山东省东营市2019-2020学年九年级(上)第一次月考数学试卷
山东省东营市九年级上学期数学第一次月考试卷

山东省东营市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共14题;共28分)1. (2分) (2019九上·榆树期中) 计算的值是()A .B .C .D .2. (2分) (2019九上·西安月考) 下列关系式中,y是x的反比例函数的是()A . y=4xB .C .D .3. (2分)(2017·埇桥模拟) 如图,在正方形ABCD中,有一个面积为25的小正方形EFGH,其中E,F,G,H分别在AB,BC,FD上,若BF=4,则AB的长为()A . 16B . 15C . 13D . 124. (2分)将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A .B .C .D .5. (2分)下列关系式中,y是x反比例函数的是()A . y=B . y=-1C . y=-D . y=6. (2分) (2019九上·相山月考) 某水坝的坡度i=1:,坡长AB=20米,则坝的高度为()A . 10米B . 20米C . 40米D . 207. (2分)(2020·长安模拟) 如图,在同一直角坐标系中,函数与的图象大致是().A . ①②B . ①③C . ②④D . ③④8. (2分)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A . a<0B . b>0C . a+b+c=0D . 4a﹣2b+c>09. (2分)(2020·怀化模拟) 已知二次函数()的图象如图所示,对称轴是直线,下列结论:①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0其中正确的是()A . ①②B . 只有①C . ③④D . ①④10. (2分)(2017·邵阳模拟) 下列函数中,当x>0时,y的值随x的值增大而减小的函数是()A . y=3xB . y=x﹣1C . y=D . y=2x211. (2分) (2019九上·深圳期中) 函数的图象如图所示,那么函数的图象大致是()A .B .C .D .12. (2分) (2019九上·乐东黎族自治期中) 对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A . 开口向下B . 顶点坐标是(1,2)C . 对称轴是x=﹣1D . 与x轴有两个交点13. (2分)如图为抛物线y=ax2+bx+c的图象,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,AB>AO,下列几个结论:(1)abc<0;(2)b>2a;(3)a-b=-1;(4)4a-2b+1<0.其中正确的个数是()A . 5个B . 4个C . 3个D . 2个14. (2分) (2019九上·浙江期中) 已知二次函数的图象如图所示,有下列4个结论:① ;② ;③ ;④ ;⑤2c<3b其中正确的结论有()A . 2个B . 3个C . 4个D . 5个二、填空题 (共8题;共8分)15. (1分) (2019九上·北京月考) 已知,是反比例函数图象上两个点的坐标,且,请写出一个符合条件的反比例函数的解析式________.16. (1分) (2017七下·德州期末) 如图,已知直线AE∥BC,AD平分∠BAE,交BC于点C,∠BCD=140°,则∠B的度数为________17. (1分)(2017·如皋模拟) 如图,动点A在曲线y= (x>0)上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC,直线DE分别交x轴,y轴于点M,N,当NE:DM=1:2时,图中的阴影部分的面积等于________.18. (1分)(2020·宁波模拟) 如图,为了测量某风景区内一座古塔AB的高度,小明分别在塔的对面CD楼楼底C、楼顶D处,测得塔顶A的仰角分别为45°和30°,已知楼CD的高为10米,则塔AB的高度为________米(结果保留根号)。
山东省东营市九年级上学期数学第一次月考试卷

山东省东营市九年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题。
(共12题;共24分)1. (2分)(2020·西藏) 如图,一个由圆柱和长方体组成的几何体水平放置,它的俯视图是()A .B .C .D .2. (2分) (2020八下·镇江月考) 如图,将□ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B的度数为()A . 102°B . 108°C . 114°D . 124°3. (2分)(2020·迁安模拟) 已知圆锥的侧面积是8πcm²,若圆锥底面半径为R(cm),母线长为l(cm),则RR关于l的函数图象大致是()A .B .C .D .4. (2分)用配方法解一元二次方程x2-2x-3=0时,方程变形正确的是()A . (x-1)2=2B . (x-1)2=4C . (x-1)2=1D . (x-1)2=75. (2分) (2019九上·武汉月考) 下列一元二次方程没有实数根的是()A . .B . .C . .D . .6. (2分)小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A . 从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率B . 任意买一张电影票,座位号是2的倍数的概率C . 掷一枚质地均匀的硬币,正面朝上的概率D . 从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率7. (2分)(2020·西乡塘模拟) 长方形的正投影不可能是()A . 正方形B . 长方形C . 线段D . 梯形8. (2分)(2019·台湾) 如图的坐标平面上有原点O与A,B,C,D四点.若有一直线L通过点(-3,4)且与y 轴垂直,则L也会通过下列哪一点?()A . AB . BC . CD . D9. (2分) (2019九上·西安月考) 已知: ,则的值为()A . 3B . 2C .D .10. (2分)(2017·岱岳模拟) 如图,AB为半圆O的直径,AD、BC分别切⊙O于A,B两点,CD切⊙O于点E,连接OD、OC,下列结论:①∠DOC=90°,②AD+BC=CD,③S△AOD:S△BOC=AD2:AO2 ,④OD:OC=DE:OE,⑤OD2=DE•CD,正确的有()A . 2个B . 3个C . 4个D . 5个11. (2分) (2019七上·宽城期中) 如图,在中, .用直尺和圆规在边上确定一点,使点到点、点的距离相等,则符合要求的作图痕迹是()A .B .C .D .12. (2分) (2018八上·港南期中) 如图,△ABC≌△DEC,点B的对应点E在线段AB上,若AB∥CD,∠D=32°,则∠B的度数是()A .B .C .D .二、填空题。
山东省东营市2020版九年级上学期数学第一次月考试卷(II)卷

山东省东营市2020版九年级上学期数学第一次月考试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·永康期末) 把一元二次方程x(x+1)=3x+2化为一般形式,正确的是()A . x2+4x+3=0B . x2﹣2x+2=0C . x2﹣3x﹣1=0D . x2﹣2x﹣2=02. (2分)方程x2-8x+6=0的左边配成完全平方式后,所得的方程是().A . (x-6)2=10B . (x-4)2=10C . (x-6)2=6D . (x-4)2=63. (2分) (2016九上·新泰期中) 关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A . 15°B . 30°C . 45°D . 60°4. (2分) (2019八下·下陆期末) 对角线相等且互相平分的四边形是()A . 一般四边形B . 平行四边形C . 矩形D . 菱形5. (2分)(2019·秦安模拟) 如图,四边形是正方形,延长到点,使,连结交于点,则等于()A .D .6. (2分)(2012·贺州) 在一个不透明的布袋里装有4个小球,其中2个红球,1个白球,1个黄球,它们除颜色外其它完全相同.那么一次性摸出两个小球恰好都是红球的概率是()A .B .C .D .7. (2分) (2019七下·江岸月考) 如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是()A . ①②B . ①③④C . ①②④D . ①②③④8. (2分)一直角三角形的三边分别为2、3、x,那么以x为边长的正方形的面积为()A . 5B . 13C . 5或13D . 或9. (2分)(2020·章丘模拟) 如图,已知点A(-6,0),B(2,0),点C在直线上,则使△ABC是直角三角形的点C的个数为()C . 3D . 410. (2分)观察图形,并阅读相关的文字:那么8条直线相交,最多可形成交点的个数是()A . 21B . 28C . 36D . 45二、填空题 (共6题;共8分)11. (1分) (2019九上·海口月考) 一元二次方程x(x+4)=8x+12的一般形式是________.12. (2分)如果一元二次方程x2+ax+b=0的两个根是3和﹣2,则a=________,b=________.13. (1分)(2018·东莞模拟) 写出一个二次项系数为1,且一个根是3的一元二次方程________.14. (1分)已知菱形ABCD的对角线AC,BD的长分别为6和8,则该菱形面积是________15. (1分) (2017九上·商水期末) 有长度分别为2cm,3cm,4cm,7cm的四条线段,任取其中三条能组成三角形的概率是________.16. (2分) (2019八上·凉州月考) 若|m﹣4|+n2﹣2n+1=0,则m=________,n=________.三、解答题 (共8题;共95分)17. (10分) (2018九上·淮安月考) 解方程(1) x2﹣36=0(2) x2﹣3x+2=018. (20分) (2018八上·合浦期末) 用适当的方法解下列方程:(1) x2=3x(2) 2x2﹣x+6=0.(3) y2+3=2 y;(4) x2+2x+120=0.19. (15分)解下列方程.(1) 2x(x﹣3)=5(x﹣3)(2)(x﹣5)(x+2)=8(3) 2x2﹣7x﹣4=0(用配方法)20. (10分) (2020七上·西安期末) 作图题:如图,已知线段a和b,请用直尺和圆规作出线段AC和AD,(不必写作法只需保留作图痕迹)(1)使AC=2a+b(2)使AD=2a-b21. (5分) (2019九上·龙岗月考) 如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,两块绿地的面积之和为60平方米.两块绿地之间及周边留宽度相等的人行通道,请问人行道的宽度为多少米?22. (10分)甲乙两人玩摸球游戏:一个不透明的袋子中装有相同大小的3个球,球上分别标有数字1,2,3.首先,甲从中随机摸出一个球,然后,乙从剩下的球中随机摸出一个球,比较球上的数字,较大的获胜.(1)求甲摸到标有数字3的球的概率(2)这个游戏公平吗?请说明理由.23. (15分) (2017九上·越城期中) 某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件,若销售单价每涨1元,每周销售量就减少10件.设销售单价为每件x元(x≥50),一周的销售量为y件.(1)写出y与x的函数关系式.(标明x的取值范围)(2)设一周的销售利润为S,写出S与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10 000元的情况下,使得一周销售利润达到8 000元,销售单价应定为多少?24. (10分) (2019八下·诸暨期末) 如图,矩形ABCD中,点E、F分别在边CD、AB上,且DE=BF.(1)求证:四边形AFCE是平行四边形.(2)若四边形AFCE是菱形,AB=8,AD=4,求菱形AFCE的周长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共95分)17-1、17-2、18-1、18-2、18-3、18-4、19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。
东营市数学九年级上第一次月考

东营市数学九年级上第一次月考姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2015九上·宜昌期中) 抛物线y=(x﹣2)2+3的顶点坐标是()A . (﹣2,3)B . (2,3)C . (﹣2,﹣3)D . (2,﹣3)2. (2分) (2017九上·上杭期末) 已知反比例函数y=﹣,则下列各点在此函数图象上的是()A . (2,4)B . (﹣1,﹣8)C . (﹣2,﹣4)D . (4,﹣2)3. (2分)(2017·浙江模拟) 已知函数,则下列函数图象正确的是()A .B .C .D .4. (2分)函数y=kx+b与函数y=在同一平面直角坐标系中的大致图象正确的是()A .B .C .D .5. (2分)如图所示的二次函数y=ax2+bx+c的图象中,刘敏同学观察得出了下面四条信息:(1)b2-4ac>0;(2)c<0;(3)2a-b>0;(4)a-b+c<0,你认为其中错误的有()A . 1个B . 2个C . 3个D . 4个6. (2分) (2017九上·红山期末) 要得到y=(x﹣3)2﹣2的图象,只要将y=x2的图象()A . 由向左平移3个单位,再向上平移2个单位B . 由向右平移3个单位,再向下平移2个单位C . 由向右平移3个单位,再向上平移2个单位D . 由向左平移3个单位,再向下平移2个单位7. (2分)(2019·东营) 甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程(米)与时间(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A . 乙队率先到达终点B . 甲队比乙队多走了米C . 在秒时,两队所走路程相等D . 从出发到秒的时间段内,乙队的速度慢8. (2分)若双曲线如下图所示,那么二次函数的图象大致为()A .B .C .D .9. (2分)(2017·广水模拟) 已知二次函数y=ax2+bx+c(a≠0)的图象如图,其对称轴为直线x=﹣1,给出下列结果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.则正确的结论是()A . (1)(2)(3)(4)B . (2)(4)(5)C . (2)(3)(4)D . (1)(4)(5)10. (2分)(2020·鹿城模拟) 已知:如图,在平面直角坐标系中,等边的边长为6,点C在边上,点D在边上,且 .反比例函数的图象恰好经过点C和点D.则k的值为()A .B .C .D .二、填空题 (共6题;共8分)11. (2分)(2020·新乡模拟) 如图,在以O为原点的直角坐标系中,点A,C分别在x轴、y轴的正半轴上,点B在第一象限内,四边形OABC是矩形,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BE =4CE,四边形ODBE的面积是8,则k=________.12. (1分)已知二次函数y=(x﹣2)2+3,当x________ 时,y随x的增大而减小.13. (1分)已知A地在C、B两地之间,甲乙两人分别从A、B两地同时出发,相向而行,经过一段时间后相遇,甲继续向B地前进,乙继续向A地前进;甲到达B地后立即返回,在C地甲追上乙.甲乙两人相距的路程y(米)与出发的时间x(分钟)之间的关系如图所示,则A、C两地相距________米.14. (1分)(2018·朝阳模拟) 如图,在平面直角坐标系中,等腰三角形ABC的顶点A在y轴上,底边AB//x 轴,顶点B、C在函数的图象上.若,点A的纵坐标为1,则k的值为________.15. (2分)比较大小:﹣ ________﹣________ .16. (1分) (2019九上·天台月考) 如图,抛物线(m为常数)交y轴于点A,与x 轴的一个交点在2和3之间,顶点为B.①抛物线与直线y=m+2有且只有一个交点;②若点点、点在该函数图象上,则;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为,其中正确判断的序号是________三、解答题 (共9题;共86分)17. (10分)(2019·苏州模拟) 如图,在平面直角坐标系中,直线经过点,与轴正半轴交于点,与反比例函数交于点,且轴交反比例函数于点,连接 .(1)求的值;(2)求的面积;(3)若为线段上一点,过点作,交反比例函数于点 ,且.求点的坐标.18. (10分)某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y (元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?19. (5分)在双曲线y= 的任一支上,y都随x的增大而增大,则k的取值范围.20. (5分) (2019七下·天台月考) 如图,一块边长为9米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草.①求出种花草的面积.②若种植花草共花费了4480元,则每平方米种植花草的费用是多少元?21. (10分)(2020·晋中模拟) 如图,一次函数y1=x+4的图象与反比例函数y2=的图象交于A(﹣1,a),B两点,与x轴交于点C .(1)求k .(2)根据图象直接写出y1>y2时,x的取值范围.(3)若反比例函数y2=与一次函数y1=x+4的图象总有交点,求k的取值.22. (10分)(2019·北京) 在平面直角坐标系中,抛物线与轴交于点A,将点A 向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含的式子表示);(2)求抛物线的对称轴;(3)已知点,.若抛物线与线段PQ恰有一个公共点,结合函数图象,求的取值范围.23. (15分) (2019九上·西安月考) 已知,如图,二次函数 y=-x2+bx+c的图象与 x轴交于 A , B 两点,与 y 轴交于点 C(0,5),且经过点(1,8)(1)求该抛物线的解析式,顶点坐标和对称轴;(2)在抛物线上是否存在一点 D ,使△ABD 的面积与△ABC 的面积相等(点 D 不与点 C 重合)?若存在,求出点 D 的坐标;若不存在,请说明理由.24. (11分)(2017·海陵模拟) 在全民创业的热潮中,小王研制并投产了一种新产品,每件制造成本为9元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣x+25.(利润=售价﹣制造成本)(1)写出每月的利润W(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为55万元?(3)当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?25. (10分)(2017·哈尔滨模拟) 如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO(1)求抛物线的解析式;(2)点P在线段AB上,过点P作y轴的平方线,交抛物线于点Q,当PQ取最大值时,求点P的坐标;(3)在(2)的条件下,把线段PA绕点P顺时针旋转90°,得线段PD,连接BD交直线PQ于点M,作MN⊥AB 于N,求MN的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共86分)17-1、17-2、17-3、18-1、18-2、18-3、19-1、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
山东省东营市2019-2020学年中考数学一模试卷含解析

山东省东营市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,一次函数y =x ﹣1的图象与反比例函数2y x =的图象在第一象限相交于点A ,与x 轴相交于点B ,点C 在y 轴上,若AC =BC ,则点C 的坐标为( )A .(0,1)B .(0,2)C .50,2⎛⎫⎪⎝⎭ D .(0,3)2.下列四个几何体中,主视图是三角形的是( )A .B .C .D .3.下列计算正确的是( )A .2223x x x +=B .623x x x ÷=C .235(2)2x x x =gD .222(3)6x x =4.方程x (x -2)+x -2=0的两个根为( )A .10x =,22x =B .10x =,22x =-C .11x =- ,22x =D .11x =-, 22x =-5.下列方程中,是一元二次方程的是( )A .2x ﹣y=3B .x 2+1x =2 C .x 2+1=x 2﹣1 D .x (x ﹣1)=06.在下列条件中,能够判定一个四边形是平行四边形的是( )A .一组对边平行,另一组对边相等B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线7.在平面直角坐标系中,点(2,3)所在的象限是( )A .第一象限B .第二象限C .第三象限 D .第四象限8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A .48B .60C .76D .80 9.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3 B .a <﹣3C .a >3D .a≥3 10.若A(﹣4,y 1),B(﹣3,y 2),C(1,y 3)为二次函数y =x 2﹣4x+m 的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 1<y 3<y 211.平面直角坐标系中的点P (2﹣m ,12m )在第一象限,则m 的取值范围在数轴上可表示为( ) A .B .C .D .12.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( ) A . B . C . D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组的解是________.14.已知Rt △ABC 中,∠C=90°,AC=3,BC=7,CD ⊥AB ,垂足为点D ,以点D 为圆心作⊙D ,使得点A 在⊙D 外,且点B 在⊙D 内.设⊙D 的半径为r ,那么r 的取值范围是_________.15.在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A 、B 、C 、D 都是格点,AB 与CD 相交于M ,则AM :BM=__.16.已知反比例函数21k y x+=的图像经过点(2,1)-,那么k 的值是__.17.函数123y x x =-+-中自变量x 的取值范围是___________. 18.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,∠ABC ,射线BC 上一点D ,求作:等腰△PBD ,使线段BD 为等腰△PBD 的底边,点P 在∠ABC 内部,且点P 到∠ABC 两边的距离相等.20.(6分)如图,已知O e 的直径10AB =,AC 是O e 的弦,过点C 作O e 的切线DE 交AB 的延长线于点E ,过点A 作AD DE ⊥,垂足为D ,与O e 交于点F ,设DAC ∠,CEA ∠的度数分别是α,β,且045α︒<<︒.(1)用含α的代数式表示β;(2)连结OF 交AC 于点G ,若AG CG =,求»AC 的长.21.(6分)问题提出(1)如图1,正方形ABCD 的对角线交于点O ,△CDE 是边长为6的等边三角形,则O 、E 之间的距离为 ;问题探究(2)如图2,在边长为6的正方形ABCD 中,以CD 为直径作半圆O ,点P 为弧CD 上一动点,求A 、P 之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD 及弓形AMD 组成,AB=2m ,BC=3.2m ,弓高MN=1.2m(N 为AD 的中点,MN ⊥AD),小宝说,门角B 到门窗弓形弧AD 的最大距离是B 、M 之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B 到门窗弓形弧AD 的最大距离.22.(8分)已知:如图,在正方形ABCD 中,点E 在边CD 上,AQ ⊥BE 于点Q ,DP ⊥AQ 于点P .求证:AP=BQ ;在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.23.(8分)如图,一次函数y =kx+b 的图象与反比例函数y =m x的图象交于A (﹣2,1),B (1,n )两点. 求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.24.(10分)解不等式组: .25.(10分)如图,在平面直角坐标系中,A 为y 轴正半轴上一点,过点A 作x 轴的平行线,交函数2(0)y x x =<的图象于B 点,交函数6(0)y x x=>的图象于C ,过C 作y 轴和平行线交BO 的延长线于D .(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;(3)在(1)条件下,四边形AODC的面积为多少?26.(12分)解不等式组3122324xx x⎧-≥⎪⎨⎪+<⎩请结合题意填空,完成本题的解答:(I)解不等式(1),得;(II)解不等式(2),得;(III)把不等式(1)和(2)的解集在数轴上表示出来:(IV)原不等式组的解集为.27.(12分)已知抛物线23y ax bx=++的开口向上顶点为P(1)若P点坐标为(4,一1),求抛物线的解析式;(2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)(3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.【详解】由1{2y x y x=-=,解得21x y =⎧⎨=⎩ 或12x y =-⎧⎨=-⎩, ∴A (2,1),B (1,0),设C (0,m ),∵BC=AC ,∴AC 2=BC 2,即4+(m-1)2=1+m 2,∴m=2,故答案为(0,2).【点睛】本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.2.D【解析】【分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【详解】解:主视图是三角形的一定是一个锥体,只有D 是锥体.故选D .【点睛】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.3.C【解析】【分析】根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可.【详解】A 、2x 与2x 不是同类项,不能合并,此选项错误;B 、66422x x x x -÷==,此选项错误;C 、235(2)2x x x =g ,此选项正确;D 、224(3)9x x =,此选项错误.故选:C .此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键.4.C【解析】【分析】根据因式分解法,可得答案.【详解】解:因式分解,得(x-2)(x+1)=0,于是,得x-2=0或x+1=0,解得x1=-1,x2=2,故选:C.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键.5.D【解析】试题解析:A.含有两个未知数,B.不是整式方程,C没有二次项.故选D.点睛:一元二次方程需要满足三个条件:()1含有一个未知数,()2未知数的最高次数是2,()3整式方程. 6.C【解析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.7.A【解析】【分析】根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.【详解】解:点(2,3)所在的象限是第一象限.故答案为:A考核知识点:点的坐标与象限的关系. 8.C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴10==∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.9.A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.10.B【解析】【分析】根据函数解析式的特点,其对称轴为x=2,A(﹣4,y1),B(﹣3,y2),C(1,y3)在对称轴左侧,图象开口向上,利用y随x的增大而减小,可判断y3<y2<y1.【详解】抛物线y=x2﹣4x+m的对称轴为x=2,当x<2时,y随着x的增大而减小,因为-4<-3<1<2,所以y3<y2<y1,故选B.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的增减性是解题的关键. 11.B【解析】【分析】【详解】根据第二象限中点的特征可得:2-m0 1m0 2>⎧⎪⎨>⎪⎩,解得:m2 m0<⎧⎨>⎩.在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征12.D【解析】【分析】本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致.【详解】A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选D.【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x>4【解析】【分析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x>2;由②得:x>4;∴此不等式组的解集为x>4;故答案为x>4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.79 44xp p.【解析】【分析】先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论.【详解】解:∵Rt△ABC中,∠ACB=90,AC=3,,∴.∵CD⊥AB,∴CD=4.∵AD•BD=CD2,设AD=x,BD=1-x.解得x=94,∴点A在圆外,点B在圆内,r的范围是79 44x<<,故答案为79 44x<<.【点睛】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.15.5:1【解析】【分析】根据题意作出合适的辅助线,然后根据三角形相似即可解答本题.【详解】解:作AE∥BC交DC于点E,交DF于点F,设每个小正方形的边长为a,则△DEF∽△DCN,∴EFCN=DFDN=13,∴EF=13 a,∵AF=2a,∴AE=53 a,∵△AME∽△BMC,∴AMBM=AEBC=534aa=512,故答案为:5:1.【点睛】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.32 k=-【解析】【分析】将点的坐标代入,可以得到-1=212k+,然后解方程,便可以得到k的值.【详解】∵反比例函数y=21kx+的图象经过点(2,-1),∴-1=21 2 k+∴k=−32;故答案为k=−32.【点睛】本题主要考查函数图像上的点满足其解析式,可以结合代入法进行解答17.x≤2【解析】试题解析:根据题意得:20 {x30x-≥-≠解得:2x≤.18.【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得. 【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴,∴,故答案为.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析.【解析】【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.20.(1)902βα=︒-;(2)103π 【解析】【分析】(1)连接OC ,根据切线的性质得到OC ⊥DE ,可以证明AD ∥OC ,根据平行线的性质可得DAC ACO ∠=∠,则根据等腰三角形的性质可得2DAE α∠=,利用90DAE E ∠+∠=︒,化简计算即可得到答案;(2)连接CF ,根据OA OC =,AG CG =可得OF AC ⊥,利用中垂线和等腰三角形的性质可证四边形AFCO 是平行四边形,得到△AOF 为等边三角形,由OA OC =并可得四边形AFCO 是菱形,可证AOF V 是等边三角形,有∠FAO=60°,120AOC ∠=︒再根据弧长公式计算即可. 【详解】解:(1)如图示,连结OC ,∵DE 是O e 的切线,∴OC DE ⊥.又AD DE ⊥,∴90D OCE ∠=∠=︒,∴AD OC P ,∴DAC ACO ∠=∠.∵OA OC =,∴OCA OAC ∠=∠.∴2DAE α∠=.∵90D ∠=︒,∴90DAE E ∠+∠=︒.∴290αβ+=︒,即902βα=︒-.(2)如图示,连结CF ,∵OA OC =,AG CG =,∴OF AC ⊥,∴FA FC =,∴FAC FCA CAO ∠=∠=∠,∴CF OA ∥,∵AF OC ∥,∴四边形AFCO 是平行四边形,∵OA OC =,∴四边形AFCO 是菱形,∴AF AO OF ==,∴AOF V 是等边三角形,∴260FAO α∠==︒,∴120AOC ∠=︒,∵10AB =,∴»AC 的长1205101803ππ⋅⋅==. 【点睛】本题考查的是切线的性质、菱形的判定和性质、弧长的计算,掌握切线的性质定理、弧长公式是解题的关键.21.(1)333;(2)353;(2110553. 【解析】【分析】(1)连接AC ,BD ,由OE 垂直平分DC 可得DH 长,易知OH 、HE 长,相加即可;(2)补全⊙O ,连接AO 并延长交⊙O 右半侧于点P ,则此时A 、P 之间的距离最大,在Rt △AOD 中,由勾股定理可得AO 长,易求AP 长;(1)小贝的说法正确,补全弓形弧AD 所在的⊙O ,连接ON ,OA ,OD ,过点O 作OE ⊥AB 于点E ,连接BO 并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,在Rt△ANO中,设AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO长,易知BP长. 【详解】解:(1)如图1,连接AC,BD,对角线交点为O,连接OE交CD于H,则OD=OC.∵△DCE为等边三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DH12=DC=1.∵四边形ABCD为正方形,∴△OHD为等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HE3=DH=13,∴OE=HE+OH=13+1;(2)如图2,补全⊙O,连接AO并延长交⊙O右半侧于点P,则此时A、P之间的距离最大,在Rt△AOD中,AD=6,DO=1,∴AO22AD DO=+=53OP DO==Q∴51;(1)小贝的说法正确.理由如下,如图1,补全弓形弧AD所在的⊙O,连接ON,OA,OD,过点O作OE⊥AB于点E,连接BO并延长交⊙O 上端于点P ,则此时B 、P 之间的距离即为门角B 到门窗弓形弧AD 的最大距离,由题意知,点N 为AD 的中点, 3.2,AD BC OA OD ===,∴AN 12=AD=1.6,ON ⊥AD , 在Rt △ANO 中,设AO=r ,则ON=r ﹣1.2.∵AN 2+ON 2=AO 2,∴1.62+(r ﹣1.2)2=r 2,解得:r 53=, ∴AE=ON 53=-1.2715=, 在Rt △OEB 中,OE=AN=1.6,BE=AB ﹣AE 2315=, ∴BO 221105OE BE =+= ∴BP=BO+PO 11055153=+, ∴门角B 到门窗弓形弧AD 110553. 【点睛】本题考查了圆与多边形的综合,涉及了圆的有关概念及性质、等边三角形的性质、正方形和长方形的性质、勾股定理等,灵活的利用两点之间线段最短,添加辅助线将题中所求最大距离转化为圆外一点到圆上的最大距离是解题的关键.22.(1)证明见解析;(2)①AQ ﹣AP=PQ ,②AQ ﹣BQ=PQ ,③DP ﹣AP=PQ ,④DP ﹣BQ=PQ.【解析】试题分析:(1)利用AAS 证明△AQB ≌△DPA ,可得AP=BQ ;(2)根据AQ ﹣AP=PQ 和全等三角形的对应边相等可写出4对线段.试题解析:(1)在正方形中ABCD 中,AD=BA ,∠BAD=90°,∴∠BAQ+∠DAP=90°,∵DP ⊥AQ ,∴∠ADP+∠DAP=90°,∴∠BAQ=∠ADP ,∵AQ ⊥BE 于点Q ,DP ⊥AQ 于点P ,∴∠AQB=∠DPA=90°,∴△AQB ≌△DPA (AAS ),∴AP=BQ.(2)①AQ ﹣AP=PQ ,②AQ ﹣BQ=PQ ,③DP ﹣AP=PQ ,④DP ﹣BQ=PQ.考点:(1)正方形;(2)全等三角形的判定与性质.23. (1)y=2x -,y=−x−1;(2)x<−2或0<x<1 【解析】【分析】(1)利用点A 的坐标可求出反比例函数解析式,再把B (1,n )代入反比例函数解析式,即可求得n 的值,于是得到一次函数的解析式;(2)根据图象和A,B 两点的坐标即可写出一次函数的值大于反比例函数的值的x 的取值范围.【详解】(1)∵A(−2,1)在反比例函数y=m x 的图象上, ∴1=2m -,解得m=−2. ∴反比例函数解析式为y=2x-, ∵B(1,n)在反比例函数上,∴n=−2,∴B 的坐标(1,−2), 把A(−2,1),B(1,−2)代入y=kx+b 得122k b k b =-+⎧⎨-=+⎩解得:11k b =-⎧⎨=-⎩∴一次函数的解析式为y=−x−1;(2)由图像知:当x<−2或0<x<1时,一次函数的值大于反比例函数的值.【点睛】本题考查了反比例函数与一次函数的交点问题,属于简单题,熟悉函数图像的性质是解题关键.24.x<2.【解析】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:,由①得:x<3,由②得:x<2,∴不等式组的解集为:x<2.25.(1)线段AB与线段CA的长度之比为13;(2)线段AB与线段CA的长度之比为13;(3)1.【解析】试题分析:(1)由题意把y=2代入两个反比例函数的解析式即可求得点B、C的横坐标,从而得到AB、AC的长,即可得到线段AB与AC的比值;(2)由题意把y=a代入两个反比例函数的解析式即可求得用“a”表示的点B、C的横坐标,从而可得到AB、AC的长,即可得到线段AB与AC的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD的长,从而可由梯形的面积公式求出四边形AODC的面积.试题解析:(1)∵A(0,2),BC∥x轴,∴B(﹣1,2),C(3,2),∴AB=1,CA=3,∴线段AB与线段CA的长度之比为13;(2)∵B是函数y=﹣2x(x<0)的一点,C是函数y=6x(x>0)的一点,∴B(﹣2a,a),C(6a,a),∴AB=2a,CA=6a,∴线段AB与线段CA的长度之比为13;(3)∵ABAC=13,∴ABBC=14,又∵OA=a,CD∥y轴,∴14 OA ABCD BC==,∴CD=4a,∴四边形AODC的面积为=12(a+4a)×6a=1.26.(I)x≥1;(Ⅱ)x>2;(III)见解析;(Ⅳ)x≥1.【解析】【分析】分别求出每一个不等式的解集,将不等式解集表示在数轴上即可得出两不等式解集的公共部分,从而确定不等式组的解集.【详解】(I )解不等式(1),得x≥1;(Ⅱ)解不等式(2),得x >2;(Ⅲ)把不等式(1)和(2)解集在数轴上表示出来,如下图所示:(Ⅳ)原不等式组的解集为x≥1.【点睛】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,准确求出每个不等式的解集是解本题的关键.27.(1)21234y x x =-+;(2)1-4a≤y≤4+5a ;(3)b =2或-10. 【解析】【分析】(1)将P (4,-1)代入,可求出解析式(2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线2b x a =- 中,可判断22b x a=->,且开口向上,所以y 随x 的增大而减小,再把x=-1,x=2代入即可求得. (3)观察图象可得,当0≤x≤1时,抛物线上的点到x 轴距离的最大值为6,这些点可能为x=0,x=1,2bx =-三种情况,再根据对称轴2b x =-在不同位置进行讨论即可. 【详解】解:(1)由此抛物线顶点为P (4,-1),所以y =a (x-4)2-1=ax 2-8ax +16a -1,即16a -1=3,解得a=14, b=-8a=-2 所以抛物线解析式为:21234y x x =-+; (2)由此抛物线经过点C (4,-1),所以 一1=16a +4b +3,即b =-4a -1.因为抛物线2(41)3=-++y ax a x 的开口向上,则有0a > 其对称轴为直线412+=a x a ,而4112222a +==+>a x a 所以当-1≤x≤2时,y 随着x 的增大而减小当x =-1时,y=a+(4a+1)+3=4+5a当x =2时,y=4a-2(4a+1)+3=1-4a所以当-1≤x≤2时,1-4a≤y≤4+5a ;(3)当a =1时,抛物线的解析式为y =x 2+bx +3∴抛物线的对称轴为直线2b x =- 由抛物线图象可知,仅当x =0,x =1或x =-2b 时,抛物线上的点可能离x 轴最远 分别代入可得,当x =0时,y=3当x=1时,y =b +4当x=-2b 时,y=-24b +3 ①当一2b <0,即b >0时,3≤y≤b+4, 由b +4=6解得b =2 ②当0≤-2b ≤1时,即一2≤b≤0时,△=b 2-12<0,抛物线与x 轴无公共点 由b +4=6解得b =2(舍去); ③当b 12-> ,即b <-2时,b +4≤y≤3, 由b +4=-6解得b =-10综上,b =2或-10【点睛】本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x 轴距离的最大值的点不同.。
山东省东营市2019-2020学年中考第一次质量检测数学试题含解析

山东省东营市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为( )A .0.72×106平方米B .7.2×106平方米C .72×104平方米D .7.2×105平方米2.如图,OP 平分∠AOB ,PC ⊥OA 于C ,点D 是OB 上的动点,若PC =6cm ,则PD 的长可以是( )A .7cmB .4cmC .5cmD .3cm3.下列运算错误的是( )A .(m 2)3=m 6B .a 10÷a 9=a C .x 3•x 5=x 8 D .a 4+a 3=a 7 4.若a+b=3,,则ab 等于( ) A .2 B .1 C .﹣2 D .﹣15.下列各数中负数是( )A .﹣(﹣2)B .﹣|﹣2|C .(﹣2)2D .﹣(﹣2)36.下列计算正确的是( )A .a 2+a 2=2a 4B .(﹣a 2b )3=﹣a 6b 3C .a 2•a 3=a 6D .a 8÷a 2=a 47.如图,AD 是⊙O 的弦,过点O 作AD 的垂线,垂足为点C ,交⊙O 于点F ,过点A 作⊙O 的切线,交OF 的延长线于点E .若CO=1,AD=23,则图中阴影部分的面积为A .3-43π B .323π C .3-23π D .3π8.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .9.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )A .B .C .D .10.如图,正六边形ABCDEF 内接于⊙O ,半径为4,则这个正六边形的边心距OM 的长为( )A .2B .23C .3D .4311.如图,ABC ∆中,6AB =,4BC =,将ABC ∆绕点A 逆时针旋转得到AEF ∆,使得//BC AF ,延长BC 交AE 于点D ,则线段CD 的长为( )A .4B .5C .6D .712.将一次函数2y x =-的图象向下平移2个单位后,当0y >时,a 的取值范围是( ) A .1x >- B .1x > C .1x <- D .1x <二、填空题:(本大题共6个小题,每小题4分,共24分.)131a + 中的字母a 的取值范围是_____.14.计算:a 6÷a 3=_________.15.对于实数a ,b ,我们定义符号max{a ,b}的意义为:当a≥b 时,max{a ,b}=a ;当a <b 时,max{a ,b]=b ;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y =max{x+3,﹣x+1},则该函数的最小值是_____.16.函数2y x =-中,自变量x 的取值范围是_____.17.某文化用品商店计划同时购进一批A 、B 两种型号的计算器,若购进A 型计算器10只和B 型计算器8只,共需要资金880元;若购进A 型计算器2只和B 型计算器5只,共需要资金380元.则A 型号的计算器的每只进价为_____元.18.当关于x 的一元二次方程ax 2+bx+c =0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”.如果关于x 的一元二次方程x 2+(m ﹣2)x ﹣2m =0是“倍根方程”,那么m 的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在ABC V 中,A 90∠=o ,AB AC =,点D 是BC 上任意一点,将线段AD 绕点A 逆时针方向旋转90o ,得到线段AE ,连结EC .()1依题意补全图形;()2求ECD ∠的度数;()3若CAE 7.5∠=o ,AD 1=,将射线DA 绕点D 顺时针旋转60o 交EC 的延长线于点F ,请写出求AF 长的思路.20.(6分)如图,点O 是△ABC 的边AB 上一点,⊙O 与边AC 相切于点E ,与边BC ,AB 分别相交于点D ,F ,且DE=EF .求证:∠C=90°;当BC=3,sinA=35时,求AF 的长.21.(6分)如图,在等腰△ABC 中,AB =AC ,以AB 为直径的⊙O 与BC 相交于点D 且BD =2AD ,过点D 作DE ⊥AC 交BA 延长线于点E ,垂足为点F .(1)求tan ∠ADF 的值;(2)证明:DE 是⊙O 的切线;(3)若⊙O 的半径R =5,求EF 的长.22.(8分)如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.(1)求抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.23.(8分)如图,热气球的探测器显示,从热气球A 看一栋髙楼顶部B 的仰角为30°,看这栋高楼底部 C 的俯角为60°,热气球 A 与高楼的水平距离为120m,求这栋高楼BC 的高度.24.(10分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共件,其中b班征集到作品件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.25.(10分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.26.(12分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?27.(12分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.求AP,BP的长(参考数据:2≈1.4,3,5);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:把一个数记成a×10n(1≤a<10,n整数位数少1)的形式,叫做科学记数法.∴此题可记为1.2×105平方米.考点:科学记数法2.A【解析】【分析】过点P作PD⊥OB于D,根据角平分线上的点到角的两边距离相等可得PC=PD,再根据垂线段最短解答即可.【详解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,则PD的最小值是6cm,故选A.【点睛】考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.3.D【解析】【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.【详解】A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误,故选D.【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.4.B【解析】【详解】∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故选B.考点:完全平方公式;整体代入.5.B【解析】【分析】首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可.【详解】A、-(-2)=2,是正数;B、-|-2|=-2,是负数;C、(-2)2=4,是正数;D、-(-2)3=8,是正数.故选B.【点睛】此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键.6.B【解析】【分析】【详解】解:A.a2+a2=2a2,故A错误;C、a2a3=a5,故C错误;D、a8÷a2=a6,故D错误;本题选B.考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方7.B【解析】【分析】由S阴影=S△OAE-S扇形OAF,分别求出S△OAE、S扇形OAF即可;【详解】连接OA,OD∵OF⊥AD,∴3,在Rt△OAC中,由tan∠3知,∠AOC=60°,则∠DOA=120°,OA=2,∴Rt△OAE中,∠AOE=60°,OA=2∴3S阴影=S△OAE-S扇形OAF=12×2×3-26022233603ππ⨯⨯=.故选B.【点睛】考查了切线的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.8.D【解析】【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t 之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=12×OD×CD=12t2(0≤t≤3),即S=12t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.9.C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.详解:从左边看竖直叠放2个正方形.故选:C.点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.10.B【解析】分析:连接OC、OB,证出△BOC是等边三角形,根据锐角三角函数的定义求解即可.详解:如图所示,连接OC、OB∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OC=OB,∴△BOC是等边三角形,∴∠OBM=60°,∴OM=OBsin∠OBM=4×32=3.故选B.点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.11.B【解析】【分析】先利用已知证明BAC BDA :△△,从而得出BA BC BD BA=,求出BD 的长度,最后利用CD BD BC =-求解即可.【详解】 //AF BC QFAD ADB ∴∠=∠BAC FAD ∠=∠QBAC ADB ∴∠=∠B B ∠∠=QBAC BDA ∴V :VBA BC BD BA∴= 646BD ∴= 9BD ∴=945CD BD BC ∴=-=-=故选:B .【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键. 12.C【解析】【分析】直接利用一次函数平移规律,即k 不变,进而利用一次函数图象的性质得出答案.【详解】将一次函数2y x =-向下平移2个单位后,得:22y x =--,当0y >时,则:220x -->,解得:1x <-,∴当0y >时,1x <-,故选C .【点睛】本题主要考查了一次函数平移,解一元一次不等式,正确利用一次函数图象上点的坐标性质得出是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.a≥﹣1.【解析】【分析】根据二次根式的被开方数为非负数,可以得出关于a的不等式,继而求得a的取值范围. 【详解】由分析可得,a+1≥0,解得:a≥﹣1.【点睛】熟练掌握二次根式被开方数为非负数是解答本题的关键.14.a1【解析】【分析】根据同底数幂相除,底数不变指数相减计算即可【详解】a6÷a1=a6﹣1=a1.故答案是a1【点睛】同底数幂的除法运算性质15.2【解析】试题分析:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,x16.2【解析】【分析】根据被开方式是非负数列式求解即可.【详解】依题意,得20x -≥,解得:2x ≥,故答案为:2x ≥.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.17.40【解析】【分析】设A 型号的计算器的每只进价为x 元,B 型号的计算器的每只进价为y 元,根据“若购进A 型计算器10只和B 型计算器8只,共需要资金880元;若购进A 型计算器2只和B 型计算器5只,共需要资金380元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设A 型号的计算器的每只进价为x 元,B 型号的计算器的每只进价为y 元,根据题意得:108880{25380x y x y +=+=, 解得:40{60x y ==. 答:A 型号的计算器的每只进价为40元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 18.-1或-4【解析】分析:设“倍根方程”2(2)20x m x m +--=的一个根为α,则另一根为2α,由一元二次方程根与系数的关系可得2(2)?22m m αααα+=--⋅=-,,由此可列出关于m 的方程,解方程即可求得m 的值. 详解:由题意设“倍根方程”2(2)20x m x m +--=的一个根为α,另一根为2α,则由一元二次方程根与系数的关系可得:2(2)?22m m αααα+=--⋅=-,, ∴223m m αα-=-=-,, ∴22()3m m --=-, 化简整理得:2540m m ++=,解得 1241m m =-=-,.故答案为:-1或-4.点睛:本题解题的关键是熟悉一元二次方程根与系数的关系:若一元二次方程2(0)0 ax bx c a ++=≠的两根分别为αβ、,则 bc a aαβαβ+=-=,. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)90°;(3)解题思路见解析.【解析】【分析】(1)将线段AD 绕点A 逆时针方向旋转90°,得到线段AE ,连结EC .(2)先判定△ABD ≌△ACE ,即可得到B ACE ∠=∠,再根据45B ACB ACE ∠=∠=∠=︒,即可得出90ECD ACB ACE ∠=∠+∠=︒;(3)连接DE ,由于△ADE 为等腰直角三角形,所以可求2DE =;由60ADF ∠=︒,7.5CAE ∠=︒ ,可求EDC ∠的度数和CDF ∠的度数,从而可知DF 的长;过点A 作AH DF ⊥于点H ,在Rt △ADH 中,由60ADF ∠=︒,AD=1可求AH 、DH 的长;由DF 、DH 的长可求HF 的长;在Rt △AHF 中,由AH 和HF ,利用勾股定理可求AF 的长.【详解】解:()1如图,()2Q 线段AD 绕点A 逆时针方向旋转90o ,得到线段AE .DAE 90∠∴=o ,AD AE =,DAC CAE 90∠∠∴+=o .BAC 90∠=o Q ,BAD DAC 90o ∠∠∴+=.BAD CAE ∠∠∴=,在ABD V 和ACE V 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴V ≌()ACE SAS V. B ACE ∠∠∴=,ABC QV 中,A 90∠=o ,AB AC =,B ACB ACE 45∠∠∠∴===o .ECD ACB ACE 90∠∠∠∴=+=o ;()3Ⅰ.连接DE ,由于ADE V为等腰直角三角形,所以可求DE =Ⅱ.由ADF 60o ∠=,CAE 7.5∠=o ,可求EDC ∠的度数和CDF ∠的度数,从而可知DF 的长; Ⅲ.过点A 作AH DF ⊥于点H ,在Rt ADH V 中,由ADF 60o ∠=,AD 1=可求AH 、DH 的长; Ⅳ.由DF 、DH 的长可求HF 的长;Ⅴ.在Rt AHF V 中,由AH 和HF ,利用勾股定理可求AF 的长.故答案为(1)见解析;(2)90°;(3)解题思路见解析.【点睛】本题主要考查旋转的性质,等腰直角三角形的性质的运用,解题的关键是要注意对应点与旋转中心所连线段的夹角等于旋转角.20.(1)见解析(2)54【解析】【分析】 (1)连接OE ,BE ,因为DE=EF ,所以¶DE=¶FE ,从而易证∠OEB=∠DBE ,所以OE ∥BC ,从可证明BC ⊥AC ;(2)设⊙O 的半径为r ,则AO=5﹣r ,在Rt △AOE 中,sinA=3,55OE r OA r ==-从而可求出r 的值. 【详解】解:(1)连接OE ,BE ,∵DE=EF , ∴¶DE=¶FE∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=35,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA=3,55 OE rOA r==-∴15,8 r=∴15552.84 AF=-⨯=【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识.21.(1)12;(2)见解析;(3)83【解析】【分析】(1) AB是⊙O的直径,AB=AC,可得∠ADB=90°,∠ADF=∠B,可求得tan∠ADF的值;(2)连接OD,由已知条件证明AC∥OD,又DE⊥AC,可得DE是⊙O的切线;(3)由AF∥OD,可得△AFE∽△ODE,可得后求得EF的长.【详解】解:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴∠BAD=∠CAD,∵DE⊥AC,∴∠AFD=90°,∴∠ADF=∠B,∴tan∠ADF=tan∠B==12;(2)连接OD,∵OD=OA,∴∠ODA=∠OAD,∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴AC∥OD,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(3)设AD=x,则BD=2x,∴AB=x=10,∴x=2,∴AD=2,同理得:AF=2,DF=4,∵AF∥OD,∴△AFE∽△ODE,∴,∴=,∴EF=83.【点睛】本题考查切线的证明及圆与三角形相似的综合,为中考常考题型,需引起重视.22.(1)y=﹣x2+x+3;D(1,);(2)P(3,).【解析】【分析】(1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;(2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-m2+m+3),则F(m,-m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标.【详解】解:(1)设抛物线的解析式为y=a(x+2)(x﹣4),将点C(0,3)代入得:﹣8a=3,解得:a=﹣,y=﹣x2+x+3=﹣(x﹣1)2+,∴抛物线的解析式为y=﹣x2+x+3,且顶点D(1,);(2)∵B(4,0),C(0,3),∴BC的解析式为:y=﹣x+3,∵D(1,),当x=1时,y=﹣+3=,∴E(1,),∴DE=-=,设P(m,﹣m2+m+3),则F(m,﹣m+3),∵四边形DEFP是平行四边形,且DE∥FP,∴DE=FP,即(﹣m 2+m+3)﹣(﹣m+3)=,解得:m 1=1(舍),m 2=3,∴P (3,).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中.23.这栋高楼的高度是1603【解析】【分析】过A 作AD ⊥BC ,垂足为D ,在直角△ABD 与直角△ACD 中,根据三角函数的定义求得BD 和CD ,再根据BC=BD+CD 即可求解.【详解】过点A 作AD ⊥BC 于点D,依题意得,30BAD ∠=o ,60CAD ∠=o ,AD=120,在Rt △ABD 中tan BD BAD AD∠=, ∴31204033BD =⨯= 在Rt △ADC 中tan DC CAD AD∠=,∴12031203DC =⨯=,∴1603BC BD DC =+= ,答:这栋高楼的高度是1603.【点睛】本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.24.(1)抽样调查;12;3;(2)60;(3)25. 【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C 在扇形图中的角度求出所占的份数,再根据C 的人数是5,列式进行计算即可求出作品的件数,然后减去A 、C 、D 的件数即为B 的件数; (2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.试题解析:(1)抽样调查, 所调查的4个班征集到作品数为:5÷150360oo =12件,B 作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品x =12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)=1220=35,即恰好抽中一男一女的概率是35.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.25.证明见解析.【解析】【分析】根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则¼¼CFD AEB=,由FD=EB,得,»»FD EB=,由等量减去等量仍是等量得:¼»¼»CFD FD AEB EB-=-,即»»FC AE=,由等弧对的圆周角相等,得∠D=∠B.【详解】解:方法(一)证明:∵AB、CD是⊙O的直径,∴¼¼CFD AEB=.∵FD=EB,∴»»FD EB=.∴¼»¼»CFD FD AEB EB-=-.即»»FC AE=.∴∠D=∠B.方法(二)证明:如图,连接CF,AE.∵AB、CD是⊙O的直径,∴∠F=∠E=90°(直径所对的圆周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【点睛】本题利用了在同圆中等弦对的弧相等,等弧对的弦,圆周角相等,等量减去等量仍是等量求解.26.每件衬衫应降价1元.【解析】【分析】利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.【详解】解:设每件衬衫应降价x元.根据题意,得(40-x)(1+2x)=110,整理,得x2-30x+10=0,解得x1=10,x2=1.∵“扩大销售量,减少库存”,∴x1=10应舍去,∴x=1.答:每件衬衫应降价1元.【点睛】此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.27.(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/时,乙船的速度是20海里/时【解析】【分析】(1)过点P作PE⊥AB于点E,则有PE=30海里,由题意,可知∠PAB=30°,∠PBA=45°,从而可得AP =60海里,在Rt△PEB中,利用勾股定理即可求得BP的长;(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据甲船比乙船晚到小岛24分钟列出分式方程,求解后进行检验即可得.【详解】(1)如图,过点P作PE⊥MN,垂足为E,由题意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,∵PE=30海里,∴AP=60海里,∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE=45°,∴PE=EB=30海里,在Rt△PEB中,BP=22PE EB+=302≈42海里,故AP=60海里,BP=42(海里);(2)设乙船的速度是x海里/时,则甲船的速度是1.2x海里/时,根据题意,得604224 1.260x x-=,解得x=20,经检验,x=20是原方程的解,甲船的速度为1.2x=1.2×20=24(海里/时).,答:甲船的速度是24海里/时,乙船的速度是20海里/时.【点睛】本题考查了勾股定理的应用,分式方程的应用,含30度角的直角三角形的性质,等腰直角三角形的判定与性质,熟练掌握各相关知识是解题的关键.。
2019~2020学年初三数学九年级上学期第一次月考数学试卷含有答案

2019~2020学年初三数学九年级上学期第一次月考数学试卷含有答案一、选择题1、下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0 B .x 2-2x -3 C .2x 2=0 D .xy +1=0 2、关于的一元二次方程(a-1)x 2+x+a 2-1=0的一个根是0,则值为( )A .B .C .或D .03、关于x 的一元二次方程(a+1)x 2-4x -1=0有两个不相等的实数根,则a 的取值范围是 ( )A .a >-5B .a >-5且a ≠-1C .a <-5D .a ≥-5且a ≠-1 4、已知点P 是线段OA 的中点,P 在半径为r 的⊙O 外,点A 与点O 的距离为8,则r 的取值范围是( )A .r >4B .r >8C .r <4D .r <8 5、下列方程中两根之和为2的方程个数有:( )A .1B .2C .3D .46、如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC ,若∠A =20°,∠B =70°,则∠ACB 的度数为( )A .50°B .55°C .60°D .65°(第6题) (第8题) (第10题)7、以下命题:①直径相等的圆是等圆; ②长度相等弧是等弧; ③相等的弦所对的弧也相等; ④圆的对称轴是直径;⑤相等的圆周角所对的弧相等;其中正确的个数是( )A .4B .3C .2D .18、如图所示,已知四边形ABDC 是圆内接四边形,∠1=112°,则∠CDE =( ) A .56° B .68° C .66° D .58°9、若圆的一条弦把圆分成度数的比为1:3的两条弧,则弦所对的圆周角等于( ) A .45° B .90° C .135° D .45°或135° 10、如图是由三个边长分别为6、9、x 的正方形所组成的图形,若直线AB 将它分成面积相等的两部分,则的值是( )A .1或9B .3或5C .4或6D .3或6 二、填空题11、一元二次方程(x-2)(x+3)=x+1化为一般形式是 。
2019届山东省九年级上学期第一次月考数学试卷【含答案及解析】

2019届山东省九年级上学期第一次月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于()A.120°B.90°C.60°D.30°2. 如图,在质地和颜色都相同的三张卡片的正面分别写有-2,-1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x,然后从余下的两张中再抽出一张,记为y,则点(x,y)在直线y=-x-1上方的概率为()A. B. C. D.133. 已知A(1,y1)、B(2,y2)、C(-3,y3)都在反比例函数y=的图象上,则y1、y2、y3的大小关系的是()A.y2>y1>y3 B.y1>y2>y3 C.y3>y2>y1 D.y1>y3>y24. 下列函数中,当x>0时,y随x的增大而减小的是()A.y= B.y=- C.y=3x+2 D.y=x2-35. 如图,若DC∥FE∥AB,则有().A. B.C. D.6. 如图,在平面直角坐标系中,将△ABC绕点P旋转180°得到△DEF,则点P的坐标为().A.(﹣1,0) B.(﹣1,﹣1) C.(﹣2,﹣1) D.(﹣2,0)7. 如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为()A.4 B.﹣2 C. D.﹣8. 如图,在△ABC中,∠A=90°,AB=AC=3,现将△ABC绕点B逆时针旋转一定角度,点C′恰落在边BC上的高所在的直线上,则边BC在旋转过程中所扫过的面积为()A.π B.2π C.3π D.4π9. 反比例函数y=的图象如图所示,点M是该函数图象上一点,MN垂直于x轴,垂足是点N,如果S△MON=2,则k的值为().A.2 B.﹣2 C.4 D.﹣410. 如图,点A在双曲线y=上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为()A.1B.2C.3D.411. 在同一直角坐标系中,函数y=﹣与y=ax+1(a≠0)的图象可能是().A. B.C. D.12. 已知△ABC的面积是1,、、分别是△ABC三边上的中点,△的面积记为;、、分别是△三边上的中点,△的面积记为;以此类推,则△的面积是().A. B. C. D.二、填空题13. 用2,3,4三个数字排成一个三位数,则排出的数是偶数的概率为_________14. 在一个不透明的盒子中有12个白球,若干个黄球,它们除了颜色不同外,其余均相同,若从中随机摸出一个球是黄球的概率是,则黄球的个数.15. 如图,在△ABC中,DE∥BC,AH⊥BC于点H,与DE交于点G.若,则.16. 如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.17. 反比例函数y=的图象有一支位于第一象限,则常数 a 的取值范围是.18. 把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为____________19. 在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90O,得到的点B的坐标为_______三、解答题20. 如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分别为A(-1,1),B (-3,1),C(-1,4).(1)画出△ABC关于y轴对称的图形;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留)21. 东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划,某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图)(1)将统计图补充完整;(2)求出该班学生人数;(3)若该校共用学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.22. 如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点(1)求一次函数的解析式;(2)根据图象直接写出使kx+b<成立的x的取值范围;(3)求△AOB的面积.23. ( 10分)如图,已知B、C、E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F,求证:(1)△ACE≌△BCD;(2)=.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省东营市2019-2020学年九年级(上)第一次月考数学试卷一、选择题(每题3分,共30分,请将你认为正确的选项涂在答题卡相应的位置)1.(3分)下面的图形中,既是轴对称图形又是中心对称图形的是()
A.B.
C.D.
2.(3分)抛物线y=﹣(x+2)2﹣3的顶点坐标是()
A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)3.(3分)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()
A.30°B.35°C.40°D.50°
4.(3分)已知二次函数y=x2+2x+c的图象上有三点(﹣,y1),(﹣4,y2),(1,y3),则y1,y2,y3的大小关系是()
A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2 5.(3分)已知函数y=kx2﹣2x﹣3的图象和x轴有交点,则k的取值范围是()A.k>﹣B.k>﹣且k≠0C.k≥﹣D.k≥﹣且k≠0 6.(3分)把抛物线y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2﹣2x+3,则b+c=()
A.12B.9C.﹣14D.10
7.(3分)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点
D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()
A.0.5B.1.5C.D.1
8.(3分)在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A.B.
C.D.
9.(3分)在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()
A.点A B.点B C.点C D.点D
10.(3分)抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①abc>0;②4ac﹣b2<0;
③a+b+c>0;④3a<﹣c;⑤am2+bm≤a﹣b(m为任意实数).正确结论的个数是()
A.4B.3C.2D.1
二、填空题(11-14,每题3分,15-18题,每题4分,共28分)
11.(3分)若y=(a﹣1)是关于x的二次函数,则a=.
12.(3分)在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为.
13.(3分)在平面直角坐标系中,点P(1,5)与点P′(2a+b,a+2b)关于原点对称,则a+b的值为.
14.(3分)已知二次函数y=ax2+bx+c的图象如图,对称轴为直线x=1,则不等式ax2+bx+c >0的解集是.
15.(4分)若抛物线y=x2﹣bx+9的顶点在x轴上,则b的值为.
16.(4分)行驶中的汽车刹车后,由于惯性的作用,还会继续向前滑行一段距离,这段距离称为“刹车距离”.某车的刹车距离s(km)与车速x(km/h)之间有下述的函数关系式:s=0.01x﹣0.004x2,请推测刹车时该汽车的最大刹车距离为km.
17.(4分)如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=6,BC=8,则BD=
18.(4分)如图,抛物线y=x2在第一象限内经过的整数点(横坐标,纵坐标都为整数的点)依次为A1,A2,A3,…A n,….将抛物线y=x2沿直线L:y=x向上平移,得一系
列抛物线,且满足下列条件:
①抛物线的顶点M1,M2,M3,…M n,…都在直线L:y=x上;
②抛物线依次经过点A1,A2,A3…A n,….则顶点M1的坐标为,顶点M2的坐
标为,顶点M2018的坐标为.
三、解答题(共62分)
19.(6分)如图所示,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).
(1)平移△ABC,若点A的对应点A1的坐标为(0,﹣4),画出平移后对应的△A1B1C1,并写出B1,C1的坐标;
(2)将△ABC以点C为旋转中心逆时针旋转90°,画出旋转后对应的△A2B2C2,并写出B2,C2的坐标.
20.(10分)如图,二次函数y=x2﹣4x+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A (1,0)及点B.
(1)求二次函数与一次函数的解析式;
(2)根据图象,直接写出满足kx+b≥x2﹣4x+m的x的取值范围.
(3)在抛物线的对称轴上是否存在一点P使得PA+PC最小,求P点坐标及最小值.
21.(8分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.
(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;
(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?
(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?
最大利润是多少元?
22.(7分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.
(1)试说明△COD是等边三角形;
(2)当a=150°时,OB=3,OC=4,试求OA的长.
23.(12分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线最高点D到墙面OB的水平距离为6m时,隧道最高点D距离地面10m.
(1)求该抛物线的函数关系式;
(2)一辆货运汽车载一长方体集装箱后宽为4m,高为6m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高
度不超过8m,那么两排灯的水平距离最小是多少米?
24.(8分)如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE的数量关系是;
(2)将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),
①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;
②若BC=DE=4,当AE取最大值时,求AF的值.
25.(11分)已知,如图抛物线y=ax2+bx+c与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点A的坐标为(﹣4,0),B的坐标为(1,0),且OC=4OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求三角形ACD面积的最大值;
(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,直接写出P的坐标;若不存在,请说明理由.。