【解析版】南通市八一中学2016届九年级上第一次月考数学试卷
江苏省南通市 九年级(上)第一次月考数学试卷

九年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.2.在平面直角坐标系中,点A(-2,1)与点B关于原点对称,则点B的坐标为()A. (−2,1)B. (2,−1)C. (2,1)D. (−2,−1)3.函数y=-x2-4x-3图象顶点坐标是()A. (2,−1)B. (−2,1)C. (−2,−1)D. (2,1)4.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c在坐标系中的大致图象是()A. B.C. D.5.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A. k≤4且k≠3B. k<4且k≠3C. k<4D. k≤46.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为( )A. 42∘B. 48∘C. 52∘D. 58∘7.点P(ac2,ba)在第二象限,点Q(a,b)关于原点对称的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A. 3B. 5C. 15D. 179.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()A. 2B. 3C. 4D. 510.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共24.0分)11.如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=______度.12.已知点O是△ABC外接圆的圆心,若∠BOC=110°,则∠A的度数是______.13.请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=1,且与y轴的交点在x轴的下方,那么这个二次函数的解析式可以为______.14.已知二次函数y=3(x-1)2+k的图象上三点A(2,y1),B(3,y2),C(-4,y3),则y1、y2、y3的大小关系是______.15.2则当时,的最小值是.16.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是______cm2.17.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=3,则BE=______.18.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)……,求证:这个二次函数的图象关于直线x+2对称,根据现有信息,得出有关这个二次函数的下列结论:①过点(3,0);②顶点(2,2);③在x轴上截得的线段的长是2;④与y轴的交点是(0,3),其中正确的是______(填序号).三、计算题(本大题共1小题,共8.0分)19.已知:如图,△ABC内接于⊙O,BC=12cm,∠A=60°.求⊙O的直径.四、解答题(本大题共9小题,共88.0分)20.已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的函数解析式;(2)判断点B(1,4)是否在此抛物线上;(3)求出抛物线上纵坐标为-6的点的坐标.21.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3,5),B(-2,1),C(-1,3)(1)若△ABC经过平移后得到的△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.22.某商场购进一种单价为40元的商品,如果以单价60元售出,那么每天可卖出300个,根据销售经验,每降价1元,每天可多卖出20个,假设每个降价x(元),每天销售y(个),每天获得利润W(元).(1)写出y与x的函数关系式______;(2)求出W与x的函数关系式(不必写出x的取值范围)23.已知抛物线y=ax2+6x-8与直线y=-3x相交于点A(1,m).(1)求抛物线的解析式;(2)请问(1)中的抛物线经过怎样的平移就可以得到y=ax2的图象.24.如图,点B,C为⊙O上一动点,过点B作BE∥AC,交⊙O于点E,点D为射线BC上一动点,且AC平分∠BAD,连接CE.(1)求证:AD∥EC;(2)连接EA,若BC=6,则当CD=______时,四边形EBCA是矩形.25.如图,抛物线y=-12x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点A(-1,0),点C(0,2)(1)求抛物线的函数解析式;(2)若D是抛物线位于第一象限上的动点,求△BCD面积的最大值及此时点D的坐标.26.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,若将△PAC绕点A逆时针旋转后得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的大小.27.已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.求证:BD=CE,BD⊥CE;(2)如图2,当点D在线段BC延长线上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.请画出图形.上述结论是否仍然成立,并说明理由;(3)根据图2,请直接写出AD、BD、CD三条线段之间的数量关系.28.已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A,C,E,P为顶点且以AC为一边的平行四边形?若存在,写出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形,故A选项不符合题意;B、是轴对称图形,也是中心对称图形,故B选项符合题意;C、是轴对称图形,不是中心对称图形,故C选项不符合题意;D、是轴对称图形,不是中心对称图形,故D选项不符合题意.故选:B.根据轴对称图形与中心对称图形的概念结合各图形的特点求解.本题考查了中心对称图形与轴对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.2.【答案】B【解析】解:∵点A坐标为(-2,1),∴点B的坐标为(2,-1).故选:B.关于原点的对称点,横纵坐标都变成原来相反数,据此求出点B的坐标.本题考查了关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).3.【答案】B【解析】解:∵y=-x2-4x-3=-(x2+4x+4-4+3)=-(x+2)2+1∴顶点坐标为(-2,1);故选:B.将二次函数的一般形式化为顶点式后即可直接说出其顶点坐标;主要考查了二次函数的性质和求抛物线的对称轴和顶点坐标的方法.除去用配方法外还可用公式法.4.【答案】D【解析】解:∵二次函数的图象开口向下,∴a<0,∵对称轴x=-<0,∴b<0,∵函数图象经过原点,∴c=0,∴一次函数y=bx+c在坐标系中的大致图象是经过原点且从左往右下降的直线,故选:D.先根据二次函数的图象开口向下可知a<0,根据对称轴x=-<0,可得b<0,再由函数图象经过原点可知c=0,进而得到一次函数y=bx+c在坐标系中的大致图象.本题主要考查了二次函数以及一次函数的图象,解题时注意:正比例函数的图象是经过原点的一条直线.5.【答案】D【解析】解:当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;当k≠3,函数y=(k-3)x2+2x+1是二次函数,当22-4(k-3)≥0,k≤4即k≤4时,函数的图象与x轴有交点.综上k的取值范围是k≤4.故选:D.由于不知道函数是一次函数还是二次函数,需对k进行讨论.当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;当k≠3,函数y=(k-3)x2+2x+1是二次函数,当△≥0时,二次函数与x轴都有交点,解△≥0,求出k的范围.本题考察了二次函数、一次函数的图象与x轴的交点、一次不等式的解法.解决本题的关键是对k的值分类讨论.6.【答案】A【解析】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°-∠ACA′=42°.故选:A.先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=48°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°-∠ACA′=42°.本题考查了转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形两锐角互余的性质.7.【答案】A【解析】解:∵点P(ac2,)在第二象限,∴ac2<0∴a<0,b<0.∴点Q(a,b)在第三象限.∴点Q(a,b)关于原点对称的点(-a,-b)在第一象限.故选A.已知点P(ac2,)在第二象限,根据第二象限点的坐标特征:横坐标<0,纵坐标>0,即ac2<0,.由以上两式可以判断a<0,b<0,从而点Q(a,b)在第三象限.又两点关于原点对称,则两点的横、纵坐标都是互为相反数,因而点Q(a,b)关于原点对称的点是(-a,-b),它在第一象限.本题主要考查了平面直角坐标系中,各象限内点的坐标的符号的确定方法,以及关于原点对称的两点坐标之间的关系.8.【答案】B【解析】解:∵OC⊥弦AB于点C,∴AC=BC=AB,在Rt△OBC中,OB==.故选:B.根据垂径定理可得AC=BC=AB,在Rt△OBC中可求出OB.本题考查了垂径定理及勾股定理的知识,解答本题的关键是熟练掌握垂径定理的内容.9.【答案】A【解析】解:①M与A或B重合时OM最长,等于半径5;②∵半径为5,弦AB=8∴∠OMA=90°,OA=5,AM=4∴OM最短为=3,∴3≤OM≤5,因此OM不可能为2.故选:A.OM最长边应是半径长,根据垂线段最短,可得弦心距最短,分别求出后即可判断.解决本题的关键是:知道OM最长应是半径长,最短应是点O到AB的距离长.然后根据范围来确定不可能的值.10.【答案】B【解析】解:∵抛物线的对称轴为直线x=-=2,∴b=-4a,即4a+b=0,(故①正确);∵当x=-3时,y<0,∴9a-3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(-1,0),∴a-b+c=0,而b=-4a,∴a+4a+c=0,即c=-5a,∴8a+7b+2c=8a-28a-10a=-30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当-1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.根据抛物线的对称轴为直线x=-=2,则有4a+b=0;观察函数图象得到当x=-3时,函数值小于0,则9a-3b+c<0,即9a+c<3b;由于x=-1时,y=0,则a-b+c=0,易得c=-5a,所以8a+7b+2c=8a-28a-10a=-30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.11.【答案】28【解析】解:∵OB⊥AC,∴=,∴∠ADB=∠BOC=56°=28°.故答案为:28.根据垂径定理可得点B是中点,由圆周角定理可得∠ADB=∠BOC,继而得出答案.此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.12.【答案】55°或125°【解析】解:当△ABC为锐角三角形,即点A在优弧BC上,则∠A=∠BCO=×110°=55°;当△ABC为钝角三角形,即点A在劣弧BC上,则∠A′=180°-∠A=180°-55°=125°,即∠A的度数为55°或125°.故答案为55°或125°.分类讨论:当△ABC为锐角三角形,即点A在优弧BC上,可根据圆周角定理求得∠A=∠BCO=55°;当△ABC为钝角三角形,即点A在劣弧BC上,可根据圆内接四边形的性质得到∠A′=125°.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.13.【答案】y=-x2+2x-1【解析】解:设所求二次函数的解析式为y=ax2+bx+c(a≠0).∵图象的开口向下,∴a<0,可取a=-1;∵对称轴是直线x=1,∴-=1,得b=-2a=2;∵与y轴的交点在x轴的下方,∴c<0,可取c=-1;∴函数解析式可以为:y=-x2+2x-1.故答案为:y=-x2+2x-1.由题意可知:写出的函数解析式满足a<0,-=1,c<0,由此举例得出答案即可.本题考查了二次函数的性质,用到的知识点:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=-;当a>0时,抛物线开口向上,当a<0时,抛物线开口向下;二次函数与y轴交于点(0,c).14.【答案】y1<y2<y3【解析】解:∵y=3(x-1)2+k,∴图象的开口向上,对称轴是直线x=1,A(-4,y3)关于直线x=-2的对称点是(6,y3),∵2<3<6,∴y1<y2<y3,故答案为y1<y2<y3.根据二次函数的解析式得出图象的开口向上,对称轴是直线x=1,根据x>1时,y随x的增大而增大,即可得出答案.本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.15.【答案】1【解析】解:∵由表可知,当x=-1时,y=10,当x=0时,y=5,当x=1时,y=2,∴,解得,∴抛物线的解析式为y=x2-4x+5,∴其对称轴为直线x=-=-=2.∵x≥1,∴当x=2时,y===1.最小故答案为:1.先用待定系数法求出二次函数的解析式,得出其对称轴的直线方程,进而可得出结论.本题考查的是二次函数的最值,熟知用待定系数法求二次函数的解析式是解答此题的关键.16.【答案】2536【解析】解:∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB-∠CAC′=45°-15°=30°,AC′=AC=5,∴阴影部分的面积=×5×tan30°×5=.阴影部分为直角三角形,且∠C′AB=30°,AC′=5,解此三角形求出短直角边后计算面积.本题考查旋转的性质和解直角三角形.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.17.【答案】3【解析】解:∵将△ABC绕点A顺时针旋转60°得到△AED,∴∠BAE=60°,AB=AE,∴△BAE是等边三角形,∴BE=3.故答案为:3.根据旋转的性质得出∠BAE=60°,AB=AE,得出△BAE是等边三角形,进而得出BE=3即可.本题考查旋转的性质,关键是根据旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.18.【答案】①③【解析】解:∵二次函数y=ax2+bx+c的图象过点(1,0),对称轴为直线x=2,∴抛物线与x轴的另一个交点坐标为(3,0),∴抛物线在x轴上截得的线段的长是2.故答案为①③.利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(3,0),从而得到抛物线在x轴上截得的线段的长,利用(1,0)和对称轴方程不能确定顶点的纵坐标和c的值.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解.关于x的一元二次方程即可求得交点横坐标19.【答案】解:如右图所示,连接OB、OC,并过O作OD⊥BC于D,∵OD⊥BC,BC=12,∴BD=CD=6,∵∠A=60°,∴∠BOC=120°,∵OB=OC,OD⊥BC,∴∠BOD=∠COD=60°,∴∠OCD=30°,在Rt△COD中,设OD=x,那么OC=2x,于是x2+62=(2x)2,解得x=23,(负数舍去),即OC=43(cm),∴⊙O的直径=2OC=83(cm).【解析】先连接OB、OC,并过O作OD⊥BC于D,由于OD⊥BC,BC=12,根据垂径定理可知BD=CD=6,由∠A=60°,利用圆周角定理可求∠BOC=120°,而OB=OC,OD⊥BC,利用等腰三角形三线合一定理可知∠BOD=∠COD=60°,在Rt△COD中,设OD=x,那么OC=2x,利用勾股定理可得x2+62=(2x)2,易求x,进而可求OC,从而可求直径.本题考查了圆周角定理、垂径定理、含有30°角的直角三角形的性质,解题的关键是作辅助线,构造直角三角形.20.【答案】解:(1)把A(-2,-8)代入y=ax2得4a=-8,解得a=-2,所以此抛物线的函数解析式为y=-2x2;(2)当x=1时,y=-2x2=-2,所以点B(1,4)不在此抛物线上;(3)当y=-6时,-2x2=-6,解得x=±3,所以抛物线上纵坐标为-6的点的坐标为(-3,-6),(3,-6).【解析】(1)把A点代入y=ax2中求出a的值即可;(2)根据二次函数图象上点的坐标特征进行判断;(3)解方程-2x2=-6即可.本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.21.【答案】解:(1)如图所示,△A1B1C1即为所求,顶点A1,B1的坐标分别为(2,2)和(3,-2);(2)如图所示,A2的坐标为(3,-5);B2的坐标为(2,-1);C2的坐标为(1,-3);(3)如图所示,△A3B3C3即为所求;A3的坐标为(5,3),B3的坐标为(1,2),C3的坐标为(3,1).【解析】(1)依据△ABC经过平移后得到的△A1B1C1,点C1的坐标为(4,0),即可得到顶点A1,B1的坐标;(2)依据△ABC和△A2B2C2关于原点O成中心对称图形,即可得出△A2B2C2的各顶点的坐标;(3)依据△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,即可得到△A3B3C3的各顶点的坐标.本题主要考查平移变换和旋转变换,熟练掌握平移变换和旋转变换的定义是解题的关键.22.【答案】y=300+20x【解析】解:(1)设每个降价x(元),每天销售y(个),y与x的函数关系式为:y=300+20x;故答案为:y=300+20x;(2)由题意可得,W与x的函数关系式为:W=(300+20x)(60-40-x)=-20x2+100x+6000.(1)利用每天可卖出300个,每降价1元,每天可多卖出20个,进而得出y与x的函数关系式;(2)利用销量×每千克商品的利润=总利润,进而得出答案.此题主要考查了根据实际问题列二次函数关系式,正确掌握销量与每千克利润与总利润的关系是解题关键.23.【答案】解:(1)∵点A(1,m)在直线y=-3x上,∴m=-3×1=-3.把x=1,y=-3代入y=ax2+6x-8,求得a=-1.∴抛物线的解析式是y=-x2+6x-8.(2)y=-x2+6x-8=-(x-3)2+1.∴顶点坐标为(3,1).∴把抛物线y=-x2+6x-8向左平移3个单位长度得到y=-x2+1的图象,再把y=-x2+1的图象向下平移1个单位长度(或向左平移3个单位再向下平移1个单位)得到y=-x2的图象.【解析】(1)题先根据直线y=-3x求出A点的坐标,再把A的坐标代入抛物线的表达式中求出a的值.(2)把抛物线的解析式化为顶点式,然后再说明需要移动的单位和方向.本题考查了用待定系数法求函数表达式的方法,同时还考查了抛物线的平移等知识,是比较常见的题目.24.【答案】6【解析】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵∠E=∠BAC,∴∠E=∠DACM∵BE∥AC,∴∠E=∠ACE,∴∠ACE=∠DAC,∴AD∥EC.(2)解:当四边形ACBE是矩形时,∠ACB=90°,∴∠ACB=∠ACD=90°,∵∠BAC=∠DAC,∴∠ABD=∠D,∴AB=AD,∴BC=CD=6,故答案为6.(1)欲证明AD∥EC,只要证明∠ACE=∠DAC即可;(2)当四边形ACBE是矩形时,∠ACB=90°,根据等腰三角形的性质即可解决问题;本题考查圆周角定理、矩形的性质、等腰三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.【答案】解:(1)将A,C代入得:−12−b+c=0c=2,解得:b=32c=2,则抛物线的函数解析式为y=-12x2+32x+2;(2)连接OD,则有B(4,0),设D(m,-12m2+32m+2),∵S四边形OCDB-S△OCD-S△OBD=12×2m+12×4(-12m2+32m+2)=-m2+4m+4,∴S△BCD=S四边形OCDB-S△OBC=-m2+4m+4-12×4×2=-m2+4m=-(m-2)2+4,当m=2时,S△BCD取得最大值4,此时y D=-12×4+32×2+2=3,即D(2,3).【解析】(1)把A与C坐标代入抛物线解析式求出b与c的值,确定出解析式即可;(2)连接OD,设出D坐标,四边形OCDB的面积等于三角形OCD面积+三角形OBD面积,表示出三角形BCD面积S与m的二次函数解析式,求出最大面积及D坐标即可.此题考查了抛物线与x轴的交点,以及待定系数法求二次函数解析式,熟练掌握二次函数的性质是解本题的关键.26.【答案】解:(1)由旋转的性质知AP′=AP=6,∠P′AB=∠PAC,∴∠P′AP=∠BAC=60°,∴△P′AP是等边三角形,∴PP′=6;(2)∵P′B=PC=10,PB=8,∴P′B2=P′P2+PB2,∴△P′PB为直角三角形,且∠P′PB=90°,∴∠APB=∠P′PB+∠P′PA=90°+60°=150°.【解析】(1)根据旋转的性质即可求出两点之间的距离(2)由旋转可知:P′B=PC=10,PB=8,P′B2=P′P2+PB2,从而可知△P′PB为直角三角形,从而求出∠APB的大小本题考查旋转的性质,解题的关键是熟练运用旋转的性质,本题属于基础题型.27.【答案】(1)证明:如图1,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵∠DAE=90°,∴∠DAE=∠CAE+∠DAC=90°,∵∠BAC=∠BAD+∠DAC=90°,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAEAD=AE∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABC=45°.∴∠BCE=∠ACB+∠ACE=90°,∴BD⊥CE;(2)如图2,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.与(1)同理可证CE=BD,CE⊥BD;(3)2AD2=BD2+CD2,∵∠EAD=90°AE=AD,∴ED=2AD在Rt△ECD中,ED2=CE2+CD2,∴2AD2=BD2+CD2【解析】(1)由等腰直角三角形的性质得到条件,判断出△BAD≌△CAE即可;(2)同(1)方法一样;(3)根据勾股定理计算即可.此题是几何变换综合题,主要考查了旋转和等腰直角三角形的性质,判断出△BAD≌△CAE是解本题的关键.28.【答案】解:(1)∵B的坐标为(1,0),∴OB=1.∵OC=3OB=3,点C在x轴下方,∴C(0,-3).∵将B(1,0),C(0,-3)代入抛物线的解析式得:4a+c=0c=−3,解得:a=34,C=-3,∴抛物线的解析式为y=34x2+94x-3.(2)如图1所示:过点D作DE∥y,交AC于点E.∵x=-b2a=−942×34=-32,B(1,0),∴A(-4,0).∴AB=5.∴S△ABC=12AB•OC=12×5×3=7.5.设AC的解析式为y=kx+b.∵将A(-4,0)、C(0,-3)代入得:−4k+b=0b=−3,解得:k=-34,b=-3,∴直线AC的解析式为y=-34x-3.设D(a,34a2+94a-3),则E(a,-34a-3).∵DE=-34a-3-(34a2+94a-3)=-34(a+2)2+3,∴当a=-2时,DE有最大值,最大值为3.∴△ADC的最大面积=12DE•AO=12×3×4=6.∴四边形ABCD的面积的最大值为13.5.(3)存在.①如图2,过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形.∵C(0,-3),令34x2+94x-3=-3,∴x1=0,x2=-3.∴P1(-3,-3).②平移直线AC交x轴于点E2,E3,交x轴上方的抛物线于点P2,P3,当AC=P2E2时,四边形ACE2P2为平行四边形,当AC=P3E3时,四边形ACE3P3为平行四边形.∵C(0,-3),∴P2,P3的纵坐标均为3.令y=3得:34x2+94x-3=3,解得;x1=−3−412,x2=−3+412.∴P2(−3−412,3),P3(−3+412,3).综上所述,存在3个点符合题意,坐标分别是:P1(-3,-3),P2(−3−412,3),P3(−3+412,3).【解析】(1)根据OC=3OB,B(1,0),求出C点坐标(0,-3),把点B,C的坐标代入y=ax2+2ax+c,求出a点坐标即可求出函数解析式;(2)过点D作DE∥y轴分别交线段AC于点E.设D(m,m2+2m-3),然后求出DE的表达式,把S分解为S△ABC+S△ACD,转化为二次函数求最值;四边形ABCD(3)①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,此时四边形ACP1E1为平行四边形.②平移直线AC交x轴于点E,交x 轴上方的抛物线于点P2,P3,由题意可知点P2、P3的纵坐标为3,从而可求得其横坐标.本题考查了二次函数综合题,涉及待定系数法求二次函数的解析式,二次函数求最值,平行四边形的判定与性质等知识,根据题意作出图形,利用数形结合求解是解答此题的关键,在解答(3)时要注意进行分类讨论.。
江苏省南通市八一中学2015-2016学年七年级上学期第一次月考数学试卷【解析版】

2015-2016学年江苏省南通市八一中学七年级(上)第一次月考数学试卷一.选择题(每题2分,共20分)1.在数轴上,原点及原点右边的点表示的数是( )A.正数 B.负数 C.非正数D.非负数2.如果两个数的和是负数,那么这两个数( )A.同是正数 B.同为负数C.至少有一个为正数 D.至少有一个为负数3.关于“0”,下列说法不正确的是( )A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数4.若ab<0,a+b>0,那么必有( )A.符号相反 B.符号相反且绝对值相等C.符号相反且负数的绝对值大 D.符号相反且正数的绝对值大5.若|x|=2,|y|=3,则|x+y|的值为( )A.5 B.﹣5 C.5或1 D.以上都不对6.下列说法正确的是( )A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定小于被减数D.0减去任何数,差都是负数7.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从学校出发,向北走了50米,接着又向北走了70米,此时张明的位置在( )A.在家 B.在学校C.在书店D.不在上述地方8.一个数的绝对值等于它的相反数,这个数不会是( )A.负整数B.负分数C.0 D.正整数9.下列四组有理数的大小比较正确的是( )A.B.﹣|﹣1|>﹣|+1| C.D.10.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A.点M B.点N C.点P D.点Q二.填空题(毎空3分,共30分)11.最大的负整数是__________;绝对值不大于3的所有整数的和是__________;积是__________.12.﹣0.5的绝对值是__________,相反数是__________,倒数是__________.13.从数轴上表示﹣1的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是__________.14.已知4﹣m与﹣1互为相反数,则m=__________.15.两个有理数的和为5,其中一个加数是﹣7,那么另一个加数是__________.16.如图是一数值转换机,若输入的x为﹣3,则输出的结果为__________.17.若|a﹣1|+|b+3|=0,则a﹣b=__________.18.实数a在数轴的位置如图所示,则|a﹣1|=__________.19.如果规定符号“*”的意义是a*b=,则2*(﹣3)的值等于__________.20.观察下列各数:﹣,,﹣,,﹣,…,根据它们的排列规律写出第2015个数为__________.三.解答题(共50分)21.已知:有理数m所表示的点到点3距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.(1)求m的值,(2)求:2a+2b+()﹣m的值.22.计算:①12﹣(﹣18)+(﹣7)﹣15②(﹣81)÷2×÷(﹣16)23.(16分)用简便方法计算:(1)+(﹣)++(﹣)+(﹣)(2)(+﹣)×(﹣24)(3)﹣19×3(4)0.7×19+2×(﹣14)+0.7×+×(﹣14).24.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?25.初一年级共100名学生,在一次数学测试中以90分为标准,超过的记为正,不足的记为负,成绩如下:人数10 20 5 14 12 18 10 4 9 6 2成绩﹣1 +3 ﹣2 +1 +10 +2 0 ﹣7 +7 ﹣9 ﹣12 请你算出这次考试的平均成绩.26.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O地出发到收工时所走路线(单位:千米)为:+10、﹣3、+4、+2、﹣8、+13、﹣2、﹣12、﹣6、+3 (1)问收工时距O地多远?(2)若每千米耗油0.2升,从O地出发到收工时共耗油多少升?四、附加题(填空题2分一空,解答题8分,共20分)27.当a=__________时,|1﹣a|+2会有最小值,且最小值是__________.28.已知有理数a,b,c满足,求的值.29.阅读材料:大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?观察下面三个特殊的等式:1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4=×3×4×5=20读完这段材料,请你思考后回答:(1)1×2+2×3+…+100×101=__________;(2)1×2+2×3+3×4+…+n×(n+1)=__________;(3)1×2×3+2×3×4+…+n(n+1)(n+2)=__________.(只需写出结果,不必写中间的过程)30.小林的父亲上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元)星期一二三四五六每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6 +2 (1)星期三收盘时,每股多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知小林的父亲买进股票时付了1.5‰的手续费,卖出时须付总金额1.5‰的手续费和1‰的交易税,如果他在周六收盘前将股票全部卖出,他的收益情况如何?2015-2016学年江苏省南通市八一中学七年级(上)第一次月考数学试卷一.选择题(每题2分,共20分)1.在数轴上,原点及原点右边的点表示的数是( )A.正数 B.负数 C.非正数D.非负数【考点】数轴.【分析】本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.【解答】解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.【点评】解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.如果两个数的和是负数,那么这两个数( )A.同是正数 B.同为负数C.至少有一个为正数 D.至少有一个为负数【考点】有理数的加法.【分析】根据有理数的加法运算法则进行判断即可.【解答】解:两个数的和是负数,这两个数至少有一个为负数.故选D.【点评】本题考查了有理数的加法,熟记运算法则是解题的关键.3.关于“0”,下列说法不正确的是( )A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数【考点】倒数;相反数;绝对值.【分析】分别根据相反数、绝对值和倒数的定义判断.【解答】解:A、0的相反数为0,所以A选项的说法正确;B、0的绝对值为0,所以B选项的说法正确;C、0没有倒数,所以C选项的说法错误;D、0的绝对值和相反数都等于0,所以D选项的说法正确.故选C.【点评】本题考查了倒数:a的倒数为(a≠0).也考查了相反数与绝对值.4.若ab<0,a+b>0,那么必有( )A.符号相反 B.符号相反且绝对值相等C.符号相反且负数的绝对值大 D.符号相反且正数的绝对值大【考点】有理数的乘法;有理数的加法.【分析】根据异号得负和有理数的加法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b>0,∴a、b符号相反且正数的绝对值大.故选D.【点评】本题考查有理数的乘法,有理数的加法,熟记运算法则是解题的关键.5.若|x|=2,|y|=3,则|x+y|的值为( )A.5 B.﹣5 C.5或1 D.以上都不对【考点】绝对值;有理数的加法.【分析】题中只给出了x,y的绝对值,因此需要分类讨论,当x=±2,y=±3,分四种情况,分别计算出|x+y|的绝对值.【解答】解:∵|x|=2,|y|=3∴x=±2,y=±3当x=2,y=3时,|x+y|=5;当x=﹣2,y=3时,|x+y|=5;当x=2,y=﹣3时,|x+y|=1;当x=﹣2,y=3时,|x+y|=1.故选C.【点评】本题考查绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0;互为相反数的绝对值相等.6.下列说法正确的是( )A.两个数之差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差不一定小于被减数D.0减去任何数,差都是负数【考点】有理数的减法.【分析】本题是对有理数减法的差的考查.【解答】解:如果减数是负数,那么差就大于被减数,所以第一个不对;减去一个负数等于加上它的相反数,即加上一个正数,差一定大于被减数;减去一个正数,差一定小于被减数,所以第三个不对;0减去负数,差是正数,所以最后一个不对.故选B.【点评】减去一个数等于加上这个数的相反数,所以差与被减数的关系要由减数决定.7.校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从学校出发,向北走了50米,接着又向北走了70米,此时张明的位置在( )A.在家 B.在学校C.在书店D.不在上述地方【考点】数轴.【专题】数形结合.【分析】根据题意,在数轴上用点表示各个建筑的位置,进而分析可得答案.【解答】解:根据题意,以小明家为原点,向北为正方向,20米为一个单位,在数轴上用点表示各个建筑的位置,可得此时张明的位置在书店,故选C.【点评】本题考查数轴的运用,注意结合题意,在数轴上用点表示各个建筑的位置,是数轴的实际运用.8.一个数的绝对值等于它的相反数,这个数不会是( )A.负整数B.负分数C.0 D.正整数【考点】绝对值;相反数.【分析】根据正数、负数和零的绝对值的性质回答即可.【解答】解:负数的绝对值等于它的相反数,0的绝对值是0,正数的绝对值是它本身.故绝对值等于它本身的数是负数和零.故选:D.【点评】本题主要考查的是绝对值和相反数的性质,掌握绝对值和相反数的性质是解题的关键.9.下列四组有理数的大小比较正确的是( )A.B.﹣|﹣1|>﹣|+1| C.D.【考点】有理数大小比较.【分析】先去掉绝对值符号,再比较大小.【解答】解:A、错误,∵﹣=﹣<0,﹣=﹣<0,|﹣|>|﹣|,∴﹣<﹣,即﹣<﹣;B、错误,∵﹣|﹣1|=﹣1,﹣|+1|=﹣1,∴﹣|﹣1|=﹣|+1|;C、错误,∵=,=,>,∴>;D、正确,∵|﹣|==,|﹣|==,>,∴|﹣|>|﹣|.故选D.【点评】有理数比较大小与实数比较大小相同:(1)正数都大于0,负数都小于0,正数大于一切负数;(2)两个负数,绝对值大的反而小.10.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A.点M B.点N C.点P D.点Q【考点】有理数大小比较.【分析】先根据相反数确定原点的位置,再根据点的位置确定绝对值最小的数即可.【解答】解:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.【点评】本题考查了数轴,相反数,绝对值,有理数的大小比较的应用,解此题的关键是找出原点的位置,注意数形结合思想的运用.二.填空题(毎空3分,共30分)11.最大的负整数是﹣1;绝对值不大于3的所有整数的和是0;积是0.【考点】绝对值;有理数.【分析】根据绝对值和有理数的概念求解.【解答】解:最大的负整数是﹣1;绝对值不大于3的整数有:±3,±2,±1,0,则和为0,积为0.故答案为:0,0.【点评】本题考查了绝对值和有理数的知识,解答本题的关键是掌握绝对值和有理数的概念.12.﹣0.5的绝对值是0.5,相反数是0.5,倒数是﹣2.【考点】倒数;相反数;绝对值.【专题】计算题.【分析】求一个数的相反数时在这个数的前面加上负号即可;求一个数的倒数只需将其分子分母交换位置.【解答】解:|﹣0.5|=﹣(﹣0.5)=0.5,∴﹣0.5的绝对值是0.5,相反数为:0.5;﹣0.5的倒数为:=﹣2,故答案为:0.5;0.5;﹣2.【点评】本题考查了求一个数的相反数、绝对值及倒数,属于较简单的题目,但考查的频率较高.13.从数轴上表示﹣1的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是0.【考点】数轴.【专题】计算题.【分析】一个点从数轴上的﹣1开始,向右移动6个单位长度,是+6,再向左移动5个单位长度,是﹣5,三者相加是0.【解答】解:终点表示的数为:﹣1+6﹣5=0.故答案为:0.【点评】本题考查了数轴的知识,做此题时要让学生结合数轴理解这一规律:数的大小变化和数轴上表示这个数的点在数轴上移动的关系:左减右加.给学生渗透数形结合的思想.14.已知4﹣m与﹣1互为相反数,则m=3.【考点】解一元一次方程;相反数.【专题】计算题.【分析】根据互为相反数的定义列出方程,然后根据一元一次方程的解法计算即可得解.【解答】解:∵4﹣m与﹣1互为相反数,∴4﹣m=1,移项、合并得,m=3.故答案为:3.【点评】本题主要考查了解一元一次方程,注意移项要变号.15.两个有理数的和为5,其中一个加数是﹣7,那么另一个加数是12.【考点】有理数的加法.【分析】首先根据加减法的关系可得另一个加数=5﹣(﹣7),再利用有理数的减法法则进行计算即可.【解答】解:5﹣(﹣7)=5+7=12.故答案为:12.【点评】此题主要考查了有理数的加法和减法,关键是掌握加法与减法的关系.16.如图是一数值转换机,若输入的x为﹣3,则输出的结果为15.【考点】有理数的混合运算.【专题】图表型.【分析】根据数值转换机得到运算算式,然后把x=﹣3代入进行计算即可得解.【解答】解:根据图形可得,运算算式为(x﹣2)×(﹣3),故x=﹣3时,(x﹣2)×(﹣3)=(﹣3﹣2)×(﹣3)=15.故答案为:15.【点评】本题考查了代数式求值,根据数值转换机正确写出运算算式是解题的关键.17.若|a﹣1|+|b+3|=0,则a﹣b=4.【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:∵|a﹣1|+|b+3|=0,∴a﹣1=0,b+3=0,∴a=1,b=﹣3,∴a﹣b=4,故答案为:4.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.实数a在数轴的位置如图所示,则|a﹣1|=1﹣a.【考点】实数与数轴;绝对值.【分析】根据数轴上的点与实数的一一对应关系得到a<﹣1,然后利用绝对值的意义得到原式=﹣(a﹣1),再去括号、合并即可.【解答】解:∵a<﹣1,∴a﹣1<0,原式=|a﹣1|=﹣(a﹣1)=﹣a+1=1﹣a.故答案为:1﹣a.【点评】本题考查了实数与数轴,解决本题的关键是明确绝对值的意义以及数轴上的点与实数的一一对应关系.19.如果规定符号“*”的意义是a*b=,则2*(﹣3)的值等于6.【考点】代数式求值.【专题】新定义.【分析】根据题意中给出的公式,对照公式可得,a=2,b=﹣3,然后代入求值即可.【解答】解:∵a*b=,∴2*(﹣3)===6.故答案为6.【点评】本题主要考查代数式的求值,关键在于根据题意正确理解“*”的意义,认真的进行计算.20.观察下列各数:﹣,,﹣,,﹣,…,根据它们的排列规律写出第2015个数为﹣.【考点】规律型:数字的变化类.【分析】分子是从1开始连续的自然数,分母比分子多1,奇数位置为负,偶数位置为正,由此得出第n个数为(﹣1)n,进一步代入求得答案即可.【解答】解:∵第n个数为(﹣1)n,∴第2015个数为﹣.故答案为:﹣.【点评】此题考查数字的变化规律,发现数字之间的联系,找出数字之间的运算规律,利用规律解决问题.三.解答题(共50分)21.已知:有理数m所表示的点到点3距离4个单位,a,b互为相反数,且都不为零,c,d互为倒数.(1)求m的值,(2)求:2a+2b+()﹣m的值.【考点】代数式求值;数轴;相反数;倒数.【专题】计算题.【分析】(1)根据m所表示的点到点3距离4个单位,确定出m即可;(2)利用相反数,倒数的定义求出a+b,,cd的值,代入原式计算即可得到结果.【解答】解:(1)根据题意得:m=﹣1或7,a+b=0,=﹣1,cd=1;(2)当m=﹣1时,原式=2(a+b)+﹣3cd﹣m=﹣1﹣3+1=﹣3;当m=7时,原式=﹣1﹣3﹣7=﹣11.【点评】此题考查了代数式求值,相反数,绝对值,以及倒数,熟练掌握各自的定义是解本题的关键.22.计算:①12﹣(﹣18)+(﹣7)﹣15②(﹣81)÷2×÷(﹣16)【考点】有理数的混合运算.【分析】①先去括号,再从左到右依次计算即可;②从左到右依次计算即可.【解答】解:①原式=12+18﹣7﹣15=30﹣7﹣15=8;②原式=(﹣81)×××(﹣)=﹣16×(﹣)=1.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.23.(16分)用简便方法计算:(1)+(﹣)++(﹣)+(﹣)(2)(+﹣)×(﹣24)(3)﹣19×3(4)0.7×19+2×(﹣14)+0.7×+×(﹣14).【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后,相加即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式变形后,利用乘法分配律计算即可得到结果;(4)原式结合后,逆用乘法分配律计算即可得到结果.【解答】解:(1)原式=﹣﹣﹣+=﹣1+=﹣;(2)原式=﹣8﹣6+4=﹣10;(3)原式=(﹣20+)×3=﹣60+=﹣59;(4)原式=0.7×(19+)﹣14×(2+)=14﹣42=﹣28.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?【考点】数轴.【分析】根据数轴的作法可得(1),进而根据在数轴上确定两点的距离方法求得小明家与小刚家相距多远.【解答】解:(1)如图:(2)根据(1)可得:小明家与小刚家相距4﹣(﹣5)=9(千米).【点评】本题考查在同一坐标轴上点的位置的确定及其距离的计算方法,从而考查解决实际问题的能力和阅读理解能力.25.初一年级共100名学生,在一次数学测试中以90分为标准,超过的记为正,不足的记为负,成绩如下:人数10 20 5 14 12 18 10 4 9 6 2成绩﹣1 +3 ﹣2 +1 +10 +2 0 ﹣7 +7 ﹣9 ﹣12 请你算出这次考试的平均成绩.【考点】有理数的混合运算;正数和负数.【分析】根据有理数的加法,可得总分数,再根据总质量除以人数,可得答案【解答】解:(﹣1×10+3×20﹣2×5+1×14+10×12+2×18+0×10﹣7×4+7×9﹣9×6﹣12×2)÷10+90 =﹣167÷10+90=73.3.答:这是位同学的平均分是73.3分.【点评】本题考查了有理数的混合运算以及正数和负数,相反意义的量用正数和负数表示.26.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自O地出发到收工时所走路线(单位:千米)为:+10、﹣3、+4、+2、﹣8、+13、﹣2、﹣12、﹣6、+3 (1)问收工时距O地多远?(2)若每千米耗油0.2升,从O地出发到收工时共耗油多少升?【考点】正数和负数.【分析】(1)利用有理数加减运算法则求出即可;(2)利用正负数的实际意义求出总距离,进而得出耗油量.【解答】解:(1)由题意可得:+10﹣3+4+2﹣8+13﹣2﹣12﹣6+3=1(km),答:收工时距O地1km远;(2)由题意可得:10+3+4+2+8+13+2+12+6+3=53(km),则53×0.2=10.6(升),答:从O地出发到收工时共耗油10.6升.【点评】此题主要考查了正数与负数,正确理解正负数的意义是解题关键.四、附加题(填空题2分一空,解答题8分,共20分)27.当a=1时,|1﹣a|+2会有最小值,且最小值是2.【考点】非负数的性质:绝对值.【分析】先根据非负数的性质求出a的值,进而可得出结论.【解答】解:∵|1﹣a|≥0,∴当1﹣a=0时,|1﹣a|+2会有最小值,∴当a=1时,|1﹣a|+2会有最小值,且最小值是2.故答案为:1,2.【点评】本题考查的是非负数的性质,熟知任何数的绝对值都是非负数是解答此题的关键.28.已知有理数a,b,c满足,求的值.【考点】有理数的乘法;绝对值.【专题】计算题.【分析】根据可以看出,a,b,c中必有两正一负,从而可得出求的值.【解答】解:∵,∴a,b,c中必有两正一负,即abc之积为负,∴=﹣1.【点评】本题考查了有理数的乘法,注意从所给条件中获得有用信息,即a,b,c中必有两正一负.29.阅读材料:大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?观察下面三个特殊的等式:1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4=×3×4×5=20读完这段材料,请你思考后回答:(1)1×2+2×3+…+100×101=343400;(2)1×2+2×3+3×4+…+n×(n+1)=n(n+1)(n+2);(3)1×2×3+2×3×4+…+n(n+1)(n+2)=n(n+1)(n+2)(n+3).(只需写出结果,不必写中间的过程)【考点】有理数的混合运算.【专题】阅读型;规律型.【分析】(1)根据三个特殊等式相加的结果,代入熟记进行计算即可求解;(2)先对特殊等式进行整理,从而找出规律,然后把每一个算式都写成两个两个算式的运算形式,整理即可得解;(3)根据(2)的求解规律,利用特殊等式的计算方法,先把每一个算式分解成两个算式的运算形式,整理即可得解.【解答】解:∵1×2+2×3+3×4=×3×4×5=20,即1×2+2×3+3×4=×3×(3+1)×(3+2)=20∴(1)原式=×100×(100+1)×(100+2)=×100×101×102=343400;(2)原式=n(n+1)(n+2);(3)原式=n(n+1)(n+2)(n+3).故答案为:343400;n(n+1)(n+2);n(n+1)(n+2)(n+3).【点评】考查了有理数的混合运算,能从材料中获取所需的信息和解题方法是需要掌握的基本能力.要注意:连续的整数相乘的进一步变形,即n(n+1)=[n(n+2)﹣n(n+1)(n﹣1)];n(n+1)(n+2)=[n(n+1)(n+2)(n+3)﹣n(n﹣1)(n+1)(n+2)].30.小林的父亲上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元)星期一二三四五六每股涨跌+4 +4.5 ﹣1 ﹣2.5 ﹣6 +2 (1)星期三收盘时,每股多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知小林的父亲买进股票时付了1.5‰的手续费,卖出时须付总金额1.5‰的手续费和1‰的交易税,如果他在周六收盘前将股票全部卖出,他的收益情况如何?【考点】有理数的加减混合运算;正数和负数.【专题】综合题.【分析】先理解上涨用“+”表示,下降用“﹣”表示,根据题意列出式子计算即可;周六的收益=周六每股的价钱×1000×(1﹣1.5‰﹣1‰)﹣27×1000×(1+1.5‰).【解答】解:(1)27+4+4.5﹣1=34.5元;(2)最高=27+4+4.5=35.5元,最低=34.5﹣2.5﹣6=26元;(3)周六每股的价钱=26+2=28元,收益情况=28×1000×(1﹣1.5‰﹣1‰)﹣27×1000×(1+1.5‰)=889.5元.【点评】本题考查的是有理数的加减混合运算,注意相反意义的量的理解、等式的利用.。
江苏省南通市八一中学2016届九年级上学期第一次月考数学试题解析(解析版)

一、选择题(本题共10小题,每题3分,共30分)1.二次函数22(1)3y x +-=的图象的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3) 【答案】D【解析】试题分析:因为二次函数2()y a x h k =-+的顶点坐标是(h ,k ),所以函数22(1)3y x +-=的图象的顶点坐标是(-1,-3),故选:D.考点:二次函数的顶点坐标2.已知函数4212--=x x y ,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <1 B .x >1 C .x >-2 D .-2<x <4【答案】A【解析】 试题分析:因为1121b x a -=-=-=,且12a =>0,所以当x <1时,函数值y 随x 的增大而减小,故选:A.考点:二次函数的性质.3.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )A .2(1)2y x =-+B .2(1)2y x =++C .2(1)2y x =--D .2(1)2y x =+-【答案】A【解析】试题分析:根据函数图象的平移规律:左加右减,上加下减可知:二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数是2(1)2y x =-+,故选:A.考点:函数图象的平移.4.若二次函数y =-2x +6x +c 的图象过点A (-1,1y ),B (1,2y ),C (4,3y )三点,则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .2y >1y >3yC .3y >2y >1yD .3y >1y >2y【答案】C考点:二次函数图象的性质5.抛物线222y x kx =-++与x 轴交点的个数为( )A .0B .1C .2D .以上都不对【答案】C【解析】试题分析:因为22448b ac k =-=+>0,所以抛物线222y x kx =-++与x 轴有2个交点,故选:C. 考点:抛物线与x 轴交点个数.6.已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )【答案】B【解析】试题分析:因为抛物线开口向下,所以a <0,又对称轴在y 轴右侧,所以2b a->0,所以b >0,所以函数b ax y +=的图象过一二四象限,故选:B.考点:函数图象的性质.7.已知函数y =2x -2x -2的图象如图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .-1≤x ≤3B .-3≤x ≤1C .x ≥-3D .x ≤-1或x ≥3【答案】D【解析】试题分析:根据二次函数的图像可知:当x ≤-1或x ≥3时,y ≥1,故选:D.考点:函数图象与不等式.8.已知函数2y ax bx c =++的图象如图所示,那么关于x 的方程220ax bx c +++=的根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根【答案】D【解析】试题分析:根据函数2y ax bx c =++的图象可知:2y ax bx c =++3≥-,所以函数图象向上平移2个单位时,与x 轴有2个交点,所以x 的方程220ax bx c +++=有两个同号不等实数根,故选:D. 考点:函数图象与方程.9.如图,有一座抛物线形拱桥,当水位线在AB 位置时,拱顶(即抛物线的顶点)离水面2m ,水面宽为4m ,水面下降1m 后,水面宽为( )A .5mB .6mC mD .m【答案】D试题分析:建立如图所示的坐标系,则点A 的坐标为(-2,-2),设函数关系式为2y ax =,则-2=4a ,所以a= -12,所以212y x =-,当y=-3时,x =,所以水面宽为m ,故选:D.考点:二次函数的应用10.二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x =2.下列结论:①4a +b =0;②9a +c >3b ;③8a +7b +2c >0;④当x >-1时,y 的值随x 值的增大而增大.其中正确的结论有( )A .1个B .2个C .3个D .4个12.将二次函数y =2x -2x -3化为y =(x -h )2+k 的形式,则__________________.【答案】y =(x -1)2-4【解析】试题分析:y =2x -2x -3=2x -2x+1-4=(x -1)2-4. 考点:配方法.13.抛物线(1)(3)(0)y a x x a =--≠的对称轴是直线__________________.【答案】x =2【解析】试题分析:抛物线(1)(3)(0)y a x x a =--≠与x 轴的交点是(1,0),(3,0),所以对称轴是直线x =2. 考点:抛物线的对称轴14.若二次函数y =()21m x ++m 2-9的图象经过原点且有最大值,则m =_________.【答案】-3【解析】试题分析:因为二次函数y =()21m x ++m 2-9的图象经过原点且有最大值,所以m 2-9=0且m+1<0,解得m=-3.考点:二次函数的最值.15.抛物线y =2x +6x +m 与x 轴只有一个公共点,则m 的值为_________.【答案】9试题分析:因为抛物线y =2x +6x +m 与x 轴只有一个公共点,所以243640b ac m =-=-=,所以m=9. 考点:抛物线与x 轴的交点16.若抛物线23y bx x -+=的对称轴为直线x =-1,则b 的值为_________. 【答案】-12 【解析】试题分析:因为抛物线23y bx x -+=的对称轴为直线x =-1,所以1122b x a b=-==-,所以b=-12. 考点:抛物线的对称轴17.若二次函数24y ax x a -+=的最小值是-3,则a =_________.【答案】1【解析】 试题分析:因为二次函数24y ax x a -+=的最小值是-3,所以241634a y a -==-,解得a=1或-4,又二次函数有最小值,所以a >0,所以a=1.考点:二次函数的最值18.二次函数221y x x =--的图象在x 轴上截得的线段长为_________. 【答案】22【解析】试题分析:令y=0,则2x -2x-1=0,解方程得1x =x 轴上截得的线段长为(1(1-=.考点:二次函数的图象与方程.19.如图,一拱桥呈抛物线状,桥的最大高度是32m ,跨度是80m ,在线段AB 上距离中心M 20m 的D 处,桥的高度是_________m .【解析】试题分析:建立如图所示的坐标系,则点A 、C 的坐标为A (-40,0),C (0,32),设函数解析式为2y ax k =+,代入点A 、C 的坐标得1600032a k k +=⎧⎨=⎩ ,解得15032a k ⎧=-⎪⎨⎪=⎩,所以213250y x =-+,令x=20,则y=24.考点:二次函数的应用20.二次函数2y x bx =+的图象如图,对称轴为x =-2.若关于x 的一元二次方程20x bx t +-=(t 为实数)在-5<x <2的范围内有解,则t 的取值范围是___________.【答案】-4≤t <12【解析】试题分析:因为二次函数2y x bx =+的图象的对称轴为x =-2,所以222b b x a =-=-=-,所以b=4,所以24y x x =+=2(2)4x +-,当x=-2时,y=-4,当x=2时,y=12,所以关于x 的一元二次方程20x bx t +-=(t 为实数)在-5<x <2的范围内有解,则t 的取值范围是-4≤t <12.考点:二次函数的图象与方程、不等式.三、解答题(本题共7小题,共80分)21.(本题10分)已知二次函数245y x x =-++.(1)用配方法把该函数化为2()y a x h k =-+(其中a 、h 、k 都是常数且a ≠0)的形式,并指出函数图象的对称轴和顶点坐标;(2)求这个函数图象与x 轴、y 轴的交点坐标.【答案】(1)y =一(x 一2)2+9,对称轴为:x =2,顶点坐标:(2,9).(2)(-1,0)与(5,0)(0,5)【解析】试题分析:(1)按照配方法的步骤配方,将二次函数化成顶点式即可;(2)令x=0,y=0解方程即可. 试题解析:解:(1)245yx x =-++=-(x 2-4x )+5=一(x 一2)2+9,对称轴为:x =2,顶点坐标:(2,9).(2)令y=0,则一(x 一2)2+9=0,解得x=0,x=4,所以函数与x 轴的交点是(-1,0)与(5,0),令y=0,则x=5,所以函数与x 轴的交点是(0,5).考点:配方法.22.(本题10分)如图,直线y =x +m 和抛物线y =2x +bx +c 都经过点A (1,0),B (3,2).(1)求m 的值和抛物线的解析式;(2)求不等式x 2+bx +c >x +m 的解集.(直接写出答案)【答案】(1)m =-1. y =x 2-3x +2(2)x >3或x <1.【解析】试题分析:(1)把点A (1,0)代入直线y =x +m 可求出m 的值,把点A (1,0),B (3,2).代入二次函数解析式可求出c 的值;(2)观察函数图象结合点点A 、B 的坐标作答即可..试题解析:解:(1)∵直线y =x +m 经过点A (1,0),∴0=1+m ,∴m =-1.∵抛物线y =x 2+bx +c 经过点A (1,0),B (3,2),∴01293.b c b c =++⎧⎨=++⎩解得32b c =-⎧⎨=⎩ ∴抛物线的解析式为y =x 2-3x +2(2)x >3或x <1.考点:二次函数、函数图象与不等式.23.(本题10分)如图,二次函数y =a 2x -4x +c 的图象过原点,与x 轴交于点A (-4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P ,满足S △AOP =8,请求出点P 的坐标.【答案】(1)y=-2x-4x P1(-2, 4),P2(-2+,-4),P3(-2-,-4)【解析】试题分析:(1)把点(0,0)和(-4,0)代入二次函数解析式,解方程组即可;(2)设P(m,n),利用S △AOP=8求出n的值,然后代入二次函数解析式可求出m的值.试题解析:解:(1)把点(0,0)和(-4,0).代入y=a2x-4x+c得16160ca c=⎧⎨++=⎩,解得a=-1,c=0,所以y=-2x-4x(2)令P(m,n),则S△AOP=12AO·|n|=12×4|n|=8,解得n=±4.又∵P(m,n)在抛物线y=-x2-4x上,∴-m2-4m=±4,分别解得m1=-2,m2=-2+和m3=-2-P1(-2, 4),P2(-2+,-4),P3(-2-,-4)考点:二次函数综合题24.(本题10分)八一中学初三年级的一场篮球赛中,如图队员甲正在投篮,已知球出手时离地面高209m,与球圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m.设篮球运行轨迹为抛物线,篮圈距地面3m.⑴建立如图的平面直角坐标系,问此球能否准确投中?⑵此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?【答案】⑴能准确投中⑵能获得成功考点:二次函数的应用25.(本题12分)如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a 为15米)围成的中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x 米,面积为S 平方米.(1)求S 与x 的函数关系式;(2)如果要围成花圃的面积为36平方米,求AB 的长为多少米?(3)如果要使围成花圃面积最大,求AB 的长为多少米?【答案】(1)S =-3x 2+24x (2)6米(3)3米【解析】试题分析:(1)根据矩形的面积=长乘以宽,代入化简即可;(2)令S =36,解方程即可求出x 的值即AB 的长;(3)将函数关系式配方化为顶点式即可解答.试题解析:解:(1)S =x (24-3x ),即S =-3x 2+24x ;(2)当S =36时,-32x +24x =36,解得x 1=2,x 2=6,当x =2时,24-3x =18>15,不合题意,舍去;当x =6时,24-3x =6<15,符合题意,故AB 的长为6米.(2)S =-3x 2+24x =()23448x --+,∵0<x ≤3,∴当x =3时面积最大,最大面积为45. 考点:二次函数的应用26.本题14分)利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用共100元.设每吨材料售价为x (元),该经销店的月利润为y (元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y 与x 的函数关系式(不要求写出x 的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.【答案】(1)60(吨)(2)23315240004y x x =-+-.(3)每吨210元(4)小静说的不对 【解析】试题分析:(1)根据5.71024026045⨯-+计算即可;(2)根据总利润=每吨的利润×月销售量化简即可;(3)将二次函数配方化为顶点式即可;(4)分别计算x=210和x=200时的月销售额,然后比较即可. 试题解析:解:(1)5.71024026045⨯-+=60(吨). (2)260(100)(457.5)10x y x -=-+⨯,化简得:23315240004y x x =-+-. (3)24000315432-+-=x x y 23(210)90754x =--+. 利达经销店要获得最大月利润,材料的售价应定为每吨210元.(4)小静说的不对.理由:方法一:当月利润最大时,x 为210元,而对于月销售额)5.71026045(⨯-+=x x W 23(160)192004x =--+来说,当x 为160元时,月销售额W 最大. ∴当x 为210元时,月销售额W 不是最大.∴小静说的不对.方法二:当月利润最大时,x 为210元,此时,月销售额为17325元;而当x 为200元时,月销售额为18000元.∵17325<18000,∴当月利润最大时,月销售额W 不是最大.∴小静说的不对.考点:二次函数的应用27.(本题14分)如图①,已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3)如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.【答案】(1)322+=x --x y (2)P (-1,10)或P (-1,-10)或P (-1,6)或P (-1,35) (3)点E 坐标为(-23,415) 【解析】 试题分析:(1)利用待定系数法求函数解析式即可;(2)分CP=MP 、CM=CP 、CM=MP 三种情况讨论,(3)过点E 作EF ⊥x 轴于点F ,设E (a ,-2a -2a +3)(-3<a <0),然后用a 表示出四边形BOCE 面积,然后利用二次函数的性质确定最大值即可得到点E 坐标.试题解析:解︰(1)由题知︰⎩⎨⎧=+-=++033903b a b a ,解得︰⎩⎨⎧-=-=21b a∴所求抛物线解析式为︰322+=x --x y(2)存在符合条件的点P ,其坐标为P (-1,10)或P (-1,-10)或P (-1,6)或P (-1,35) (3)解法①:过点E 作EF ⊥x 轴于点F ,设E (a ,-2a -2a +3)(-3<a <0)∴EF =-2a -2a +3,BF =a +3,OF =-a ∴S 四边形BOCE =21BF ·EF +21(OC +EF )·OF =21(a +3)·(-2a -2a +3)+21(-2a -2a +6)·(-a ) =2929232+--a a =-232)23(+a +863 ∴当a =-23时,S 四边形BOCE 最大,且最大值为863. 此时,点E 坐标为(-23,415) 解法②:过点E 作EF ⊥x 轴于点F ,设E (x ,y )(-3<x <0)图① 图②则S 四边形BOCE =21(3+y )·(-x )+21(3+x )·y =23(y -x )=23(332+x --x )=-232)23(+x +863 ∴当x =-23时,S 四边形BOCE 最大,且最大值为863.此时,点E 坐标为(-23,415) 考点:二次函数综合题.高考一轮复习:。
2015-2016学年南通市八一中学九上第一次月考数学试卷

2015-2016学年南通市八一中学九上第一次月考数学试卷一、选择题(共10小题;共50分)1. 抛物线y=2x+12−3的顶点坐标为 A. 1,3B. 1,−3C. −1,3D. −1,−3x2−x−4,当函数值y随x的增大而减小时,x的取值范围是 2. 已知函数y=12A. x<1B. x>1C. x>−2D. −2<x<43. 将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 A. y=x−12+2B. y=x+12+2C. y=x−12−2D. y=x+12−24. 若二次函数y=−x2+6x+c的图象过点A−1,y1,B1,y2,C4,y3三点,则y1,y2,y3的大小关系是 A. y1>y2>y3B. y2>y1>y3C. y3>y2>y1D. y3>y1>y25. 抛物线y=−x2+2kx+2与x轴交点的个数为 A. 0个B. 1个C. 2个D. 以上都不对6. 已知函数y=ax2+bx+c的图象如图所示,则函数y=ax+b的图象是 A. B.C. D.7. 已知函数y=x2−2x−2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x的取值范围是 A. −1≤x≤3B. −3≤x≤1C. x≥−3D. x≤−1或x≥38. 已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是 A. 无实数根B. 有两个相等实数根C. 有两个异号实数根D. 有两个同号不等实数根9. 如图,有一座抛物线形拱桥,当水位线在AB位置时,拱顶(即抛物线的顶点)离水2 m,水面宽为4 m,水面下降1.125 m后,水面宽为 A. 5 mB. 6 mC. mD. 2 m10. 二次函数y=ax2+bx+c a≠0的部分图象如图,图象过点−1,0,对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>−1时,y的值随x值的增大而增大.其中正确的结论有 A. 1个B. 2个C. 3个D. 4个二、填空题(共10小题;共50分)11. 二次函数y=ax2+bx+c的部分对应值如下表:x⋯−3−20135⋯y⋯−54−36−12−6−6−22⋯二次函数y=ax2+bx+c图象的对称轴为x=,x=−1对应的函数值y=.12. 将二次函数y=x2−2x−3化为y=x−ℎ2+k的形式,则.13. 抛物线y=a x+1x−3a≠0的对称轴是直线.14. 若二次函数y=m+1x2+m2−9的图象经过原点且有最大值,则m=.15. 抛物线y=x2+6x+m与x轴只有一个公共点,则m的值为.16. 若抛物线y=bx2−x+3的对称轴为直线x=−1,则b的值为.17. 若二次函数y=ax2−4x+a的最小值是−3,则a=.18. 二次函数y=x2−2x−1的图象在x轴上截得的线段长为.19. 如图,一拱桥呈抛物线状,桥的最大高度是32 m,跨度是80 m,在线段AB上距离中心M20 m的D处,桥的高度是m.20. 二次函数y=x2+bx的图象如图,对称轴为x=−2.若关于x的一元二次方程x2+bx−t=0(t为实数)在−5<x<2的范围内有解,则t的取值范围是.三、解答题(共7小题;共91分)21. 已知二次函数y=−x2+4x+5.(1)用配方法把该函数化为y=a x−ℎ2+k(其中a,ℎ,k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶点坐标;(2)求这个函数图象与x轴、y轴的交点坐标.22. 如图,直线y=x+m和抛物线y=x2+bx+c都经过点A1,0,B3,2.(1)求m的值和抛物线的解析式;(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)23. 如图,二次函数y=ax2−4x+c的图象经过坐标原点,与x轴交于点A−4,0.(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.m,与篮圈24. 某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高209中心的水平距离为7 m,当球出手后水平距离为4 m时到达最大高度4 m,设篮球运行的轨迹为抛物线,篮圈距地面3 m.(1)建立如图的平面直角坐标系,问此球能否准确投中;(2)此时,若对方队员乙在甲前面1 m处跳起盖帽拦截,已知乙的最大摸高为3.1 m,那么他能否获得成功?25. 如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a为15米)围成的中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式;(2)如果要围成花圃的面积为36平方米,求AB的长为多少米?(3)如果要使围成花圃面积最大,求AB的长为多少米?26. 某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.27. 如图①,已知抛物线y=ax2+bx+3a≠0与x轴交于点A1,0和点B−3,0,与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求此时E点的坐标.答案第一部分1. D2. A3. A4. C5. C6. B 【解析】∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=−b2a>0,∴b>0,∴函数y=ax+b的图象经过第二四象限且与y轴正半轴相交.7. D 8. D 9. A 10. B第二部分11. 2,−2212. y=x−12−413. x=114. −315. 916. −1217. 118. 219. 2420. −4≤t<12第三部分21. (1)y=−x2+4x+5 =−x−22+9,对称轴为:x=2,顶点坐标:2,9.(2)令y=0,得−x2+4x+5=0,解得x1=−1,x2=5,所以图象与x轴的交点坐标为:−1,0与5,0;令x=0,得y=5,所以图象与y轴的交点坐标为:0,5.22. (1)把点A1,0,B3,2分别代入直线y=x+m和抛物线y=x2+bx+c得:0=1+m,0=1+b+c,2=9+3b+c,∴m=−1,b=−3,c=2,∴y=x−1,y=x2−3x+2.(2)x2−3x+2>x−1,解得:x<1或x>3.23. (1)由已知条件得c=0,a×−42−4×−4+c=0,解得a=−1,c=0,∴此二次函数的解析式为y=−x2−4x.(2)点P的坐标是:−2,4, −2+2−4, −2−2−4.【解析】∵点A的坐标为−4,0,∴AO=4,设点P到x轴的距离为ℎ,×4ℎ=8,则S△AOP=12解得ℎ=4,①当点P在x轴上方时,−x2−4x=4,解得x=−2,∴点P的坐标为−2,4,②当点P在x轴下方时,−x2−4x=−4,解得x1=−2+22,x2=−2−22,∴点P的坐标为 −2+22,−4或 −2−22,−4,综上所述,点P的坐标是:−2,4, −2+22,−4, −2−22,−4.,B4,4,C7,3,24. (1)根据题意,球出手点、最高点和篮圈的坐标分别为:A0,209设二次函数解析式为y=a x−ℎ2+k,x−42+4, ⋯⋯①代入A,B点坐标,得y=−19将C点坐标代入①式得左边=右边,即C点在抛物线上,∴一定能投中.(2)将x=1代入①得y=3,∵3.1>3,∴盖帽能获得成功.25. (1)花圃的宽AB为x米,则BC=24−3x米,∴S=x24−3x,即S=−3x2+24x3≤x<8.(2)当S=36时,−3x2+24x=36,解得x1=2,x2=6,当x=2时,24−3x=18>15,不合题意,舍去;当x=6时,24−3x=6<15,符合题意,故AB的长为6米.(3)S=−3x2+24x=−3x−42+48,∵3≤x<8,∴当x=4米时面积最大,最大面积为48平方米.26. (1)由题意得:45+260−24010×7.5=60(吨).(2)由题意:y=x−10045+260−x10×7.5,化简得:y=−34x2+315x−24000.(3)y=−34x2+315x−24000=−34x−2102+9075.利达经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,小静说的不对.理由:方法一:当月利润最大时,x为210元,而对于月销售额W=x45+260−x10×7.5=−34x−1602+19200来说,当x为160元时,月销售额W最大.∴当x为210元时,月销售额W不是最大.∴小静说的不对.方法二:当月利润最大时,x为210元,此时,月销售额为17325元;而当x为200元时,月销售额为18000元.∵17325<18000,∴当月利润最大时,月销售额W不是最大.∴小静说的不对.(说明:如果举出其它反例,说理正确,也可以)27. (1)∵抛物线y=ax2+bx+3a≠0与x轴交于点A1,0和点B−3,0,∴a+b+3=0, 9a−3b+3=0,解得:a=−1, b=−2.∴所求抛物线解析式为:y=−x2−2x+3.(2)∵抛物线解析式为:y=−x2−2x+3,∴其对称轴为x=−22=−1,∴设P点坐标为−1,a,当x=0时,y=3,∴C0,3,M−1,0,∴当CP=PM时,−12+3−a2=a2,解得a=53,∴P点坐标为:P1 −1,53;∴当CM=PM时,−12+32=a2,解得a=±∴P点坐标为:P2 −1,10或P3 −1,−10;∴当CM=CP时,由勾股定理得:−12+32=−12+3−a2,解得a=6,∴P点坐标为:P4−1,6,综上所述存在符合条件的点P,其坐标为P −1,10或P −1,−10或P−1,6或P −1,53.(3)过点E作EF⊥x轴于点F,设E a,−a2−2a+3−3<a<0,∴EF=−a2−2a+3,BF=a+3,OF=−a,∴S四边形BOCE =12BF⋅EF+12OC+EF⋅OF=12a+3⋅−a2−2a+3+12−a2−2a+6⋅−a =−3a2−9a+9=−32a+322+638.∴当a=−32时,S四边形BOCE最大,且最大值为638.此时,点E坐标为 −32,154.。
2016年九年级上册第一次月考试卷数学(精编文档).doc

【最新整理,下载后即可编辑】2016年九年级上册第一次月考试卷数学注意事项:1. 本试卷分试题卷和答题卡两部分.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.评卷人得分一、选择题(题型注释)x的一元二次方程220x x a+-=有两个相等的实数根,则a的值是()A.4 B.-4 C.1 D.-1 2.如果012=-+xx,那么代数式7223-+xx的值是( )A、6B、8C、-6D、-83.如图,抛物线)0(2>++=acbxaxy的对称轴是直线x=1,且经过点P (3,0),则cba+-的值为()A、0B、-1C、1D、24.已知二次函数的图象如图所示,则这个二次函数的表达式为()A.y=x2﹣2x+3 B.y=x2﹣2x﹣3 C.y=x2+2x﹣3 D.y=x2+2x+3 5.用配方法解方程0142=-+xx,下列配方结果正确的是().A.5)2(2=+x B.1)2(2=+xC.1)2(2=-x D.5)2(2=-x6.如图,在一次函数5+-=xy的图象上取点P,作PA⊥x轴于A,PB⊥y轴于B,且长方形OAPB的面积为6,则这样的点P 个数共有()A.4 B.3C.2 D.17.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()8.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(题型注释)每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛?设比赛组织者应邀请x支球队参赛,根据题意列出的方程是____________________________ ____.10.如图,二次函数cbxaxy++=2的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴。
九年级数学上学期第一次月考试卷含解析苏科版

江苏省徐州八中2016-2017学年九年级(上)第一次月考数学试卷一.选择题1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B. C.ax2+bx+c=0 D.x2+2x=x2﹣12.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=33.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>54.若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4 B.3 C. D.5.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315 6.过圆上一点可以作出圆的最长弦的条数为()A.1条B.2条C.3条D.无数条7.下列说法,正确的是()A.弦是直径 B.弧是半圆C.半圆是弧 D.过圆心的线段是直径8.矩形ABCD中,AB=8,BC=3,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD 为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内9.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块10.如图,AB为圆O的直径,BC为圆O的一弦,自O点作BC的垂线,且交BC于D点.若AB=16,BC=12,则△OBD的面积为何?()A.6 B.12 C.15 D.30二.填空题已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为.12.用一条长40cm的绳子围成一个面积为64cm2的矩形.设矩形的一边长为xcm,则可列方程为.13.如图,⊙O的直径CD=20cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6cm,则AB的长为cm.14.如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是.15.如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC= .16.如图,△ABC的外心坐标是.17.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.18.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为 m.19.平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为cm.20.计算2﹣的结果是.三.解答题(共4小题)21.解方程:x2﹣6x+5=0 (配方法)22.解方程(1)(2x﹣1)2=9(2)x2﹣3x+2=0.23.欣欣服装店经销某种品牌的童装,进价为50元/件,原来售价为110元/件,每天可以出售40件,经市场调查发现每降价1元,一天可以多售出2件.(1)若想每天出售50件,应降价多少元?(2)如果每天的利润要比原来多600元,并使库存尽快地减少,问每件应降价多少元?(利润=销售总价﹣进货价总价)24.如图,△ABC内接于⊙O,已知AB=AC,点M为劣弧BC上任意一点,且∠AMC=60°.(1)若BC=6,求△ABC的面积;(2)若点D为AM上一点,且BD=DM,判断线段MA、MB、MC三者之间有怎样的数量关系,并证明你的结论.2016-2017学年江苏省徐州八中九年级(上)第一次月考数学试卷参考答案与试题解析一.选择题1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B. C.ax2+bx+c=0 D.x2+2x=x2﹣1【考点】一元二次方程的定义.【分析】利用一元二次方程的定义判断即可.【解答】解:下列方程中,关于x的一元二次方程是(x+1)2=2(x+1),故选A.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.2.方程x2+x﹣12=0的两个根为()A.x1=﹣2,x2=6 B.x1=﹣6,x2=2 C.x1=﹣3,x2=4 D.x1=﹣4,x2=3【考点】解一元二次方程-因式分解法.【分析】将x2+x﹣12分解因式成(x+4)(x﹣3),解x+4=0或x﹣3=0即可得出结论.【解答】解:x2+x﹣12=(x+4)(x﹣3)=0,则x+4=0,或x﹣3=0,解得:x1=﹣4,x2=3.故选D.【点评】本题考查了因式分解法解一元二次方程,解题的关键是将x2+x﹣12分解成(x+4)(x﹣3).本题属于基础题,难度不大,解决该题型题目时,牢记因式分解法解一元二次方程的一般步骤是关键.3.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【考点】根的判别式;一元二次方程的定义.【分析】根据方程为一元二次方程且有两个不相等的实数根,结合一元二次方程的定义以及根的判别式即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.【点评】本题考查了根的判别式以及一元二次方程的定义,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据方程根的个数结合一元二次方程的定义以及根的判别式得出不等式组是关键.4.若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4 B.3 C. D.【考点】根与系数的关系.【分析】由方程的各系数结合根与系数的关系可得出“x1+x2=,x1•x2=﹣”,由此即可得出结论.【解答】解:∵方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,∴x1+x2=﹣=,x1•x2==﹣.故选D.【点评】本题考查了根与系数的关系,解题的关键是找出“x1+x2=﹣=,x1•x2==﹣”.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.5.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=315 【考点】由实际问题抽象出一元二次方程.【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是560(1﹣x),第二次后的价格是560(1﹣x)2,据此即可列方程求解.【解答】解:设每次降价的百分率为x,由题意得:560(1﹣x)2=315,故选:B.【点评】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.6.过圆上一点可以作出圆的最长弦的条数为()A.1条B.2条C.3条D.无数条【考点】圆的认识.【分析】由于直径是圆的最长弦,经过圆心的弦是直径,两点确定一条直线,所以过圆上一点可以作出圆的最长弦的条数为一条.【解答】解:圆的最长的弦是直径,直径经过圆心,过圆上一点和圆心可以确定一条直线,所以过圆上一点可以作出圆的最长弦的条数为一条.故选A.【点评】本题考查了直径和弦的关系,直径是弦,弦不一定是直径,直径是圆内最长的弦.7.下列说法,正确的是()A.弦是直径 B.弧是半圆C.半圆是弧 D.过圆心的线段是直径【考点】圆的认识;认识平面图形.【分析】根据弦,弧,半圆和直径的概念进行判断.弦是连接圆上任意两点的线段.弧是圆上任意两点间的部分.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.直径是过圆心的弦.【解答】解:A、弦是连接圆上任意两点的线段,只有经过圆心的弦才是直径,不是所有的弦都是直径.故本选项错误;B、弧是圆上任意两点间的部分,只有直径的两个端点把圆分成的两条弧是半圆,不是所有的弧都是半圆.故本选项错误;C、圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.所以半圆是弧是正确的.D、过圆心的弦才是直径,不是所有过圆心的线段都是直径,故本选项错误.故选:C.【点评】本题考查的是对圆的认识,根据弦,弧,半圆和直径的概念对每个选项进行判断,然后作出选择.8.矩形ABCD中,AB=8,BC=3,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD 为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内【考点】点与圆的位置关系.【分析】根据BP=3AP和AB的长度求得AP的长,然后利用勾股定理求得圆P的半径PD的长,根据点B、C到P点的距离判断点P与圆的位置关系即可.【解答】解:∵AB=8,点P在边AB上,且BP=3AP,∴AP=2,∴r=PD==7,PC===9,∵PB=6<7,PC=9>7∴点B在圆P内、点C在圆P外故选:C.【点评】本题考查了点与圆的位置关系的判定,根据点与圆心之间的距离和圆的半径的大小关系作出判断即可.9.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()A.第①块B.第②块C.第③块D.第④块【考点】确定圆的条件.【分析】要确定圆的大小需知道其半径.根据垂径定理知第②块可确定半径的大小.【解答】解:第②块出现一段完整的弧,可在这段弧上任做两条弦,作出这两条弦的垂直平分线,就交于了圆心,进而可得到半径的长.故选:B.【点评】解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.10.如图,AB为圆O的直径,BC为圆O的一弦,自O点作BC的垂线,且交BC于D点.若AB=16,BC=12,则△OBD的面积为何?()A.6 B.12 C.15 D.30【考点】垂径定理;勾股定理.【分析】根据垂径定理,由OD⊥BC得到BD=CD=BC=6,再在Rt△BOD中利用勾股定理计算出OD=2,然后根据三角形面积公式求解.【解答】解:∵OD⊥BC,∴BD=CD=BC=×12=6,在Rt△BOD中,∵OB=AB=8,BD=6,∴OD==2,∴S△OBD=OD•BD=×2×6=6.故选A.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.二.填空题(2016•随州)已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为19或21或23 .【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【分析】求出方程的解,分为两种情况,看看是否符合三角形三边关系定理,求出即可.【解答】解:由方程x2﹣8x+15=0得:(x﹣3)(x﹣5)=0,∴x﹣3=0或x﹣5=0,解得:x=3或x=5,当等腰三角形的三边长为9、9、3时,其周长为21;当等腰三角形的三边长为9、9、5时,其周长为23;当等腰三角形的三边长为9、3、3时,3+3<9,不符合三角形三边关系定理,舍去;当等腰三角形的三边长为9、5、5时,其周长为19;综上,该等腰三角形的周长为19或21或23,故答案为:19或21或23.【点评】本题考查了解一元二次方程和等腰三角形性质,三角形的三边关系定理的应用,因式分解法求出方程的解是根本,根据等腰三角形的性质分类讨论是关键.12.用一条长40cm的绳子围成一个面积为64cm2的矩形.设矩形的一边长为xcm,则可列方程为x(20﹣x)=64 .【考点】由实际问题抽象出一元二次方程.【分析】本题可根据长方形的周长可以用x表示宽的值,然后根据面积公式即可列出方程.【解答】解:设矩形的一边长为xcm,∵长方形的周长为40cm,∴宽为=(20﹣x)(cm),得x(20﹣x)=64.故答案为:x(20﹣x)=64.【点评】本题考查了由实际问题抽象出一元二次方程,要掌握运用长方形的面积计算公式S=ab来解题的方法.13.如图,⊙O的直径CD=20cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6cm,则AB的长为16 cm.【考点】垂径定理.【分析】连接OA,根据垂径定理求出AB=2AM,已知OA、OM,根据勾股定理求出AM即可.【解答】解:连接OA,∵⊙O的直径CD=20cm,∴OA=10cm,在Rt△OAM中,由勾股定理得:AM==8cm,∴由垂径定理得:AB=2AM=16cm.故答案为:16.【点评】本题考查了垂径定理和勾股定理的应用,关键是构造直角三角形.14.如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是28°.【考点】圆周角定理.【分析】根据圆周角定理即可推出∠AOB=2∠ACB,再代入∠AOB+∠ACB=84°通过计算即可得出结果.【解答】解:∵∠AOB=2∠ACB,∠AOB+∠ACB=84°∴3∠ACB=84°∴∠ACB=28°.故答案为:28°.【点评】此题主要考查圆周角定理,关键在于找出两个角之间的关系,利用代换的方法结论.15.如图,⊙O是△ABC的外接圆,∠AOB=70°,AB=AC,则∠ABC= 35°.【考点】圆周角定理.【分析】先根据圆周角定理求出∠C的度数,再由等腰三角形的性质即可得出结论.【解答】解:∵∠AOB=70°,∴∠C=∠AOB=35°.∵AB=AC,∴∠ABC=∠C=35°.故答案为:35°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.16.如图,△ABC的外心坐标是(﹣2,﹣1).【考点】三角形的外接圆与外心;坐标与图形性质.【分析】首先由△ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为△ABC的外心.【解答】解:∵△ABC的外心即是三角形三边垂直平分线的交点,∴作图得:∴EF与MN的交点O′即为所求的△ABC的外心,∴△ABC的外心坐标是(﹣2,﹣1).故答案为:(﹣2,﹣1).【点评】此题考查了三角形外心的知识.注意三角形的外心即是三角形三边垂直平分线的交点.解此题的关键是数形结合思想的应用.17.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是 1 .【考点】根的判别式.【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.18.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.2 m.【考点】垂径定理的应用;勾股定理.【分析】过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC中,由水面高度与半径求出OC的长,即可得出排水管内水的深度.【解答】解:过O作OC⊥AB,交AB于点C,可得出AC=BC=AB=0.4m,由直径是1m,可知半径为0.5m,在Rt△AOC中,根据勾股定理得:OC===0.3(m),则排水管内水的深度为:0.5﹣0.3=0.2(m).故答案为:0.2.【点评】此题考查了垂径定理的应用,以及勾股定理,熟练掌握定理是解本题的关键.19.平面上有⊙O及一点P,P到⊙O上一点的距离最长为6cm,最短为2cm,则⊙O的半径为4或2 cm.【考点】点与圆的位置关系.【分析】解答此题应进行分类讨论,点P可能位于圆的内部,也可能位于圆的外部.【解答】解:当点P在圆内时,则直径=6+2=8cm,因而半径是4cm;当点P在圆外时,直径=6﹣2=4cm,因而半径是2cm.所以⊙O的半径为4或2cm.故答案为:4或2.【点评】考查了点与圆的位置关系,解决本题的关键是首先要进行分类讨论,其次是理解最长距离和最短距离和或差的意义.20.计算2﹣的结果是﹣2 .【考点】二次根式的加减法.【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【解答】解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.【点评】本题考查了二次根式的加减法,解答本题的关键在于掌握二次根式的化简与同类二次根式合并.三.解答题(共4小题)21.解方程:x2﹣6x+5=0 (配方法)【考点】解一元二次方程-配方法.【分析】利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣6x=﹣5,等式两边同时加上一次项系数一半的平方32.得x2﹣6x+32=﹣5+32,即(x﹣3)2=4,∴x=3±2,∴原方程的解是:x1=5,x2=1.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.22.(12分)(2016春•长清区期末)解方程(1)(2x﹣1)2=9(2)x2﹣3x+2=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)利用直接开平方法解一元二次方程;(2)利用因式分解的方法解一元二次方程.【解答】解:(1)(2x﹣1)2=9开方平得,2x﹣1=±3,解得x1=2,x2=﹣1;(2)x2﹣3x+2=0.因式分解得(x﹣1)(x﹣2)=0,x﹣1=0或x﹣2=0,解得x1=1,x2=2.【点评】本题主要考查了解一元二次方程,解题的关键是利用因式分解法求解.23.(11分)(2016春•启东市校级期中)欣欣服装店经销某种品牌的童装,进价为50元/件,原来售价为110元/件,每天可以出售40件,经市场调查发现每降价1元,一天可以多售出2件.(1)若想每天出售50件,应降价多少元?(2)如果每天的利润要比原来多600元,并使库存尽快地减少,问每件应降价多少元?(利润=销售总价﹣进货价总价)【考点】一元二次方程的应用.【分析】(1)降低1元增加2件,可知若想每天出售50件,降低(50﹣40)÷2元,列出算式即可.(2)利润=售价﹣进价,根据一件商品的利润乘以销售量得到总利润,列出方程求解即可.【解答】解:(1)(50﹣40)÷2=10÷2=5(元).答:应降价5元;(2)设每件商品降价x元.(110﹣x﹣50)×(40+2x)=40×(110﹣50)+600,解得:x1=10,x2=30,∵使库存尽快地减少,∴x=30.答:每件应降价30元.【点评】考查了一元二次方程的应用,解题的关键是理解题意找到等式两边的平衡条件,列出方程,解答即可.24.(11分)(2013秋•宜春期末)如图,△ABC内接于⊙O,已知AB=AC,点M为劣弧BC 上任意一点,且∠AMC=60°.(1)若BC=6,求△ABC的面积;(2)若点D为AM上一点,且BD=DM,判断线段MA、MB、MC三者之间有怎样的数量关系,并证明你的结论.【考点】圆周角定理;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理;垂径定理.【分析】(1)根据圆周角定理得到∠ABC=∠AMC=60°,加上AB=AC,则可判断△ABC为等边三角形,然后根据等边三角形的性质计算其面积;(2)先判断△BDM为正三角形得到BD=BM,由∠ABC=∠DBM=60°得到∠ABD=∠CBM,则可根据“SAS”判断△ABD≌△CBM,所以AD=CM,于是MA=MD+AD=MB+MC.【解答】解:(1)∵∠ABC=∠AMC=60°,而AB=AC,∴△ABC为等边三角形,∴△ABC的面积=BC2=×36=9;(2)MA=MB+MC,理由如下:∵BD=DM,∠AMB=∠ACB=60°,∴△BDM为正三角形,∴BD=BM,∵∠ABC=∠DBM=60°,∴∠ABC﹣∠DBC=∠DBM﹣∠DBC,∴∠ABD=∠CBM,在△ABD与△CBM 中,,∴△ABD≌△CBM(SAS),∴AD=CM,∴MA=MD+AD=MB+MC.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等边三角形的判定与性质以及三角形全等的判定与性质.。
2015-2016学年江苏省南通市八一中学九年级(上)第一次月考数学试卷

2015-2016学年江苏省南通市八一中学九年级(上)第一次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.抛物线y=2(x+1)2﹣3的顶点坐标是( )A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)2.已知函数,当函数值y随x的增大而减小时,x的取值范围是( )A.x<1B.x>1C.x>﹣2D.﹣2<x<43.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣24.若二次函数y=﹣x2+6x+c的图象过点A(﹣1,y1),B(1,y2),C(4,y3)三点,则y1,y2,y3的大小关系是( )A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y3>y1>y25.抛物线y=﹣x2+2kx+2与x轴交点的个数为( )A.0个B.1个C.2个D.以上都不对6.已知函数y=ax2+bx+c的图象如图所示,则函数y=ax+b的图象是( )A.B.C.D.7.已知函数y=x2﹣2x﹣2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x 的取值范围是( )A.﹣1≤x≤3B.﹣3≤x≤1C.x≥﹣3D.x≤﹣1或x≥38.已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根9.如图,有一座抛物线形拱桥,当水位线在AB位置时,拱顶(即抛物线的顶点)离水面2m,水面宽为4m,水面下降1m后,水面宽为( )A.5mB.6mC.mD.2m10.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题(本题共10小题,每题4分,共40分)11.二次函数y=ax2+bx+c的部分对应值如下表:二次函数y=ax2+bx+c图象的对称轴为x=__________,x=﹣1对应的函数值y=__________.12.将二次函数y=x2﹣2x﹣3化为y=(x﹣h)2+k的形式,则__________.13.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线__________.14.若二次函数y=(m+1)x2+m2﹣9的图象经过原点且有最大值,则m=__________.15.抛物线y=x2+6x+m与x轴只有一个公共点,则m的值为__________.16.若抛物线y=bx2﹣x+3的对称轴为直线x=﹣1,则b的值为__________.17.若二次函数y=ax2﹣4x+a的最小值是﹣3,则a=__________.18.二次函数y=x2﹣2x﹣1的图象在x轴上截得的线段长为__________.19.如图,一拱桥呈抛物线状,桥的最大高度是32m,跨度是80m,在线段AB上距离中心M20m的D处,桥的高度是__________m.20.二次函数y=x2+b x的图象如图,对称轴为x=﹣2.若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣5<x<2的范围内有解,则t的取值范围是__________.三、解答题(本题共7小题,共80分)21.已知二次函数y=﹣x2+4x+5.(1)用配方法把该函数化为y=a(x﹣h)2+k(其中a、h、k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶点坐标;(2)求这个函数图象与x轴、y轴的交点坐标.22.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的解析式;(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)23.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.24.某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图的平面直角坐标系,问此球能否准确投中;(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?25.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a为15米)围成的中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式;(2)如果要围成花圃的面积为36平方米,求AB的长为多少米?(3)如果要使围成花圃面积最大,求AB的长为多少米?26.(14分)某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.27.(14分)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.2015-2016学年江苏省南通市八一中学九年级(上)第一次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.抛物线y=2(x+1)2﹣3的顶点坐标是( )A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)考点:二次函数的性质.分析:已知抛物线解析式为顶点式,可直接求出顶点坐标.解答:解:∵y=2(x+1)2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣3),故选D.点评:考查求二次函数顶点式y=a(x﹣h)2+k的顶点坐标、对称轴.2.已知函数,当函数值y随x的增大而减小时,x的取值范围是( )A.x<1B.x>1C.x>﹣2D.﹣2<x<4考点:二次函数的性质.分析:函数,由于a=>0,开口向上,则先求出其对称轴,在对称轴左侧,y随x的增大而减小;对称轴右侧,y随x的增大而增大.解答:解:函数y=x2﹣x﹣4,对称轴x=1,又其开口向上,则当x>1时,函数y=x2﹣x﹣4随x的增大而增大,当x<1时,函数y=x2﹣x﹣4随x的增大而减小.故选:A.点评:本题考查了二次函数的性质,重点是对称轴两侧函数的单调增减问题.3.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣2考点:二次函数图象与几何变换.分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.解答:解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=(x﹣1)2+2,故选:A.点评:本题考查了二次函数图象与几何变换,函数图象右移减、左移加,上移加、下移减是解题关键.4.若二次函数y=﹣x2+6x+c的图象过点A(﹣1,y1),B(1,y2),C(4,y3)三点,则y1,y2,y3的大小关系是( )A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y3>y1>y2考点:二次函数图象上点的坐标特征.分析:先根据二次函数的性质得到抛物线的对称轴为直线x=3,然后比较三个点都直线x=3的远近得到y1、y2、y3的大小关系.解答:解:∵二次函数的解析式为y=﹣x2+6x+c,∴抛物线的对称轴为直线x=3,∵A(﹣1,y1),B(1,y2),C(4,y3),∴点A离直线x=3最远,点C离直线x=3最近,而抛物线开口向下,∴y3>y2>y1;故选C.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.5.抛物线y=﹣x2+2kx+2与x轴交点的个数为( )A.0个B.1个C.2个D.以上都不对考点:抛物线与x轴的交点.分析:让函数值为0,得到一元二次方程,根据根的判别式判断有几个解就有与x轴有几个交点.解答:解:当与x轴相交时,函数值为0.0=﹣x2+2kx+2,△=b2﹣4ac=4k2+8>0,∴方程有2个不相等的实数根,∴抛物线y=﹣x2+2kx+2与x轴交点的个数为2个,故选C.点评:用到的知识点为:x轴上的点的纵坐标为0;抛物线与x轴的交点个数与函数值为0的一元二次方程的解的个数相同.6.已知函数y=ax2+bx+c的图象如图所示,则函数y=ax+b的图象是( )A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:根据抛物线开口向下确定出a<0,再根据对称轴确定出b,然后根据一次函数的性质确定出函数图象即可得解.解答:解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣>0,∴b>0,∴函数y=ax+b的图象经过第二四象限且与y轴正半轴相交,故选B.点评:本题考查了二次函数图象,一次函数图象,根据抛物线的开口方向与对称轴确定出a、b的正负情况是解题的关键.7.已知函数y=x2﹣2x﹣2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x 的取值范围是( )A.﹣1≤x≤3B.﹣3≤x≤1C.x≥﹣3D.x≤﹣1或x≥3考点:二次函数的图象.分析:认真观察图中虚线表示的含义,判断要使y≥1成立的x的取值范围.解答:解:由图可知,抛物线上纵坐标为1的两点坐标为(﹣1,1),(3,1),观察图象可知,当y≥1时,x≤﹣1或x≥3.故选:D.点评:此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.8.已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根考点:抛物线与x轴的交点.专题:压轴题.分析:根据抛物线的顶点坐标的纵坐标为﹣3,判断方程ax2+bx+c+2=0的根的情况即是判断y=﹣2时x的值.解答:解:∵y=ax2+bx+c的图象与x轴有两个交点,顶点坐标的纵坐标是﹣3,∵方程ax2+bx+c+2=0,∴ax2+bx+c=﹣2时,即是y=﹣2求x的值,由图象可知:有两个同号不等实数根.故选D.点评:考查方程ax2+bx+c+2=0的根的情况,先看函数y=ax2+bx+c的图象的顶点坐标纵坐标,再通过图象可得到答案.9.如图,有一座抛物线形拱桥,当水位线在AB位置时,拱顶(即抛物线的顶点)离水面2m,水面宽为4m,水面下降1m后,水面宽为( )A.5mB.6mC.mD.2m考点:二次函数的应用.分析:以拱顶为坐标原点建立平面直角坐标系,抛物线的解析式为y=ax2将A点代入抛物线方程求得a,得到抛物线解析式,再把y=﹣3代入抛物线解析式求得x0,进而得到答案.解答:解:如图,以拱顶为坐标原点建立平面直角坐标系,设抛物线方程为y=ax2,将A(﹣2,﹣2)代入y=ax2,解得:a=﹣,∴y=﹣x2,代入D(x0,﹣3)得x0=,∴水面宽CD为2≈5,故选A.点评:本题主要考查二次函数的应用.建立平面直角坐标系求出函数表达式是解决问题的关键,考查了学生利用抛物线解决实际问题的能力.10.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有( )A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:代数几何综合题;压轴题;数形结合.分析:根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.解答:解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本题共10小题,每题4分,共40分)11.二次函数y=ax2+bx+c的部分对应值如下表:二次函数y=ax2+bx+c图象的对称轴为x=2,x=﹣1对应的函数值y=﹣22.考点:二次函数的性质.分析:由表格的数据可以看出,x=1和x=3时y的值相同都是﹣6,所以可以判断出点(1,﹣6)和点(3,﹣6)关于二次函数的对称轴对称,利用公式:x=可求出对称轴;利用表格中数据反映出来的对称性,结合对称轴x=2,可判断出x=﹣1时关于直线x=2对称的点为x=5,故可求出y=﹣22.解答:解:∵x=1和x=3时y的值相同都是﹣6,∴对称轴x==2;∵x=﹣1的点关于对称轴x=2对称的点为x=5,∴y=﹣22.故答案为:2,﹣22.点评:此题考查二次函数的性质,掌握二次函数的对称性,会利用表格中的数据规律找到对称点,确定对称轴,再利用对称轴求得对称点.12.将二次函数y=x2﹣2x﹣3化为y=(x﹣h)2+k的形式,则y=(x﹣1)2﹣4.考点:二次函数的三种形式.分析:利用配方法整理即可得解.解答:解:y=x2﹣2x﹣3=(x2﹣2x+1)﹣3﹣1=(x﹣1)2﹣4,即y=(x﹣1)2﹣4.故答案为:y=(x﹣1)2﹣4.点评:本题考查了二次函数的三种形式的转化,熟练掌握和运用配方法是解题的关键.13.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线x=1.考点:二次函数的性质.分析:先把抛物线的方程变为y=ax2﹣2ax﹣3a,由公式x=得抛物线的对称轴为x=1.解答:解:y=a(x+1)(x﹣3)=ax2﹣2ax﹣3a由公式得,抛物线的对称轴为x=1.点评:本题考查抛物线的对称轴的求法,同学们要熟练记忆抛物线的对称轴公式x=.14.若二次函数y=(m+1)x2+m2﹣9的图象经过原点且有最大值,则m=﹣3.考点:二次函数的最值.分析:此题可以将原点坐标(0,0)代入y=(m+1)x2+m2﹣9,求得m的值,然后根据有最大值确定m的值即可.解答:解:由于二次函数y=(m+1)x2+m2﹣9的图象经过原点,代入(0,0)得:m2﹣9=0,解得:m=3或m=﹣3;又∵有最大值,∴m+1<0,∴m=﹣3.故答案为:﹣3;点评:本题考查了二次函数图象上点的坐标特征,通过代入点的坐标即可求解,较为简单.15.抛物线y=x2+6x+m与x轴只有一个公共点,则m的值为9.考点:抛物线与x轴的交点.专题:计算题.分析:利用△=b2﹣4ac决定抛物线与x轴的交点个数得到△=62﹣4m=0,然后解关于m的一次方程即可.解答:解:根据题意得△=62﹣4m=0,解得m=9.故答案为9.点评:本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题可转化为解关于x的一元二次方程.对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数.16.若抛物线y=bx2﹣x+3的对称轴为直线x=﹣1,则b的值为﹣.考点:二次函数的性质.分析:利用二次函数的对称轴计算方法x=﹣,求得答案即可.解答:解:∵抛物线y=bx2﹣x+3的对称轴为直线x=﹣1,∴x=﹣=﹣1,解得b=﹣.故答案为:﹣.点评:此题考查二次函数的性质,掌握二次函数的顶点坐标公式是解决问题的关键.17.若二次函数y=ax2﹣4x+a的最小值是﹣3,则a=1.考点:二次函数的最值.分析:根据题意:二次函数y=ax2﹣4x+a的最小值是﹣3,则判断二次函数的系数大于0,再根据公式y最小值=列出关于a的一元二次方程,解得a的值即可.解答:解:∵二次函数y=ax2﹣4x+a有最小值﹣3,∴a>0,y最小值==﹣3,整理,得a2+3a﹣4=0,解得a=﹣4或1,∵a>0,∴a=1.故答案为:1;点评:本题主要考查二次函数的最值的知识点,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好.18.二次函数y=x2﹣2x﹣1的图象在x轴上截得的线段长为2.考点:抛物线与x轴的交点.专题:计算题.分析:通过解方程x2﹣2x﹣1=0可得到抛物线与x轴的两交点坐标,然后计算两交点间的距离即可.解答:解:当y=0时,x2﹣2x﹣1=0,x2﹣2x+1=2,(x﹣1)2=2,解得x1=1+,x2=1﹣,所以抛物线与x轴的两交点坐标为(1﹣,0),(1+,0),所以抛物线在x轴上截得的线段长=1+﹣(1﹣)=2.故答案为.点评:本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题可转化为解关于x的一元二次方程.19.如图,一拱桥呈抛物线状,桥的最大高度是32m,跨度是80m,在线段AB上距离中心M20m的D处,桥的高度是24m.考点:二次函数的应用.分析:根据题意假设解析式为y=ax2+bx+c,用待定系数法求出解析式.然后把自变量的值代入求解对应函数值即可.解答:解:设抛物线的方程为y=ax2+bx+c已知抛物线经过(0,32),(﹣40,0),(40,0),可得,可得a=﹣,b=0,c=32,故解析式为y=﹣x2+32,当x=20时,y=24.故答案为:24.点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.20.二次函数y=x2+bx的图象如图,对称轴为x=﹣2.若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣5<x<2的范围内有解,则t的取值范围是﹣4≤t<12.考点:抛物线与x轴的交点.专题:计算题.分析:先利用对称轴方程求出b得到抛物线解析式为y=x2+4x,再配成顶点式得到抛物线的顶点坐标为(﹣2,﹣4),接着根据二次函数的性质,运用函数图象求出当﹣5<x<2时,对应的函数值的范围为﹣4≤y<12,由于关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣5<x<2的范围内有解,则抛物线y=x2+bx与直线y=t有交点,然后借助图象可得到﹣4≤t <12.解答:解:∵﹣=﹣2,解得b=4,∴抛物线解析式为y=x2+4x,即y=(x+2)2﹣4,∴抛物线的顶点坐标为(﹣2,﹣4),当x=2时,y=x2+4x=12,∴当﹣5<x<2,﹣4≤y<12,∵一元二次方程x2+bx﹣t=0(t为实数)的解可看作抛物线y=x2+bx与直线y=b的交点的横坐标,∴关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣5<x<2的范围内有解时,抛物线y=x2+bx与直线y=t有交点,如图,∴﹣4≤t<12.故答案为﹣4≤t<12.点评:本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题可转化为解关于x的一元二次方程.也考查了二次函数的性质和二次函数与一次函数图象的交点问题.运用数形结合的思想是解决本题的关键.三、解答题(本题共7小题,共80分)21.已知二次函数y=﹣x2+4x+5.(1)用配方法把该函数化为y=a(x﹣h)2+k(其中a、h、k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶点坐标;(2)求这个函数图象与x轴、y轴的交点坐标.考点:二次函数的三种形式.分析:(1)先配方,得到二次函数的顶点坐标式,即可直接写出其对称轴和顶点坐标;(2)令y=0,求出x的值,即可确定函数图象与x轴的交点坐标;令x=0,求出y的值,即可确定函数图象与y轴的交点坐标.解答:解:(1)y=﹣x2+4x+5=﹣(x﹣2)2+9,对称轴为:x=2,顶点坐标:(2,9);(2)令y=0,得﹣x2+4x+5=0,解得x1=﹣1,x2=5,所以图象与x轴的交点坐标为:(﹣1,0)与(5,0);令x=0,得y=5,所以图象与y轴的交点坐标为:(0,5).点评:本题考查了二次函数解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).同时考查了函数图象与坐标轴的交点坐标的求法.22.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的解析式;(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)考点:二次函数与不等式(组);待定系数法求二次函数解析式.分析:(1)分别把点A(1,0),B(3,2)代入直线y=x+m和抛物线y=x2+bx+c,利用待定系数法解得y=x﹣1,y=x2﹣3x+2;(2)根据题意列出不等式,直接解二元一次不等式即可,或者根据图象可知,x2﹣3x+2>x ﹣1的图象上x的范围是x<1或x>3.解答:解:(1)把点A(1,0),B(3,2)分别代入直线y=x+m和抛物线y=x2+bx+c得:0=1+m,,∴m=﹣1,b=﹣3,c=2,所以y=x﹣1,y=x2﹣3x+2;(2)x2﹣3x+2>x﹣1,解得:x<1或x>3.点评:主要考查了用待定系数法求函数解析式和二次函数的图象的性质.要具备读图的能力.23.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.考点:待定系数法求二次函数解析式;二次函数图象上点的坐标特征.分析:(1)把点A原点的坐标代入函数解析式,利用待定系数法求二次函数解析式解答;(2)根据三角形的面积公式求出点P到AO的距离,然后分点P在x轴的上方与下方两种情况解答即可.解答:解:(1)由已知条件得,解得,所以,此二次函数的解析式为y=﹣x2﹣4x;(2)∵点A的坐标为(﹣4,0),∴AO=4,设点P到x轴的距离为h,则S△AOP=×4h=8,解得h=4,①当点P在x轴上方时,﹣x2﹣4x=4,解得x=﹣2,所以,点P的坐标为(﹣2,4),②当点P在x轴下方时,﹣x2﹣4x=﹣4,解得x1=﹣2+2,x2=﹣2﹣2,所以,点P的坐标为(﹣2+2,﹣4)或(﹣2﹣2,﹣4),综上所述,点P的坐标是:(﹣2,4)、(﹣2+2,﹣4)、(﹣2﹣2,﹣4).点评:本题考查了待定系数法求二次函数解析式,二次函数图象上的点的坐标特征,(2)要注意分点P在x轴的上方与下方两种情况讨论求解.24.某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图的平面直角坐标系,问此球能否准确投中;(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?考点:二次函数的应用.分析:已知最高点坐标(4,4),用顶点式设二次函数解析式更方便求解析式,运用求出的解析式就可以解决题目的问题了.解答:解:(1)根据题意,球出手点、最高点和篮圈的坐标分别为:A(0,)B(4,4)C(7,3)设二次函数解析式为y=a(x﹣h)2+k代入A、B点坐标,得y=﹣(x﹣4)2+4 ①将C点坐标代入①式得左边=右边即C点在抛物线上∴一定能投中;(2)将x=1代入①得y=3∵3.1>3∴盖帽能获得成功.点评:本题考查了二次函数解析式的求法,及其实际应用.此题为数学建模题,借助二次函数解决实际问题.25.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a为15米)围成的中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式;(2)如果要围成花圃的面积为36平方米,求AB的长为多少米?(3)如果要使围成花圃面积最大,求AB的长为多少米?考点:二次函数的应用;一元二次方程的应用.专题:几何图形问题.分析:(1)可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式;(2)根据(1)的函数关系式,将S=36代入其中,求出x的值即可;(3)根据二次函数的性质求出自变量取值范围内的最值.解答:解:(1)花圃的宽AB为x米,则BC=(24﹣3x)米,∴S=x(24﹣3x),即S=﹣3x2+24x(3≤x<8);(2)当S=36时,﹣3x2+24x=36,解得x1=2,x2=6,当x=2时,24﹣3x=18>15,不合题意,舍去;当x=6时,24﹣3x=6<15,符合题意,故AB的长为6米.(3)S=﹣3x2+24x=﹣3(x﹣4)2+48,∵3≤x<8,∴当x=4米时面积最大,最大面积为48平方米.点评:本题考查了二次函数的综合应用,根据已知条件列出二次函数式是解题的关键.要注意题中自变量的取值范围.26.(14分)某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.考点:二次函数的应用.专题:压轴题.分析:本题属于市场营销问题,月利润=(每吨售价﹣每吨其它费用)×销售量,销售量与每吨售价的关系要表达清楚.再用二次函数的性质解决最大利润问题.解答:解:(1)由题意得:45+×7.5=60(吨).(2)由题意:y=(x﹣100)(45+×7.5),化简得:y=﹣x2+315x﹣24000.(3)y=﹣x2+315x﹣24000=﹣(x﹣210)2+9075.利达经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,小静说的不对.理由:方法一:当月利润最大时,x为210元,而对于月销售额W=x(45+×7.5)=﹣(x﹣160)2+19200来说,当x为160元时,月销售额W最大.∴当x为210元时,月销售额W不是最大.∴小静说的不对.方法二:当月利润最大时,x为210元,此时,月销售额为17325元;而当x为200元时,月销售额为18000元.∵17325<18000,∴当月利润最大时,月销售额W不是最大.∴小静说的不对.(说明:如果举出其它反例,说理正确,也可以)点评:本题考查了把实际问题转化为二次函数,再对二次函数进行实际应用.此题为数学建模题,借助二次函数解决实际问题.27.(14分)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.考点:二次函数综合题.专题:压轴题;动点型.分析:(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M的坐标得出,CQ=3﹣x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标.②当CM=MP时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).③当CM=CP时,因为C的坐标为(0,3),那么直线y=3必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;(3)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,四边形BOCE的面积=三角形BFE的面积+直角梯形FOCE的面积.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在三角形BFE中,BF=BO﹣OF,因此可用E的横坐标表示出BF 的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE 的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.解答:解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴。
江苏省南通市 九年级(上)月考数学试卷(9月份)

九年级(上)月考数学试卷(9月份)题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.抛物线y=-35(x+12)2-3的顶点坐标是( )A. (12,−3)B. (−12,−3)C. (12,3)D. (−12,3)2.若(2,5),(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是( )A. x=1B. x=2C. x=3D. x=43.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是( )A. 3B. 2.5C. 2D. 14.若m,n是方程x2-x-2015=0的两根,则mn的值为( )A. 2014B. −2015C. 2015D. −20145.二次函数y=2x2+mx+8的图象如图所示,则m的值是( )A. −8B. 8C. ±8D. 66.设A(-3,y1),B(-2,y2),C(12,y3)是抛物线y=(x+1)2-m上的三点,则y1,y2,y3的大小关系为( )A. y1>y2>y3B. y1>y3>y2C. y3>y2>y1D. y3>y1>y27.已知二次函数y=-(x-b)2+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是( )A. b≥−1B. b≤−1C. b≥1D. b≤18.如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C,D,A在量角器上对应的读数分别为45°,70°,160°,则∠B的度数为()A. 20∘B. 30∘C. 45∘D. 60∘9.如图,⊙O的直径AB=10,E在⊙O内,且OE=4,则过E点所有弦中,长度为整数的条数为( )A. 4B. 6C. 8D. 1010.已知直线y=-3x+3与坐标轴分别交于点A,B,点P在抛物线y=-13(x-3)2+4上,能使△ABP为等腰三角形的点P的个数有( )A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共8小题,共24.0分)11.二次函数y=(x+1)2-3最小值为______.12.在半径为3cm的⊙O中,弦AB=32cm,则弦AB所对的圆心角∠AOB的度数为______°.13.将二次函数y=-x2+2x+3的图象向左平移1个单位,再向下平移2个单位,则平移后的抛物线的解析式为______.14.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为______cm.15.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+a的图象经过______象限.16.求二次函数y=x2-2x-3(-2≤x≤2)的y的取值范围______.17.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2-4ac>0;②abc>0;③4a-2b+c>0;④9a+3b+c<0.其中,正确结论的是______.18.如图,已知AB=4,P为线段AB上的一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和菱形PBFE,点P,C,E在一条直线上,∠DAP=60°.M,N分别是对角线AC,BE的中点.当点P在线段AB上移动时,点M,N之间的距离最短为______.三、计算题(本大题共1小题,共10.0分)19.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过29元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)求y与x的函数关系式.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?(3)该天水果的售价为多少元时获利最大?最大利润为多少?四、解答题(本大题共9小题,共86.0分)20.解方程:(1)(3x-1)2=(x+1)2(2)2x2+1=3x21.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题.(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数表达式.22.抛物线y=-x2+(m-1)x+m与y轴交点坐标是(0,3).(1)求出m的值;(2)求抛物线与x轴的交点;(3)当x取什么值时,y<0?23.如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE:CD=5:24(1)求CD的长;(2)现汛期来临,水面要以每小时4m的速度上升,则经过多长时间桥洞会刚刚被灌满?24.如图,已知⊙O的弦AB,E,F是弧AB上两点,AE=BF,OE、OF分别交于AB于C、D两点,求证:AC=BD.25.关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1、x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.26.已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:x…012345…y…410149…(1)当x=-1时,y的值为______;(2)点A(x1,y1)、B(x2,y2)在该函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系是______;(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:______;(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数y=ax2+bx+c 的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?27.已知,抛物线y=ax2-bx+c(m≠0)经过原点,顶点为A(h,k)(h≠0)(1)若h=-1,k=1,求抛物线的解析式;(2)若抛物线y=mx2(m≠0)也经过点A,求ma的值;(3)若点A在抛物线y=x2-x上,用a的代数式表示h.28.如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4-x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.答案和解析1.【答案】B【解析】解:y=-(x+)2-3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(-,-3).故选:B.已知抛物线解析式为顶点式,可直接写出顶点坐标.此题主要考查了二次函数的性质,关键是熟记:抛物线y=a(x-h)2+k的顶点坐标是(h,k),对称轴是x=h.2.【答案】C【解析】解:因为点(2,5)、(4,5)在抛物线上,根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴x==3;故选:C.由已知,点(2,5)、(4,5)是该抛物线上关于对称轴对称的两点,所以只需求两对称点横坐标的平均数.本题考查了二次函数的对称性.二次函数关于对称轴成轴对称图形.3.【答案】C【解析】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5-x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5-x)2∴x=2,∴CD=2,故选:C.根据垂径定理以及勾股定理即可求答案.本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.4.【答案】B【解析】解:∵m,n是方程x2-x-2015=0的两根,∴mn=-2015,故选:B.由韦达定理可直接得出答案.本题考查了根与系数的关系,如果一元二次方程ax2+bx+c=0的两根分别为x1与x2,则x1+x2=-,x1•x2=.解题时要注意这两个关系的合理应用.5.【答案】B【解析】解:由图可知,抛物线与x轴只有一个交点,所以,△=m2-4×2×8=0,解得m=±8,∵对称轴为直线x=-<0,∴m>0,∴m的值为8.故选:B.根据抛物线与x轴只有一个交点,△=0,列式求出m的值,再根据对称轴在y 轴的左边求出m的取值范围,从而得解.本题考查了二次函数图象与x轴的交点问题,本题易错点在于要根据对称轴确定出m是正数.6.【答案】B【解析】解:∵抛物线y=(x+1)2-m,∴当x>-1时,y随x的增大而增大,当x<-1时,y随x的增大而较小,∵A(-3,y1),B(-2,y2),C(,y3)是抛物线y=(x+1)2-m上的三点,-1-(-3)=2,-1-(-2)=1,-(-1)=,∴y1>y3>y2,故选:B.根据题目中的函数解析式和二次函数的性质可以判断y1,y2,y3的大小关系,本题得以解决.本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.7.【答案】D【解析】解:∵二次函数y=-(x-b)2+c,∴当x>b时,y的值随x值的增大而减小,∵当x>1时,y的值随x值的增大而减小,∴b≤1,故选:D.根据题目中的函数解析式和二次函数的性质,可以得到b的取值范围,本题得以解决.本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质解答.【解析】解:连结OD,如图,则∠DOC=70°-45°=25°,∠AOD=160°-70°=90°,∵OD=OA,∴∠ADO=45°,∵∠ADO=∠B+∠DOB,∴∠B=45°-25°=20°.故选:A.连结OD,如图,根据题意得∠DOC=25°,∠AOD=90°,由于OD=OA,则∠ADO=45°,然后利用三角形外角性质得∠ADO=∠B+∠DOB,所以∠B=45°-25°=20°.本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).9.【答案】C【解析】解:∵AB=10,∵OB=OA=OC=5,过E作CD⊥AB于E,连接OC,则CD是过E的⊙O的最短的弦,∵OB⊥CD,∴∠CEO=90°,由勾股定理得:CE===3,∵OE⊥CD,OE过O,∴CD=2CE=6,∵AB是过E的⊙O的最长弦,AB=10,∴过E点所有弦中,长度为整数的条数为1+2+2+2+1=8,故选:C.过E作CD⊥AB于E,连接OC,则CD是过E的⊙O的最短的弦,AB是过E 的⊙O的最长弦,根据勾股定理和垂径定理求出CD=6,得出弦的长度为6(1条),7、8、9(都有2条),10(1条),即可得出答案.本题考查了垂径定理和勾股定理的应用,关键是能求出符合条件的所有情况.10.【答案】A【解析】解:以点B为圆心线段AB长为半径作圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数y=-x+3中x=0,则y=3,∴点A的坐标为(0,3);令一次函数y=-x+3中y=0,则-x+3=0,∴点B的坐标为(,0).∴AB=2.∵抛物线的对称轴为x=,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等边三角形.令y=-(x-)2+4中y=0,则-(x-)2+4=0,解得:x=-,或x=3.∴点E的坐标为(-,0),点F的坐标为(3,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N 三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故选:A.以点B为圆心线段AB长为半径作圆,交抛物线于点C、M、N点,连接AC、BC,由直线y=-x+3可求出点A、B的坐标,结合抛物线的解析式可得出△ABC等边三角形,再令抛物线解析式中y=0求出抛物线与x轴的两交点的坐标,发现该两点与M、N重合,结合图形分三种情况研究△ABP为等腰三角形,由此即可得出结论.本题考查了二次函数与坐标轴的交点坐标、等腰三角形的判定、一次函数与坐标轴的交点坐标以及等边三角形的判定定理,解题的关键是依照题意画出图形,利用数形结合来解决问题.本题属于中档题,难度不小,本题不需要求出P点坐标,但在寻找点P的过程中会出现多次点的重合问题,由此给解题带来了难度.11.【答案】-3【解析】解:根据二次函数的性质可知,二次函数y=(x+1)2-3最小值为-3,故答案为:-3.根据二次函数的性质解答.本题考查的是二次函数的最值,掌握二次函数的性质是解题的关键.12.【答案】90【解析】解:∵OA=OB=3,AB=3,∵OA2+OB2=AB2,∴根据勾股定理的逆定理,△ABO是直角三角形,且∠AOB=90°,故答案为:90.已知一个三角形三边,先看三边是否符合勾股定理的逆定理,如果符合,则该三角形为直角三角形.此题考查圆心角、弧、弦的关系,关键是根据已知三角形求边长,一般是利用勾股定理的逆定理解答.13.【答案】y=-x2+2【解析】解:∵y=-x2+2x+3=-(x-1)2+4,∴将二次函数y=-x2+2x+3的图象先向左平移1个单位,再向下平移2个单位,得到的图象表达式为y=-(x-1+1)2+4-2,即y=-x2+2.故答案为y=-x2+2.先运用配方法将y=-x2+2x+3写成顶点式,再根据“上加下减,左加右减”的原则进行解答即可.本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.14.【答案】3【解析】解:作MO交CD于E,则MO⊥CD,连接CO,对折后半圆弧的中点M与圆心O重合,则ME=OE=OC,在直角三角形COE中,CE==,折痕CD的长为2×=(cm).作MO交CD于E,则MO⊥CD.连接CO.根据勾股定理和垂径定理求解.作出辅助线,构造直角三角形,根据对称性,利用勾股定理解答.15.【答案】一、二、四【解析】解:∵二次函数图象开口向上,∴a>0,∵对称轴为直线x=-,∴b<0,∴一次函数y=bx+a的图象经过二、一、四象限,故答案为一、二、四.根据二次函数图象的开口向上可得a>0,再根据对称轴确定出b<0,从而确定出一次函数图象经过的象限.本题考查了二次函数图象,一次函数图象,此类题目通常根据二次函数图象的开口方向,对称轴以及x的特殊值求出a、b、c的关系是解题的关键.16.【答案】-4≤y≤5【解析】解:∵二次函数y=x2-2x-3=(x-1)2-4,∴当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵-2≤x≤2,1-(-2)=3,2-1=1,∴当x=-2时,函数取得最大值,当x=1时,函数取得最小值,当x=-2时,y=5,当x=1时,y=-4,∴二次函数y=x2-2x-3(-2≤x≤2)的y的取值范围是-4≤y≤5,故答案为:-4≤y≤5.根据题目中的函数解析式和二次函数的性质可以求得x的取值范围.本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】①②③④【解析】解:函数图象与x轴有两个交点,故b2-4ac>0,所以①正确,由图象可得,a>0,b<0,c<0,故abc>0,所以②正确,当x=-2时,y=4a-2b+c>0,故③正确,∵该函数的对称轴为x=1,当x=-1时,y<0,∴当x=3时的函数值与x=-1时的函数值相等,∴当x=3时,y=9a+3b+c<0,故④正确,故答案为:①②③④.根据函数图象和二次函数的性质可以判断题目中的各个小题的结论是否正确,从而可以解答本题.本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质解答.18.【答案】3【解析】解:连接PM、PN.∵四边形APCD,四边形PBFE是菱形,∠DAP=60°,∴∠APC=120°,∠EPB=60°,∵M,N分别是对角线AC,BE的中点,∴∠CPM=∠APC=60°,∠EPN=∠EPB=30°,∴∠MPN=60°+30°=90°,设PA=2a,则PB=4-2a,PM=a,PN=(2-a),∴MN===,∴a=时,点M,N之间的距离最短,最短距离为,故答案为.连接PM、PN.首先证明∠MPN=90°,设PA=2a,则PB=4-2a,PM=a,PN=(2-a),构建二次函数,利用二次函数的性质即可解决问题;本题考查菱形的性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加常用辅助线,构建二次函数解决最值问题.19.【答案】解:(1)把(22.6,34.8)和(24,32)代入一次函数表达式为y=kx+b,解得:函数表达式为y=-2x+80,(20≤x≤29);(2)设:利润为W=(x-20)y=-2(x-20)(x-40)=150,解得:x=25或x=35(舍去),答:某天销售这种水果获利150元,那么该天水果的售价为25元;(3)w=-2(x-20)(x-40),函数的对称轴为x=30,而20≤x≤29,故x=29时,函数取得最大值,此时,W=198,故:水果的售价为29元时获利最大,最大利润198元.【解析】(1)把(22.6,34.8)和(24,32)代入一次函数表达式为y=kx+b,即可求解;(2)利润W=(x-20)y=-2(x-20)(x-40)=150,即可求解;(3)w=-2(x-20)(x-40),求最大值即可.本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.20.【答案】解:(1)(3x-1)2=(x+1)2则[(3x-1)+(x+1)][(3x-1)-(x+1)]=0,故4x(2x-2)=0,解得:x1=0,x2=1;(2)2x2+1=3x2x2-3x+1=0,(2x-1)(x-1)=0,解得:x1=1,x2=12.【解析】(1)直接利用平方差公式计算得出答案;(2)利用十字相乘法分解因式解方程即可.此题主要考查了因式分解法解方程,正确分解因式是解题关键.21.【答案】解:(1)如图,△A1B1C1为所作,C1(-1,2);(2)如图,△A2B2C2为所作,C2(-3,-2);(3)因为A的坐标为(2,4),A3的坐标为(-4,-2),所以直线l的函数解析式为y=-x,【解析】(1)利用网格特点和平移的性质写出点A、B、C的对应点A1、B1、C1的坐标,然后描点得到△A1B1C1;(2)根据关于原点中心对称的点的坐标特征写出点A2、B2、C2的坐标,然后描点即可;(3)根据对称的特点解答即可.本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换和平移变换.22.【答案】解:(1)把(0,3)代入y=-x2+(m-1)x+m得m=3,即m的值为3;(2)抛物线解析式为y=-x2+2x+3,当y=0时,-x2+2x+3=0,解得x1=-1,x2=3,所以抛物线与x轴的交点坐标为(-1,0),(3,0);(3)当x<-1或x>3时,y<0.【解析】(1)把(0,3)代入y=-x2+(m-1)x+m可求出m的值;(2)由(1)得抛物线解析式为y=-x2+2x+3,然后解方程-x2+2x+3=0得抛物线与x轴的交点坐标;(3)利用函数图象,写出抛物线在x轴下方所对应的自变量的范围即可.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.23.【答案】解:(1)∵直径AB=26m,∴OD=12AB=12×26=13m,∵OE⊥CD,∴DE=12CD,∵OE:CD=5:24,∴OE:ED=5:12,∴设OE=5x,ED=12x,∴在Rt△ODE中(5x)2+(12x)2=132,解得x=1,∴CD=2DE=2×12×1=24m;(2)由(1)得OE=1×5=5m,延长OE交圆O于点F,∴EF=OF-OE=13-5=8m,∴84=2(小时),即经过2小时桥洞会刚刚被灌满.【解析】(1)在直角三角形EOD中利用勾股定理求得ED的长,2ED等于弦CD的长;(2)延长OE交圆O于点F求得EF=OF-OE=13-5=8m,然后利用,所以经过2小时桥洞会刚刚被灌满.此题主要考查了垂径定理的应用以及勾股定理等知识,求阴影部分面积经常运用求出空白面积来解决.24.【答案】证明:连接OA、OB,∵OA=OB,∴∠A=∠B,∵AE=BF,∴∠AOC=∠BOD,在△AOC和△BOD中,∠A=∠BOA=OB∠AOC=∠BOD,∴△AOC≌△BOD,∴AC=BD.【解析】连接OA、OB,根据半径相等得到∠A=∠B,根据等弧所对的圆周角相等得到∠AOC=∠BOD,根据三角形全等的判定定理证明△AOC≌△BOD,根据全等三角形的性质证明结论.本题考查的是圆心角、弧、弦的关系以及三角形全等的判定和性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等是解题的关键.25.【答案】解:(1)∵方程x2+3x+m-1=0的两个实数根,∴△=32-4(m-1)=13-4m≥0,解得:m≤134.(2)∵方程x2+3x+m-1=0的两个实数根分别为x1、x2,∴x1+x2=-3,x1x2=m-1.∵2(x1+x2)+x1x2+10=0,即-6+(m-1)+10=0,∴m=-3.【解析】(1)由一元二次方程有两个实数根结合根的判别式,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)根据根与系数的关系可得出x1+x2=-3、x1x2=m-1,结合2(x1+x2)+x1x2+10=0可得出关于m的一元一次方程,解之即可得出m的值.本题考查了根的判别式以及根与系数的关系,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合2(x1+x2)+x1x2+10=0,找出关于m的一元一次方程.26.【答案】9 y1<y2y=(x-5)2或y=x2-10x+25【解析】解:(1)根据图表知,当x=1和x=3时,所对应的y值都是2,∴抛物线的对称轴是直线x=2,∴x=-1与x=5时的函数值相等,∵x=5时,y=9,∴x=-1时,y=9;(2)∵当1<x1<2时,函数值y1小于1;当3<x2<4时,函数值y2大于1,∴y1<y2;(3)∵二次函数y=ax2+bx+c的顶点坐标为(2,0),∴可设此二次函数的顶点式为y=a(x-2)2,将点(0,4)代入,得a(0-2)2=4,解得a=1,∴y=(x-2)2,∴将y=(x-2)2的图象沿x轴向右平移3个单位,所对应的函数关系式为y=(x-2-3)2,即y=(x-5)2或y=x2-10x+25;(4)当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长.理由如下:∵y=(x-2)2,∴y1=(m-2)2,y2=(m-1)2,y3=m2,∵m<-3,∴y1>y2>y3>0,m+3<0,m-1<-4<0,∵y2+y3-y1=(m-1)2+m2-(m-2)2=m2+2m-3=(m+3)(m-1),∴y2+y3-y1>0,∴y2+y3>y1,∴当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长.故答案为9;y1<y2;y=(x-5)2或y=x2-10x+25.(1)先根据图表,当x=1和x=3时,所对应的y值相等,得出抛物线的对称轴是直线x=2,再由二次函数的对称性可知,x=-1与x=5时的函数值相等,即为9;(2)由表格可知,当1<x<2时,0<y<1;当3<x<4时,1<y<4,由此可判断y1与y2的大小;(3)先求出二次函数y=ax2+bx+c的解析式,再根据图象平移“左加右减、上加下减”的规律即可写出沿x轴向右平移3个单位的函数解析式;(4)先将点P1、P2、P3的坐标代入y=(x-2)2,得到y1=(m-2)2,y2=(m-1)2,y3=m2,再根据不等式的性质及m<-3得出y1>y2>y3>0,m+3<0,m-1<0,然后判断y2+y3-y1>0,即y2+y3>y1,根据三角形三边关系定理即可得出当m <-3时,y1、y2、y3的值一定能作为同一个三角形三边的长.本题主要考查了二次函数图象上点的坐标特征,用待定系数法求二次函数的解析式,二次函数的性质,函数图象的平移规律,不等式的性质,三角形三边关系定理等知识,综合性较强,难度适中.其中(3)还可以将表格中任意三点的坐标代入求出二次函数的解析式,(4)中先判断出y1>y2>y3>0是利用三角形三边关系定理的前提条件,一般地,在检验三条线段能否组成一个三角形时,其简便做法就是看两条较短边的和是否大于第三边.27.【答案】解:(1)∵顶点为A(-1,1),设抛物线为y=a(x+1)2+1,∵抛物线经过原点,∴0=a(0+1)2+1,∴a=-1,∴抛物线解析式为y=-x2-2x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵h=-b2a,∴b=-2ah,∴y=ax2-2ahx,∵顶点A(h,k),∴k=0−4a2h24a=-ah2,抛物线y=mx2(m≠0)也经过点A,∴-ah2=mh2,∴-a=m,∴ma=-1;(3)由(2)可知抛物线的顶点为(h,-ah2),点A在抛物线y=x2-x上,∴-ah2=h2-h,∴h=1a+1.【解析】(1)用顶点式解决这个问题,设抛物线为y=a(x-1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则h=-,b=-2ah代入抛物线解析式,求出k(用a、h 表示),又抛物线y=mx2也经过A(h,k),求出k,列出方程即可解决.(3)根据(2)求得的顶点,代入y=x2-x,整理即可解决问题.本题考查二次函数的性质,待定系数法求二次函数的解析式,解方程等知识,本题属于中档题.28.【答案】解:(1)由题意,可得C(1,3),D(3,1).∵抛物线过原点,∴设抛物线的解析式为:y=ax2+bx.∴a+b=39a+3b=1,解得a=−43b=133,∴抛物线的表达式为:y=-43x2+133x.(2)存在.设直线OD解析式为y=kx,将D(3,1)代入,求得k=13,∴直线OD解析式为y=13x.设点M的横坐标为x,则M(x,13x),N(x,-43x2+133x),∴MN=|y M-y N|=|13x-(-43x2+133x)|=|43x2-4x|.由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3.∴|43x2-4x|=3.若43x2-4x=3,整理得:4x2-12x-9=0,解得:x=3+322或x=3−322;若43x2-4x=-3,整理得:4x2-12x+9=0,解得:x=32.∴存在满足条件的点M,点M的横坐标为:32或3+322或3−322.(3)∵C(1,3),D(3,1)∴易得直线OC的解析式为y=3x,直线OD的解析式为y=13x.如解答图所示,设平移中的三角形为△A′O′C′,点C′在线段CD上.设O′C′与x轴交于点E,与直线OD交于点P;设A′C′与x轴交于点F,与直线OD交于点Q.设水平方向的平移距离为t(0≤t<2),则图中AF=t,F(1+t,0),Q(1+t,13+13t),C′(1+t,3-t).设直线O′C′的解析式为y=3x+b,将C′(1+t,3-t)代入得:b=-4t,∴直线O′C′的解析式为y=3x-4t.∴E(43t,0).联立y=3x-4t与y=13x,解得x=32t,∴P(32t,12t).过点P作PG⊥x轴于点G,则PG=12t.∴S=S△OFQ-S△OEP=12OF•FQ-12OE•PG=12(1+t)(13+13t)-12•43t•12t=-16(t-1)2+13当t=1时,S有最大值为13.∴S的最大值为13.【解析】(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN∥AC,因为以A、C、M、N为顶点的四边形为平行四边形,则有MN=AC=3.设点M的横坐标为x,则求出MN=|x2-4x|;解方程|x2-4x|=3,求出x的值,即点M横坐标的值;(3)设水平方向的平移距离为t(0≤t<2),利用平移性质求出S的表达式:S=-(t-1)2+;当t=1时,s有最大值为.本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题关键是根据平行四边形定义,得到MN=AC=3,由此列出方程求解;第(3)问中,解题关键是求出S的表达式,注意图形面积的计算方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江苏省南通市八一中学九年级(上)第一次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.抛物线y=2(x+1)2﹣3的顶点坐标是( )A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)2.已知函数,当函数值y随x的增大而减小时,x的取值范围是( )A.x<1B.x>1C.x>﹣2D.﹣2<x<43.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣24.若二次函数y=﹣x2+6x+c的图象过点A(﹣1,y1),B(1,y2),C(4,y3)三点,则y1,y2,y3的大小关系是( )A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y3>y1>y25.抛物线y=﹣x2+2kx+2与x轴交点的个数为( )A.0个B.1个C.2个D.以上都不对6.已知函数y=ax2+bx+c的图象如图所示,则函数y=ax+b的图象是( )A.B.C.D.7.已知函数y=x2﹣2x﹣2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x 的取值范围是( )A.﹣1≤x≤3B.﹣3≤x≤1C.x≥﹣3D.x≤﹣1或x≥38.已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根9.如图,有一座抛物线形拱桥,当水位线在AB位置时,拱顶(即抛物线的顶点)离水面2m,水面宽为4m,水面下降1m后,水面宽为( )A.5mB.6mC.mD.2m10.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题(本题共10小题,每题4分,共40分)11.二次函数y=ax2+bx+c的部分对应值如下表:二次函数y=ax2+bx+c图象的对称轴为x=__________,x=﹣1对应的函数值y=__________.12.将二次函数y=x2﹣2x﹣3化为y=(x﹣h)2+k的形式,则__________.13.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线__________.14.若二次函数y=(m+1)x2+m2﹣9的图象经过原点且有最大值,则m=__________.15.抛物线y=x2+6x+m与x轴只有一个公共点,则m的值为__________.16.若抛物线y=bx2﹣x+3的对称轴为直线x=﹣1,则b的值为__________.17.若二次函数y=ax2﹣4x+a的最小值是﹣3,则a=__________.18.二次函数y=x2﹣2x﹣1的图象在x轴上截得的线段长为__________.19.如图,一拱桥呈抛物线状,桥的最大高度是32m,跨度是80m,在线段AB上距离中心M20m的D处,桥的高度是__________m.20.二次函数y=x2+bx的图象如图,对称轴为x=﹣2.若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣5<x<2的范围内有解,则t的取值范围是__________.三、解答题(本题共7小题,共80分)21.已知二次函数y=﹣x2+4x+5.(1)用配方法把该函数化为y=a(x﹣h)2+k(其中a、h、k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶点坐标;(2)求这个函数图象与x轴、y轴的交点坐标.22.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的解析式;(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)23.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.24.某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图的平面直角坐标系,问此球能否准确投中;(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?25.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a为15米)围成的中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式;(2)如果要围成花圃的面积为36平方米,求AB的长为多少米?(3)如果要使围成花圃面积最大,求AB的长为多少米?26.(14分)某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.27.(14分)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.2015-2016学年江苏省南通市八一中学九年级(上)第一次月考数学试卷一、选择题(本题共10小题,每题3分,共30分)1.抛物线y=2(x+1)2﹣3的顶点坐标是( )A.(1,3)B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)考点:二次函数的性质.分析:已知抛物线解析式为顶点式,可直接求出顶点坐标.解答:解:∵y=2(x+1)2﹣3是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣3),故选D.点评:考查求二次函数顶点式y=a(x﹣h)2+k的顶点坐标、对称轴.2.已知函数,当函数值y随x的增大而减小时,x的取值范围是( )A.x<1B.x>1C.x>﹣2D.﹣2<x<4考点:二次函数的性质.分析:函数,由于a=>0,开口向上,则先求出其对称轴,在对称轴左侧,y随x的增大而减小;对称轴右侧,y随x的增大而增大.解答:解:函数y=x2﹣x﹣4,对称轴x=1,又其开口向上,则当x>1时,函数y=x2﹣x﹣4随x的增大而增大,当x<1时,函数y=x2﹣x﹣4随x的增大而减小.故选:A.点评:本题考查了二次函数的性质,重点是对称轴两侧函数的单调增减问题.3.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣2考点:二次函数图象与几何变换.分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.解答:解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是y=(x﹣1)2+2,故选:A.点评:本题考查了二次函数图象与几何变换,函数图象右移减、左移加,上移加、下移减是解题关键.4.若二次函数y=﹣x2+6x+c的图象过点A(﹣1,y1),B(1,y2),C(4,y3)三点,则y1,y2,y3的大小关系是( )A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y3>y1>y2考点:二次函数图象上点的坐标特征.分析:先根据二次函数的性质得到抛物线的对称轴为直线x=3,然后比较三个点都直线x=3的远近得到y1、y2、y3的大小关系.解答:解:∵二次函数的解析式为y=﹣x2+6x+c,∴抛物线的对称轴为直线x=3,∵A(﹣1,y1),B(1,y2),C(4,y3),∴点A离直线x=3最远,点C离直线x=3最近,而抛物线开口向下,∴y3>y2>y1;故选C.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.5.抛物线y=﹣x2+2kx+2与x轴交点的个数为( )A.0个B.1个C.2个D.以上都不对考点:抛物线与x轴的交点.分析:让函数值为0,得到一元二次方程,根据根的判别式判断有几个解就有与x轴有几个交点.解答:解:当与x轴相交时,函数值为0.0=﹣x2+2kx+2,△=b2﹣4ac=4k2+8>0,∴方程有2个不相等的实数根,∴抛物线y=﹣x2+2kx+2与x轴交点的个数为2个,故选C.点评:用到的知识点为:x轴上的点的纵坐标为0;抛物线与x轴的交点个数与函数值为0的一元二次方程的解的个数相同.6.已知函数y=ax2+bx+c的图象如图所示,则函数y=ax+b的图象是( )A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:根据抛物线开口向下确定出a<0,再根据对称轴确定出b,然后根据一次函数的性质确定出函数图象即可得解.解答:解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣>0,∴b>0,∴函数y=ax+b的图象经过第二四象限且与y轴正半轴相交,故选B.点评:本题考查了二次函数图象,一次函数图象,根据抛物线的开口方向与对称轴确定出a、b的正负情况是解题的关键.7.已知函数y=x2﹣2x﹣2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x 的取值范围是( )A.﹣1≤x≤3B.﹣3≤x≤1C.x≥﹣3D.x≤﹣1或x≥3考点:二次函数的图象.分析:认真观察图中虚线表示的含义,判断要使y≥1成立的x的取值范围.解答:解:由图可知,抛物线上纵坐标为1的两点坐标为(﹣1,1),(3,1),观察图象可知,当y≥1时,x≤﹣1或x≥3.故选:D.点评:此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.8.已知函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根考点:抛物线与x轴的交点.专题:压轴题.分析:根据抛物线的顶点坐标的纵坐标为﹣3,判断方程ax2+bx+c+2=0的根的情况即是判断y=﹣2时x的值.解答:解:∵y=ax2+bx+c的图象与x轴有两个交点,顶点坐标的纵坐标是﹣3,∵方程ax2+bx+c+2=0,∴ax2+bx+c=﹣2时,即是y=﹣2求x的值,由图象可知:有两个同号不等实数根.故选D.点评:考查方程ax2+bx+c+2=0的根的情况,先看函数y=ax2+bx+c的图象的顶点坐标纵坐标,再通过图象可得到答案.9.如图,有一座抛物线形拱桥,当水位线在AB位置时,拱顶(即抛物线的顶点)离水面2m,水面宽为4m,水面下降1m后,水面宽为( )A.5mB.6mC.mD.2m考点:二次函数的应用.分析:以拱顶为坐标原点建立平面直角坐标系,抛物线的解析式为y=ax2将A点代入抛物线方程求得a,得到抛物线解析式,再把y=﹣3代入抛物线解析式求得x0,进而得到答案.解答:解:如图,以拱顶为坐标原点建立平面直角坐标系,设抛物线方程为y=ax2,将A(﹣2,﹣2)代入y=ax2,解得:a=﹣,∴y=﹣x2,代入D(x0,﹣3)得x0=,∴水面宽CD为2≈5,故选A.点评:本题主要考查二次函数的应用.建立平面直角坐标系求出函数表达式是解决问题的关键,考查了学生利用抛物线解决实际问题的能力.10.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有( )A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:代数几何综合题;压轴题;数形结合.分析:根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.解答:解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本题共10小题,每题4分,共40分)11.二次函数y=ax2+bx+c的部分对应值如下表:二次函数y=ax2+bx+c图象的对称轴为x=2,x=﹣1对应的函数值y=﹣22.考点:二次函数的性质.分析:由表格的数据可以看出,x=1和x=3时y的值相同都是﹣6,所以可以判断出点(1,﹣6)和点(3,﹣6)关于二次函数的对称轴对称,利用公式:x=可求出对称轴;利用表格中数据反映出来的对称性,结合对称轴x=2,可判断出x=﹣1时关于直线x=2对称的点为x=5,故可求出y=﹣22.解答:解:∵x=1和x=3时y的值相同都是﹣6,∴对称轴x==2;∵x=﹣1的点关于对称轴x=2对称的点为x=5,∴y=﹣22.故答案为:2,﹣22.点评:此题考查二次函数的性质,掌握二次函数的对称性,会利用表格中的数据规律找到对称点,确定对称轴,再利用对称轴求得对称点.12.将二次函数y=x2﹣2x﹣3化为y=(x﹣h)2+k的形式,则y=(x﹣1)2﹣4.考点:二次函数的三种形式.分析:利用配方法整理即可得解.解答:解:y=x2﹣2x﹣3=(x2﹣2x+1)﹣3﹣1=(x﹣1)2﹣4,即y=(x﹣1)2﹣4.故答案为:y=(x﹣1)2﹣4.点评:本题考查了二次函数的三种形式的转化,熟练掌握和运用配方法是解题的关键.13.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线x=1.考点:二次函数的性质.分析:先把抛物线的方程变为y=ax2﹣2ax﹣3a,由公式x=得抛物线的对称轴为x=1.解答:解:y=a(x+1)(x﹣3)=ax2﹣2ax﹣3a由公式得,抛物线的对称轴为x=1.点评:本题考查抛物线的对称轴的求法,同学们要熟练记忆抛物线的对称轴公式x=.14.若二次函数y=(m+1)x2+m2﹣9的图象经过原点且有最大值,则m=﹣3.考点:二次函数的最值.分析:此题可以将原点坐标(0,0)代入y=(m+1)x2+m2﹣9,求得m的值,然后根据有最大值确定m的值即可.解答:解:由于二次函数y=(m+1)x2+m2﹣9的图象经过原点,代入(0,0)得:m2﹣9=0,解得:m=3或m=﹣3;又∵有最大值,∴m+1<0,∴m=﹣3.故答案为:﹣3;点评:本题考查了二次函数图象上点的坐标特征,通过代入点的坐标即可求解,较为简单.15.抛物线y=x2+6x+m与x轴只有一个公共点,则m的值为9.考点:抛物线与x轴的交点.专题:计算题.分析:利用△=b2﹣4ac决定抛物线与x轴的交点个数得到△=62﹣4m=0,然后解关于m的一次方程即可.解答:解:根据题意得△=62﹣4m=0,解得m=9.故答案为9.点评:本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题可转化为解关于x的一元二次方程.对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2﹣4ac决定抛物线与x轴的交点个数.16.若抛物线y=bx2﹣x+3的对称轴为直线x=﹣1,则b的值为﹣.考点:二次函数的性质.分析:利用二次函数的对称轴计算方法x=﹣,求得答案即可.解答:解:∵抛物线y=bx2﹣x+3的对称轴为直线x=﹣1,∴x=﹣=﹣1,解得b=﹣.故答案为:﹣.点评:此题考查二次函数的性质,掌握二次函数的顶点坐标公式是解决问题的关键.17.若二次函数y=ax2﹣4x+a的最小值是﹣3,则a=1.考点:二次函数的最值.分析:根据题意:二次函数y=ax2﹣4x+a的最小值是﹣3,则判断二次函数的系数大于0,再根据公式y最小值=列出关于a的一元二次方程,解得a的值即可.解答:解:∵二次函数y=ax2﹣4x+a有最小值﹣3,∴a>0,y最小值==﹣3,整理,得a2+3a﹣4=0,解得a=﹣4或1,∵a>0,∴a=1.故答案为:1;点评:本题主要考查二次函数的最值的知识点,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好.18.二次函数y=x2﹣2x﹣1的图象在x轴上截得的线段长为2.考点:抛物线与x轴的交点.专题:计算题.分析:通过解方程x2﹣2x﹣1=0可得到抛物线与x轴的两交点坐标,然后计算两交点间的距离即可.解答:解:当y=0时,x2﹣2x﹣1=0,x2﹣2x+1=2,(x﹣1)2=2,解得x1=1+,x2=1﹣,所以抛物线与x轴的两交点坐标为(1﹣,0),(1+,0),所以抛物线在x轴上截得的线段长=1+﹣(1﹣)=2.故答案为.点评:本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题可转化为解关于x的一元二次方程.19.如图,一拱桥呈抛物线状,桥的最大高度是32m,跨度是80m,在线段AB上距离中心M20m的D处,桥的高度是24m.考点:二次函数的应用.分析:根据题意假设解析式为y=ax2+bx+c,用待定系数法求出解析式.然后把自变量的值代入求解对应函数值即可.解答:解:设抛物线的方程为y=ax2+bx+c已知抛物线经过(0,32),(﹣40,0),(40,0),可得,可得a=﹣,b=0,c=32,故解析式为y=﹣x2+32,当x=20时,y=24.故答案为:24.点评:本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.20.二次函数y=x2+bx的图象如图,对称轴为x=﹣2.若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣5<x<2的范围内有解,则t的取值范围是﹣4≤t<12.考点:抛物线与x轴的交点.专题:计算题.分析:先利用对称轴方程求出b得到抛物线解析式为y=x2+4x,再配成顶点式得到抛物线的顶点坐标为(﹣2,﹣4),接着根据二次函数的性质,运用函数图象求出当﹣5<x<2时,对应的函数值的范围为﹣4≤y<12,由于关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣5<x<2的范围内有解,则抛物线y=x2+bx与直线y=t有交点,然后借助图象可得到﹣4≤t <12.解答:解:∵﹣=﹣2,解得b=4,∴抛物线解析式为y=x2+4x,即y=(x+2)2﹣4,∴抛物线的顶点坐标为(﹣2,﹣4),当x=2时,y=x2+4x=12,∴当﹣5<x<2,﹣4≤y<12,∵一元二次方程x2+bx﹣t=0(t为实数)的解可看作抛物线y=x2+bx与直线y=b的交点的横坐标,∴关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣5<x<2的范围内有解时,抛物线y=x2+bx与直线y=t有交点,如图,∴﹣4≤t<12.故答案为﹣4≤t<12.点评:本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题可转化为解关于x的一元二次方程.也考查了二次函数的性质和二次函数与一次函数图象的交点问题.运用数形结合的思想是解决本题的关键.三、解答题(本题共7小题,共80分)21.已知二次函数y=﹣x2+4x+5.(1)用配方法把该函数化为y=a(x﹣h)2+k(其中a、h、k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶点坐标;(2)求这个函数图象与x轴、y轴的交点坐标.考点:二次函数的三种形式.分析:(1)先配方,得到二次函数的顶点坐标式,即可直接写出其对称轴和顶点坐标;(2)令y=0,求出x的值,即可确定函数图象与x轴的交点坐标;令x=0,求出y的值,即可确定函数图象与y轴的交点坐标.解答:解:(1)y=﹣x2+4x+5=﹣(x﹣2)2+9,对称轴为:x=2,顶点坐标:(2,9);(2)令y=0,得﹣x2+4x+5=0,解得x1=﹣1,x2=5,所以图象与x轴的交点坐标为:(﹣1,0)与(5,0);令x=0,得y=5,所以图象与y轴的交点坐标为:(0,5).点评:本题考查了二次函数解析式的三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).同时考查了函数图象与坐标轴的交点坐标的求法.22.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的解析式;(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)考点:二次函数与不等式(组);待定系数法求二次函数解析式.分析:(1)分别把点A(1,0),B(3,2)代入直线y=x+m和抛物线y=x2+bx+c,利用待定系数法解得y=x﹣1,y=x2﹣3x+2;(2)根据题意列出不等式,直接解二元一次不等式即可,或者根据图象可知,x2﹣3x+2>x ﹣1的图象上x的范围是x<1或x>3.解答:解:(1)把点A(1,0),B(3,2)分别代入直线y=x+m和抛物线y=x2+bx+c得:0=1+m,,∴m=﹣1,b=﹣3,c=2,所以y=x﹣1,y=x2﹣3x+2;(2)x2﹣3x+2>x﹣1,解得:x<1或x>3.点评:主要考查了用待定系数法求函数解析式和二次函数的图象的性质.要具备读图的能力.23.如图,二次函数y=ax2﹣4x+c的图象经过坐标原点,与x轴交于点A(﹣4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P,满足S△AOP=8,请直接写出点P的坐标.考点:待定系数法求二次函数解析式;二次函数图象上点的坐标特征.分析:(1)把点A原点的坐标代入函数解析式,利用待定系数法求二次函数解析式解答;(2)根据三角形的面积公式求出点P到AO的距离,然后分点P在x轴的上方与下方两种情况解答即可.解答:解:(1)由已知条件得,解得,所以,此二次函数的解析式为y=﹣x2﹣4x;(2)∵点A的坐标为(﹣4,0),∴AO=4,设点P到x轴的距离为h,则S△AOP=×4h=8,解得h=4,①当点P在x轴上方时,﹣x2﹣4x=4,解得x=﹣2,所以,点P的坐标为(﹣2,4),②当点P在x轴下方时,﹣x2﹣4x=﹣4,解得x1=﹣2+2,x2=﹣2﹣2,所以,点P的坐标为(﹣2+2,﹣4)或(﹣2﹣2,﹣4),综上所述,点P的坐标是:(﹣2,4)、(﹣2+2,﹣4)、(﹣2﹣2,﹣4).点评:本题考查了待定系数法求二次函数解析式,二次函数图象上的点的坐标特征,(2)要注意分点P在x轴的上方与下方两种情况讨论求解.24.某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图的平面直角坐标系,问此球能否准确投中;(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?考点:二次函数的应用.分析:已知最高点坐标(4,4),用顶点式设二次函数解析式更方便求解析式,运用求出的解析式就可以解决题目的问题了.解答:解:(1)根据题意,球出手点、最高点和篮圈的坐标分别为:A(0,)B(4,4)C(7,3)设二次函数解析式为y=a(x﹣h)2+k代入A、B点坐标,得y=﹣(x﹣4)2+4 ①将C点坐标代入①式得左边=右边即C点在抛物线上∴一定能投中;(2)将x=1代入①得y=3∵3.1>3∴盖帽能获得成功.点评:本题考查了二次函数解析式的求法,及其实际应用.此题为数学建模题,借助二次函数解决实际问题.25.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a为15米)围成的中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式;(2)如果要围成花圃的面积为36平方米,求AB的长为多少米?(3)如果要使围成花圃面积最大,求AB的长为多少米?考点:二次函数的应用;一元二次方程的应用.专题:几何图形问题.分析:(1)可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式;(2)根据(1)的函数关系式,将S=36代入其中,求出x的值即可;(3)根据二次函数的性质求出自变量取值范围内的最值.解答:解:(1)花圃的宽AB为x米,则BC=(24﹣3x)米,∴S=x(24﹣3x),即S=﹣3x2+24x(3≤x<8);(2)当S=36时,﹣3x2+24x=36,解得x1=2,x2=6,当x=2时,24﹣3x=18>15,不合题意,舍去;当x=6时,24﹣3x=6<15,符合题意,故AB的长为6米.(3)S=﹣3x2+24x=﹣3(x﹣4)2+48,∵3≤x<8,∴当x=4米时面积最大,最大面积为48平方米.点评:本题考查了二次函数的综合应用,根据已知条件列出二次函数式是解题的关键.要注意题中自变量的取值范围.26.(14分)某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?(4)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.考点:二次函数的应用.专题:压轴题.分析:本题属于市场营销问题,月利润=(每吨售价﹣每吨其它费用)×销售量,销售量与每吨售价的关系要表达清楚.再用二次函数的性质解决最大利润问题.解答:解:(1)由题意得:45+×7.5=60(吨).(2)由题意:y=(x﹣100)(45+×7.5),化简得:y=﹣x2+315x﹣24000.(3)y=﹣x2+315x﹣24000=﹣(x﹣210)2+9075.利达经销店要获得最大月利润,材料的售价应定为每吨210元.(4)我认为,小静说的不对.理由:方法一:当月利润最大时,x为210元,而对于月销售额W=x(45+×7.5)=﹣(x﹣160)2+19200来说,当x为160元时,月销售额W最大.∴当x为210元时,月销售额W不是最大.∴小静说的不对.方法二:当月利润最大时,x为210元,此时,月销售额为17325元;而当x为200元时,月销售额为18000元.∵17325<18000,∴当月利润最大时,月销售额W不是最大.∴小静说的不对.(说明:如果举出其它反例,说理正确,也可以)点评:本题考查了把实际问题转化为二次函数,再对二次函数进行实际应用.此题为数学建模题,借助二次函数解决实际问题.27.(14分)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.考点:二次函数综合题.专题:压轴题;动点型.分析:(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M的坐标得出,CQ=3﹣x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标.②当CM=MP时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).③当CM=CP时,因为C的坐标为(0,3),那么直线y=3必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;(3)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,四边形BOCE的面积=三角形BFE的面积+直角梯形FOCE的面积.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在三角形BFE中,BF=BO﹣OF,因此可用E的横坐标表示出BF 的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE 的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.解答:解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴。