪ 由两个基本初等函数加减组成的函数
▪ 参变分离
▪ 分类讨论
01
课前准备
常函数
飘带函数
反比例函数
一元二次函数
一次函数
对勾函数

分段函数
幂函数
指数函数
掌握函数图像的画法
平移变换
对数函数
伸缩变换
正弦函数
对称
翻折
余弦函数
正切函数
求导
02
理论基础
1.函数的零点
(1)函数零点的定义
对于函数y=f(x),我们把使
f(x)=0
的实数x叫作函数y=f(x)
的零点.
注意:函数y=f(x)的零点是一个实数,是方程f(x)=0的实
数根,也是函数y=f(x)的图象与x轴的交点的横坐标.
(2)几个等价关系
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴 有交点⇔函数
y=f(x)有 零点 .

一轮复习课件--函数与方程-零点

一轮复习课件--函数与方程-零点

海丰县实验中 学
对于在区间[a,b]上连续不断且 f(a)·f(b)<0 的 函数y=f(x),通过不断地把函数f(x)的零点所在 的区间 一分为二 ,使区间的两个端点逐步逼
近 零点 ,进而得到零点近似值的方法叫做
二分法.
海丰县实验中 学
1.函数的零点是函数y=f(x)的图象与x轴的交点 吗?
【提示】 不是.函数的零点是一个实数,是函 数y=f(x)的图象与x轴交点的横坐标.
(3)零点存在的判定方法:如果函数y=f(x)在区间[a,b]上的图象是
连续不断的一条曲线,并且有f(a)·f(b)<0
,那么函数y=f(x)在区
间 (a,b) 内有零点,即存在x0∈(a,b),使得 f(x0)=0 .
海丰县实验中 学
2.二次函数y=ax2+bx+c(a>0)的图象与零点0,∴m>2或m<-2.
【答案】 C
海丰县实验中
3.(2011·课标全国卷)在下列区间中,函数 f(x)=学ex+4x-3 的零
点所在的区间为( )
A.(-14,0)
B.(0,14)
C.(14,12)
D.(12,34)
【解析】 显然 f(x)=ex+4x-3 的图象连续不间断,又 f(12)= e
海丰县实验中
2. 若函数 y=ln x 与 y=2x的图象的交点为(x0,y学0),则 x0 所在的
区间为( )
A.(1,2) B.(2,3) C.(e,3) D.(e,+∞) 【解析】 令 f(x)=ln x-2x(x>0), 因为 f(2)=ln 2-1<0,f(3)=ln 3-23>0, ∴f(2)·f(3)<0, 又函数 f(x)在(0,+∞)上是增函数, ∴函数 y=f(x)的唯一零点 x0∈(2,3).

高三一轮复习第三节 函数的零点

高三一轮复习第三节 函数的零点

第三讲函数的零点1.定义(1)对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.(2)方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2.函数零点的判定如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是f(x)=0的根,我们把这一结论称为零点存在性定理.Ps:只能判定出零点存在,不能确定零点的个数。

通关秘籍:f(a)f(b)<0与函数f(x)存在零点的关系(1)若函数y=f(x)在闭区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)f(b)<0,则函数y=f(x)一定有零点。

(2)由函数y=f(x)在闭区间[a,b]上有零点不一定能推出f(a)f(b)<0。

所以f(a)f(b)< 0是在闭区间[a,b]上有零点的充分不必要条件。

(3)若函数f(x)在[a,b]上单调,且f(x)的图象是连续不断的一条曲线,则f(a)f(b)<0⇒函数f(x)在[a,b]上只有一个零点。

3.二次函数f(x)=ax2+bx+c(a>0)的零点分布研究二次函数零点的分布,一般情况下需要从以下三个方面考虑:(1)二次函数方程根的判别式;(2)对应二次函数区间端点函数值的正负;与区间端点的位置关系。

(3)对应二次函数图象抛物线的对称轴x=−b2a4.二分法(1)定义:对于区间[a,b]上连续不断的,且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而得到零点近似值的方法,叫做二分法。

(2)用二分法求函数f(x)零点近似值的步骤:第一步,确定区间[a,b],验证f(a)f(b)<0,给定精确度ε;第二步,求区间(a,b)的中点x1;第三步,计算:(i)若f(x1)=0,则x1就是函数的零点;(ii)若f(a)f(x1)<0,则令b=x1(此时零点x0∈(a,x1));(iii)若f(x1)f(b)<0,则令a=x1(此时零点x0∈(x1,b));第四步,判断是否达到精确度ε,即若|a−b|<ε,则得到零点近似值a(或b);否则重复第二,三步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与方程
1.函数零点的定义 (1)对于函数y=f(x)(x∈D),把使 f(x)=0
的实数x叫做函数y=f(x)(x∈D)的零点.
(2)方程f(x)=0有实数根⇔ 函数y=f(x)的 图象与 x轴 有交点 函数y=f(x)有 ⇔
. 零点
返回目录
2.函数零点的判定
如果函数y=f(x)在区间[a,b]上的 图象是连续不断的一条曲线,并且有
f(a)· , f(b)<0 那么,函数y=f(x)在区间 (a,b) 内有零点,即存在c∈(a,b),使得 f(c)=0
,这个c也就是f(x)=0的根.我们不妨把
这一结论称为零点存在性定理
返回目录
0
二次函数 y=ax2+bx+ c (a>0)的 图象
与X轴的交点 零点个数
0
0
(x1,0),(x2,0)
两个
(x1,0)
一个
无交点 无
返回目录
4.(2011 广东清远调研)如图所示,函数图象与 x轴均有公共点,但不能用二分法求公共点横 坐标的是

考点1
函数零点的判断与求解
1.若函数f ( x ) ax b(b 0) 有一个零点3, 那么函数 g ( x ) bx 3ax的零点是
21 . 4
(2)令g(x)=mx2+2(m+3)x+2m+14,
依题意得 解得19 13

m>0
g(4)<0


m<0
g(4)>0,
<m<0.
返回目录
返回目录
(1)解法一:设方程x2+2(m+3)x+2m+14=0的两根分别为 x1,x2(x1<x2). 依题意,只需满足(x1-1)(x2-1)<0. 即x1x2-(x1+x2)+1<0.
由根与系数的关系可得
(2m+14)+2(m+3)+1<0,即4m+21<0,解得m<解法二:由于函数图象开口向上, 故依题意,只需f(1)<0, 即1+2(m+3)+2m+14<0, 21 即4m+21<0,解得m<. 4 返回目录
考点3 零点性质的应用
(1)若函数f(x)=ax2-x-1有且仅 有一个零点,求实数a的值; (2)若函数f(x)=|4x-x2|+a有4个
零点,求实数a的取值范围.
返回目录
(1)函数f(x)=x2+2(m+3)x+2m+14有两 个零点,且一个大于1,一个小于1,求实数 m的取值范围;
(2)关于x的方mx2+2(m+3)x+2m+14=0 有两实根,且一根大于4,一根小于4,求实 数m的取值范围.
A.0 B.1
C.2
D.3
返回目录
求函数y=lnx+2x-6的零点个数.
返回目录
返回目录
考点3 零点性质的应用
3.函数f ( x ) 3ax 1 2a )
在区间( 1,1)上存在一个零点 , 则a的取值范围是( 1 1 A1 a Ba 5 5 1 C a 或a 1 Da 1 5
2
考点1
2.已知f ( x ) x x 1仅
3
函数零点的判断与求解
有一个正零点, 则此零点 所在区间是( A ( 3 ,4 ) C (1,2) B ( 2, 3 ) D(0,1) )
考点2
零点个数问题
2
[2010年高考福建卷]函数
x 2x 3 x0 f ( x) x0 2 ln x C 的零点个数为( )
相关文档
最新文档