Brownian Dynamics Simulation of Nucleosome Formation and Disruption under Stretching

合集下载

聚变堆中第一壁材料钨的紧束缚理论研究

聚变堆中第一壁材料钨的紧束缚理论研究

第55卷第1期2021年1月原子能科学技术AtomicEnergyScienceandTechnologyVol.55,No.1Jan2021聚变堆中第一壁材料钨的紧束缚理论研究叶小彬",何志海2,潘必才12d.中国科学技术大学合肥微尺度物质科学国家研究中心,安徽合肥230026%2.中国科学技术大学物理系,安徽合肥230026)摘要:为研究辐照时处于电子激发态下第一壁材料钨(W)的结构演化规律和热力学性质,采用紧束缚方法对聚变堆中W的物理性质进行理论研究$结果表明,体系在高能粒子辐照下诱导的电子激发导致了体系中被辐照的区域自发出现微孔、晶格急剧膨胀、熔点下降等现象$具体地,在中等电子温度(〜5000K)以下,W的晶格膨胀主要由晶格温度驱动,但在电子温度较高时电子温度导致被辐照区域的晶格膨胀效应不可被忽略$特别是当电子温度很高(&10000K)时,即便晶格温度不高,电子温度也会导致很大程度晶格膨胀$这对认识聚变堆中第一壁材料W在服役过程中的物理状态十分重要$关键词:钨;熔点;晶格肿胀;紧束缚理论中图分类号:TL62.7文献标志码:A文章编号:1000-6931(2021)01-0042-08doi:10.7538/yzk.2020.youxian.0453Tight-binding Theory Study on the First Wall Material Tungstenin Fusion ReactorYE Xiaobin1,HE Zhihai2,PAN Bicai1'2'(1.Hefei N%tioTi%l L%bor%trry for Physic%l Scierices%t the Microsc%le,Umversity of Scierce%”d Techrology of Ch”%,Hefei230026,Chi”%%2.Dep%rtmem of Physics,Umversity of Scierce%”d Techrology of Ch”%,Hefei230026,Chi”%)Abstract:In order to study the structural evolution and thermodynamic properties of the firstwa l materialtungsten(W)inelectronicexcitedstateduringirradiation!thephysi-calpropertiesof W in fusion reactors were studied theoretica l y by using tight-binding potentialmodel Itisfoundthattheelectronicexcitationinducedbytheirradiationof energeticparticlesleadstotheeventssuchasspontaneousappearanceof micro-voids!sharpexpansionofthela t ice!anddecreaseinthemeltingpointoftheirradiatedregions in W.Specifically,the lattice expansion of W is mainly driven by lattice temperature underthemediumtemperatures(〜5000K).Butthela t iceexpansione f ectcausedby electronictemperaturecannotbeignoredatthehighertemperatures.Especia l y when theelectronictemperatureisratherhigh(&10000K)!theelectronictemperaturewi l收稿日期2020-06-30%修回日期2020-09-15基金项目:国家自然科学基金资助项目(11875247)%国家磁约束核聚变能发展研究专项资助项目(2018YFE0308102)作者简介:叶小彬(1992—),女,福建漳州人,博士研究生,凝聚态物理专业通信作者:潘必才,E-mail:bcpan@第1期叶小彬等:聚变堆中第一壁材料钨的紧束缚理论研究43cause a large degree of lattice expansion,even if the lattice temperature is low for the irradiatedregions.Thesefindingsbringbenefittogaindeepunderstandinginthephysi-calperformanceof Winfusionreactorsduringservice.Key words:tungsten;melting point;lattice swelling;tight-binding theory聚变堆的安全可靠运行依赖较多因素,其中,面向等离子体的第一壁材料的稳定性是关键因素之一当聚变堆在正常运行时,第一壁材料承受着高能粒子的辐照和高热流密度的冲击在如此极端的环境中,面向等离子体的第一壁材料的结构会发生急剧的变化,从而强烈影响材料的热力学性质和微结构$现已采用实验和理论模拟对第一壁材料的微结构和热力学性能进行了广泛的研究$由固体物理可知,当材料的电子结构发生变化时,材料的结构和性质也会发生相应改变$因此,在物理上,为深入研究和理解材料的结构与物理性质的关联,需密切关注材料的电子结构$在核聚变堆中服役的材料身处极端复杂的环境,这些环境因素会强烈调制材料的电子结构$首先,聚变堆在正常运行的情况下,聚变堆中等离子体芯部的温度约为100000000K$根据黑体辐射理论中的维恩位移定律,高温等离子体会源源不断地向其周围的第一壁材料钨(W)辐射以X射线为主体的高能光子$这些高能光子入射到材料,与材料中的原子作用,激发甚至电离原子中内壳层的部分电子$于是,第一壁材料W中有大量的电子处于激发态$其次,从等离子体芯部会溢出大量的高能粒子$这些粒子既有带电的离子也有电中性的中子$带电的离子虽受削刮层的控制,释放出来后的能量被减弱了,但仍有较高的动能,轰击第一壁材料后,将部分动能传递给被碰撞的W原子$这些获得较高动能的W原子发生高速位移$在高速位移时,w原子核外的外层电子因受原子核较弱的吸引作用而脱离W原子,因而此时高速位移的W原子其实就是高速位移的W离子$高速位移的离子通过库仑作用,诱导其周围的W原子中的部分电子被激发$处于激发态的电子是不稳定的,通常会经历一个特征时间后发生退激发$退激发有多种途径,如电子从高能级跃迁到低能级,释放出光子;或电子将部分能量传递给晶格,从高能态转变成低能态,这是一个无辐射的跃迁过程$无辐射跃迁包含着电子与声子的耦合和非热行为$其中,非热行为是指通过改变电子态使离子间的受力发生改变,从而改变材料的结构$在非热过程中,激发的电子将部分能量通过量子力学力做功传递给了晶格$在W中,无辐射跃迁是最主要的电子退激发的方式$已有实验对聚变堆中的第一壁材料W受辐照后的微结构等物理问题进行了研究)10*$现有的大量实验数据来自于对辐照后的第一壁材料的探测,此时,材料不处于辐照的环境,所获得的数据包含着辐照后遗留的效果,不能真实反映辐照时对材料产生的实时效应$理论上也有许多的研究工作探究粒子辐照对W的微结构和热力学性能的影响[1113]$在大量的关于核材料的理论模拟中,已有的主体的理论研究工作均在经验分子动力学和经典蒙特卡罗的构架中开展,缺少对电子激发效应的考虑$为在理论模拟中考虑电子激发效应,提出了双温度模型的理论模拟方案*16*和含时的紧束缚动力学方法[17],但前者未考虑真实的量子态,后者采用单S态的紧束缚动力学研究离子辐照中的电子阻止本领,获得了较好的结果,但无法研究辐照时处于电子激发态下材料的结构演化规律,也不能计算材料的其他物理性质$本文发展W体系的紧束缚势模型,在该势模型中,离子间的相互作用包含量子力学力,同时引入描述电子在不同激发态分布的电子熵。

遍布节理模型在层状岩体模拟中的适用性研究

遍布节理模型在层状岩体模拟中的适用性研究

第50 卷第 9 期2023年9 月Vol.50,No.9Sept. 2023湖南大学学报(自然科学版)Journal of Hunan University(Natural Sciences)遍布节理模型在层状岩体模拟中的适用性研究黄娟1,周世杰1,贾朝军1†,宋银涛1,张建2(1.中南大学土木工程学院,湖南长沙 410075;2.中铁五局集团有限公司,湖南衡阳 420002)摘要:为弥补遍布节理模型未考虑节理长度、间距及节理刚度的不足,利用三轴压缩数值试验和参数校准准则,对有限差分软件FLAC3D中的遍布节理模型进行参数校准. 通过圆形洞室开挖的算例,对比分析了遍布节理模型与3DEC块体离散元模型的计算结果在位移、塑性区以及最大主应力上的差异. 依托具有典型层状围岩的新华山隧道工程,采用校准的遍布节理模型和离散元方法分析隧道开挖和初期支护后的力学响应. 最后探讨了层理角度对围岩变形和塑性区的影响,进一步验证校准后的遍布节理模型在工程中的适用性. 研究表明,经过校准的遍布节理模型能够较好地描述层状岩体的各向异性行为,可应用于类似工程之中.关键词:岩石力学;各向异性;遍布节理模型;隧道开挖中图分类号:TU45 文献标志码:AApplicability of Ubiquitous-Joint Model in Layered Rocks Simulation HUANG Juan1,ZHOU Shijie1,JIA Chaojun1†,SONG Yintao1,ZHANG Jian2(1.School of Civil Engineering, Central South University, Changsha 410075, China;2.China Railway No.5 Engineering Group Co., Ltd., Hengyang 420002, China)Abstract:To address the limitations of the Ubiquitous-Joint model which does not consider the effects of joint length, joint spacing, and joint stiffness, the parameters of the Ubiquitous-Joint model in FLAC3D were calibrated using triaxial compression numerical tests and parameter calibration criteria. The distinctions of modeling results between the Ubiquitous-Joint model and the 3DEC model including the deformation,the plasticity zone,and the maximum principle stress were compared and analyzed by an example of circular tunnel excavation. Based on the Xinhua Mountain Tunnel project with typical layered rock mass,the deformation and failure mode were analyzed with the calibrated Subiquitous model and discrete element method after the tunnel was excavated and primary support finished. Finally,the deformation and plastic zone of surrounding rock influenced by bedding angle was discussed,which further verified the applicability of the calibrated Subiquitous model in engineering. The results confirm that the calibrated Subiquitous model is capable to well describe the anisotropic behavior of layered rock,which can be applied to similar engineering projects.Key words:roke mechanics;anisotropy;Ubiquitous-Joint model;tunnel excavation∗收稿日期:2022-08-02基金项目:国家自然科学基金资助项目(U1934211),National Natural Science Foundation of China(U1934211)作者简介:黄娟(1977—),女,湖北荆州人,中南大学副教授,博士† 通信联系人,E-mail:******************.cn文章编号:1674-2974(2023)09-0131-11DOI:10.16339/ki.hdxbzkb.2023109湖南大学学报(自然科学版)2023 年层状岩体是岩土与地下工程建设中经常遇到的一类岩体,在自然界中广泛分布. 长期地质构造作用下所形成的层理面使岩体在强度和变形等方面都表现出明显的各向异性,这对隧道开挖时岩体锚固[1]、衬砌开裂、仰拱隆起[2]等工程问题有着显著的影响.因此,层状岩体的力学行为与响应机制研究具有重要意义与研究价值.近年来,随着材料本构不断完善以及计算机技术的更新迭代,越来越多的数值模拟技术用于岩体力学特性的研究,为室内试验或现场测试的局限性提供了补充和解决办法. 王培涛等[3]应用颗粒流软件PFC2D研究了不同层理角度的黑云变粒岩的强度特性. Singh等[4]通过UDEC探究了节理岩体在单轴加载条件下产生高侧向应变的原因. 刘爱华等[5]采用有限元软件ANSYS模拟了不同层面倾角的岩体抗拉、抗压试验下的破坏形态. 此外一部分学者还将有限元法[6-7]、有限差分法[8]、离散元法[9]、有限-离散元法[10]、真实破裂过程分析方法[11]等数值方法应用于模拟层状围岩地下洞室的变形和破坏机理等方面.虽然数值模拟方法繁多,但相比之下,采用离散元法能够最有效地描述层状岩体等不连续材料的力学性能[12]. 然而,考虑到离散元法计算的效率,若要模拟全部的节理或层理构造以进行某些大型地下工程的开挖掘进是不太可取的[13]. 近年来,有学者研发了高效颗粒离散元软件MatDEM[14],但颗粒离散元软件很大程度上依赖于本构参数的准确标定,且该软件暂未广泛应用于层状岩体模拟之中. 为了避免这些限制,通常可以采用FLAC3D中的遍布节理模型来表示一些层状各向异性岩体. 例如,蒋青青等[15]采用FLAC3D内置的Ubiquitous-Joint模型分析了层状岩质边坡开挖过程中层理倾角和倾向与安全系数之间的关系. 朱泽奇等[16]、周鹏发等[17]采用改进的Ubiquitous-Joint模型模拟了层状围岩地下洞室开挖时的变形和破坏. Sainsbury等[18]针对岩体中普遍存在的随机节理,通过建立与主节理或层理方向正交的节理集,并提出遍布节理模型参数修正准则,较好地描述了自然界中各向异性岩体强度和变形特性.然而,目前遍布节理模型中参数的物理意义不够明确,不能由试验结果直接获取. 由于遍布节理模型没有考虑节理间距和节理刚度,如果直接将其材料参数与离散元模型的岩块和结构面参数赋值一致,模拟结果不能真实地反映实际工程中的岩体强度或变形. 因此,需要对遍布节理模型的参数进行校准修正,以便为工程设计或施工提供有意义的参考.本文通过总结部分学者对层状各向异性岩体的研究,在Sainsbury研究的基础上,分别采用FLAC3D 中的Ubiquitous-Joint模型和Softening-ubiquitous模型(考虑应变软化的Ubiquitous-Joint模型,以下简称Subiquitous模型)以及块体离散元软件3DEC对层状岩体的力学特征进行模拟并作对比分析. 基于校准后的Subiquitous模型,通过分析新华山隧道开挖和支护过程,揭示层理对围岩变形和破坏特征的影响,验证遍布节理模型的适用性.1 (应变软化)遍布节理模型在FLAC3D中,遍布节理模型有Ubiquitous-Joint 和Subiquitous模型两种. Ubiquitous-Joint模型[19]对应于摩尔-库仑模型,即在摩尔-库仑体中加入节理面,该节理面也服从摩尔-库仑屈服准则,使材料表现出强度各向异性. Ubiquitous-Joint模型同时考虑了岩石基质和节理的物理力学属性,必须在模型的指定区域内同时赋予基质和节理的参数.节理面的破坏包括拉伸和剪切破坏,如图1所示,其中剪切破坏包络线AB表示为f s=0:f s=τ+σ3′3′tanϕj-c j=0.(1)拉伸破坏包络线BC表示为f t=0:f t=σ3′3′-σt j=0.(2)式中:ϕj、c j和σt j分别为节理面的内摩擦角、黏聚力和抗拉强度;σ3′3′为节理面上的正应力.该模型的计算公式中未涉及节理的间距、长度以及岩层的弯曲刚度等. 如果不对相应的力学参数进行校准,可能会得到错误的岩体强度和变形响应. Subiquitous模型[19]是广义的Ubiquitous-Joint模型,该模型中基质和节理强度符合双线性摩尔-库仑准则,且允许材料基质和节理的强度发生硬化或软图1 节理面破坏准则Fig.1 Joint failure criterion132第 9 期黄娟等:遍布节理模型在层状岩体模拟中的适用性研究化. Subiquitous 模型和Ubiquitous-Joint 模型都是先根据摩尔-库仑准则检测基质的屈服,并进行相应的塑性修正,然后分析在新的应力状态下节理面上的破坏,在材料未达到极限强度前力学行为一致.在遍布节理模型中,弱面对岩体强度的影响通常与Jaeger 提出的单弱面理论[20]进行比较. 单弱面理论指出,当1-tan ϕtan β>0时,若满足式(3)则会发生结构面的剪切破坏.σ1≥σ3+2()c +σ3tan ϕ(1-tan ϕtan β)tan β.(3)式中:c 、ϕ分别为结构面的黏聚力和内摩擦角;β为结构面的倾角. 当1-tan ϕtan β<0时,岩体不会沿结构面破坏,只会发生基质的破坏. 故该理论只允许出现沿结构面的剪切滑移破坏和基质的破坏两种破坏模式.图2为Ubiquitous-Joint 模型[19]和Jaeger 单弱面理论的岩体承载强度与结构面倾角的关系的对比,可以看出两者紧密匹配.图2中ϕw 为结构的内摩擦角,其中曲线为带有“肩部”的“U ”形曲线. 当β<ϕ或β=90°时,岩体强度与弱面无关.图3为部分已有的层状岩体三轴压缩试验研究[21-24],由图3可知,岩体的强度随着层面倾角连续变化,这一特征也得到了许多研究人员的验证. 而单弱面理论不能充分描述自然存在的层状岩体的各向异性. 遍布节理模型也存在同样的局限性,故需要进一步探讨其适用性.2 遍布节理模型与离散元模型的对比为了探讨遍布节理模型对层状岩体模拟的有效性,针对已有的层状页岩三轴压缩试验结果,采用FLAC3D 建立与试样同等规模的数值模型,用其内置的Ubiquitous-Joint 模型和Subiquitous 模型进行分析计算,并与3DEC 的模拟结果作比较.2.1 三轴压缩试验模拟中的比较2.1.1 块体离散元方法和Ubiquitous-Joint 模型为了研究层状岩体的强度和变形特性,参考页岩[22]的三轴压缩试验数据(如图4所示),使用3DEC 建立了直径50 mm 、高100 mm 的标准圆柱体模型. 层理倾角分别设置为0°、15°、30°、45°、60°、75°和图2 Ubiquitous-Joint 模型三轴抗压强度值与Jaeger 解析解的比较Fig.2 Comparison of triaxial compressive strengthvalues-Ubiquitous-Joint model versus analytical solution (a )层状砂岩[23](b )层状页岩[22, 24](c )层状片岩[21]图3 层状岩体三轴压缩强度随倾角变化特性Fig.3 Variation of triaxial compressive strengthof layered rock mass with bedding angle133湖南大学学报(自然科学版)2023 年90°,层厚5 mm ,岩体参数标定结果见表1. 同时基于Ubiquitous-Joint 本构模型建立了类似的FLAC3D 模型,将表1中的岩体参数直接用作模型中岩石基质和节理的参数输入,3DEC 模型和Ubiquitous-Joint 模型的强度响应如图4所示.正如预期,离散元模型随着β角的增大而遵循连续变化的强度曲线. 其与室内试验不同倾角下的峰值强度相对误差小于8%,结果基本吻合. Ubiquitous-Joint 模型在β角小于15°时其强度不受节理的影响,与室内试验结果相差超过20%,这种“U ”形强度曲线上的肩部清楚地表明了模型的局限性.提取较为典型的层理倾角为60°时岩石破坏模式的试验结果与模拟结果,如图5所示.可知此时岩石表现为沿层理面的滑移破坏,其中从离散元模型结果可以看到层理面的错动,与试验结果一致. 而Ubiquitous-Joint 模型显示大量的节理剪切破坏,但无法得知具体的破裂面位置和破裂形态.图6表示了不同倾角下离散元模型和Ubiquitous-Joint 模型的弹性模量和应力-应变曲线.由图6可知,Ubiquitous-Joint 模型没有体现出峰后的应变软化行为. 当直接在模型中采用3DEC 岩石块体的刚度参数时,所得到的弹性模量明显高于3DEC 的模拟结果,这是Ubiquitous-Joint 模型未考虑节理刚度和节理间距导致的,在实际工程中要特别注意这一点.(a )弹性模量变化曲线(b )应力-应变曲线(0°~45°)(c )应力-应变曲线(60°~90°)图6 两种模型的弹性模量和应力-应变曲线Fig.6 Elastic modulus and stress-strain curve of discontinuumand Ubiquitous-Joint model图4 离散元和Ubiquitous-Joint 模型强度各向异性曲线Fig.4 Anisotropic strength curves of discontinuum andUbiquitous-Joint model表1 岩石和节理力学参数Tab.1 Rock and joint mechanical properties层间结构面黏聚力/MPa22(°)19(GPa•m -1)20(GPa•m -1)10 (a )试验结果 (b )3DEC 模型 (c )UB-Joint 模型图5 层理倾角60°时岩石破坏模式Fig.5 Failure mode of rock with bedding angle of 60°134第 9 期黄娟等:遍布节理模型在层状岩体模拟中的适用性研究因此,建议不要将3DEC 中的岩石块体和节理参数直接用作Ubiquitous-Joint 模型的参数,为使其产生有意义的结果,需要对岩石基质和节理参数进行校准,以匹配离散元模型的结果. 以下将对此进行探讨.2.1.2 考虑应变软化的Subiquitous 模型参数校准与Ubiquitous-Joint 模型相比,Subiquitous 模型在校准岩石基质和节理参数方面提供了更大的灵活性. 通过双线性软化关系,可以更好地表示层状岩体的强度和变形特性. 其参数校准准则如下[18]:1)将离散元模拟结果视为实际层状岩体的各向异性行为.2)节理黏聚力和内摩擦角的初始值不变,岩体达到峰值后,节理黏聚力与岩体基质黏聚力以相同的速率软化至0.3)校准岩石基质的强度和变形响应,以补偿节理刚度和节理间距参数的缺失.β在0°和90°的情况下,试样的峰值强度取决于岩石基质的黏聚力和内摩擦角,这些参数对应于β=0°时的离散元模型的强度响应进行校准. 岩体基质和节理黏聚力的软化速率参考离散元模型的结果.在整个校准过程中,强度和刚度参数以及试样的破坏过程都得以考虑. 比较离散元模型和Subiqui‑tous 模型的破坏模式,将其分为劈裂张拉破坏(β为90°时)、剪切滑移破坏(β为60°时)和复合破坏(β为30°时). 通过监测加载过程中基质的屈服和节理的滑移剪切,可以揭示试样的破坏机制.前文中的三轴压缩数值试验已用Subiquitous 模型重建,采用经过校准的参数,具体取值见表2.离散元模型和Subiquitous 模型的各向异性“U ”形曲线如图7所示,并与开始的Ubiquitous-Joint 模型的结果进行了比较. 经过校准后的Subiquitous 模型随着β角的增大同样遵循连续变化的强度曲线,与离散元模型的结果更加贴切.图8显示了Subiqui‑表2 校准的Subiquitous 模型力学参数Tab.2 Calibrated mechanical properties of Subiquitousmodel弹性模量/GPa 32泊松比0.25黏聚力/MPa 47.5内摩擦角/(°)29节理黏聚力/MPa 22节理内摩擦角/(°)19图7 离散元和Subiquitous 模型强度各向异性曲线Fig.7 Anisotropic strength curves of discontinuumand Subiquitous model(a )弹性模量变化曲线(b )应力-应变曲线(0°~45°)(c )应力-应变曲线(60°~90°)图8 弹性模量变化曲线及不同角度下的应力-应变曲线Fig.8 Elastic modulus and stress-strain response ofdiscontinuum and Subiquitous model135湖南大学学报(自然科学版)2023 年tous模型在不同层理倾角下的应力-应变曲线和弹性模量的变化,都与离散元模型更紧密地匹配.2.2 二维圆形隧道开挖分析为了验证2.1节中开发的校准后的Subiquitous模型在工程中的应用效果,建立了一个圆形隧道模型,研究隧道开挖后的力学响应,该模型是在不考虑重力加速度的各向同性应力场中模拟的. 为了比较模拟效果,建立了岩层厚度0.5 m的3DEC模型和等效的Ubiquitous-Joint模型. 模型参数取值见表3和表4. 图9比较了隧道开挖完成时每个模型的塑性区、位移和最大主应力.3DEC模型中显示隧道侧壁中有少量岩石块体的拉伸破坏,层理的剪切滑移破坏主要在洞顶和底部沿垂直层理方向延伸约2 m. 位移场分布明显受到了层理的影响,最大位移约为20 mm. 图10显示的是3DEC模型放大20倍的变形状况,在隧道顶部和底表3 模型材料参数Tab.3 Details of model material层间岩体层间结构面弹性模量/GPa2.69黏聚力/MPa0.08泊松比0.28内摩擦角/(°)20黏聚力/MPa1.64法向刚度/(GPa•m-1)3内摩擦角/(°)45.5剪切刚度/(GPa•m-1)1.15表4 校准的Subiquitous模型力学参数Tab.4 Calibrated mechanical propertiesof Subiquitous model弹性模量/GPa1.8泊松比0.34黏聚力/MPa1.5内摩擦角/(°)47节理黏聚力/MPa0.08节理内摩擦角/(°)20图9 5 m直径的圆形隧道开挖后的塑性区、位移和最大主应力Fig.9 Plastic zones, displacement and major principal stress around 5 m-diameter tunnel136第 9 期黄娟等:遍布节理模型在层状岩体模拟中的适用性研究部可以清楚地看到岩层的弯曲.Ubiquitous-Joint 模型(直接对岩石基质和节理赋予和3DEC 中块体和节理相同的参数)中没有显示出基质的屈服破坏,而主要为节理的滑移和拉伸破坏,在隧道顶部和底部延伸约4 m ,模型的最大位移明显小于3DEC 模型. 节理拉伸破坏导致区域周围出现显著的应力重分布,其破坏机制是因为遍布节理模型的公式中没有考虑岩层的弯曲刚度. 经过校准的Subiquitous 模型的隧道侧壁上也有少量的基质拉伸破坏,使得隧道周围出现更具有代表性的应力重分布,其位移场也更接近3DEC 模型.3 工程验证为了更好地研究Subiquitous 模型在实际工程中的使用性能,以新华山隧道为例,探讨隧道开挖以及在支护结构作用下围岩的变形和破坏特性,并通过现场实测数据验证模型的可靠性.3.1 工程概况和工程地质新华山隧道位于湖南省张家界市和湖南省湘西州永顺县境内. 该隧道为单洞双线隧道,起止里程为DK26+104.00-DK32+034.49,全长5 930.49 m ,最大埋深约为383 m ,开挖高度和宽度分别为12.64 m 和14.96 m.新华山隧道所处地貌为剥蚀低山地貌,地势较起伏,山坡自然坡度一般为30°~70°. 隧道穿越地层受区域构造影响严重,节理裂隙发育、岩体破碎. 本文以新华山隧道进口段DK26+490断面附近为研究对象. 根据前期地质勘查资料,新华山隧道围岩主要为层状特征较明显的炭质页岩,由于其所具有的各向异性和开挖后风化较快等特殊工程特性,使得隧道的开挖引起软弱围岩向洞内发生不均匀对称的变形.3.2 模型建立根据纵断面图可以发现,所模拟区段的埋深约110 m ,运用FLAC3D 建立如图11所示模型.为降低模型中的单元数量,仅在模型中创建部分上覆岩体,并通过在地层上表面施加荷载模拟其余上覆岩体的自重应力. 设定模型x 、y 、z 三个方向上的尺寸分别为100 m 、50 m 和100 m ,采用位移边界条件,除上表面外,其余5个边界面约束法向位移. 模型中,岩体层理倾角采用现场调查得到的层理倾角,即为75°. 隧道采用三台阶法开挖,模拟区段并未施做二次衬砌,故模型中支护体系仅包括锚杆和初期支护,相关力学计算参数根据支护设计方案确定(见表5). 采用3DEC 建立同等规模的模型,根据现场测试以及《铁路隧道设计规范》(TB 10003―2016)取得如表6所示参数. 其中节理刚度参数参考文献[25],并执行2.1节的校准程序取得Subiquitous 模型的参数,如表7所示.图10 3DEC 中显示的岩层弯曲变形(放大20倍)Fig.10 Bending deformation of bedding rock sown in 3DEC(magnified 20 times)图11 数值模型及细部构造(单位:m )Fig.11 Numerical model and detailed construction (unit : m )表5 支护结构计算参数Tab.5 Parameters for the support system锚杆初衬截面积/mm 2153厚度/cm 28弹性模量/GPa 200密度/(kg•m -3)2 400砂浆刚度/MPa 50弹性模量/GPa 28砂浆黏聚力/kPa 400泊松比0.2砂浆摩擦角/(°)60137湖南大学学报(自然科学版)2023 年3.3 数值模拟结果与分析根据上述参数和模型,计算得到隧道中部横截面处(Y=25 m)开挖并施加初期支护后的围岩变形和块体塑性区以及节理塑性区情况如图12所示,从中可以看出:1)两种模拟方法的围岩变形和塑性区响应非常接近,说明经过校准后的Subiquitous模型能够较好地体现层状岩体的力学特性.2)隧道开挖完成后实测拱顶沉降和水平收敛分别为259.9 mm和173.5 mm,而3DEC中拱顶沉降和水平收敛分别为243.9 mm和160.2 mm,与实测值的差异分别为-5.4%和-7.6%,FLAC3D中分别为282.5 mm和189.2 mm,与实测值的差异分别为8.7%和9.0%,差异性较小,表明建立的模型能够较好地反映新华山隧道开挖及初期支护后的变形情况. 3)受层理的影响,拱顶和拱底都朝着层理倾角方向产生位移梯度,围岩位移场呈现出显著的不对称性,这也与现场观察到的非对称变形情况相符合. FLAC3D中边墙附近围岩位移比3DEC稍大,是因为Subiquitous模型无法表示完整岩层的屈曲变形,而岩层的厚度对围岩位移有重要影响.4)隧道开挖扰动作用下,围岩产生了节理剪切破坏、节理张拉破坏、岩石基质剪切破坏和岩石基质张拉破坏4种类型的破坏,主要处于节理和基质的剪切破坏状态,且大部分围岩体同时出现了多种破坏模式. 围岩塑性区分布也显示为极不对称性,围岩深部的塑性区主要集中在左拱脚和右拱肩. 3DEC中少量的节理张拉破坏沿洞周分布,FLAC3D中节理张拉破坏更少,这也与Subiquitous模型无法解释岩层间距有关. 基质的张拉破坏只出现在隧道底部,拱顶的塑性区范围都很小.图13给出了3DEC和FLAC3D模型(与实际掘进过程一致)Y=25 m断面处的拱顶沉降监测曲线与现场监测数据的比较,可以发现,3DEC与实测数据更为接近,而FLAC3D中采用Subiquitous模型的计算结果也能较好地吻合.综合以上分析,校准的Subiq‑uitous模型在工程中有较好的实用性,能为相应工程表6 岩石和层理面力学参数Tab.6 Rock and bedding plane mechanical properties层间岩体层理面弹性模量/MPa250黏聚力/kPa60泊松比0.37内摩擦角/(°)15黏聚力/kPa150法向刚度/(GPa•m-1)1内摩擦角/(°)23剪切刚度/(GPa•m-1)0.5表 7 校准的Subiquitous模型力学参数Tab.7 Calibrated mechanical propertiesof Subiquitous model弹性模量/MPa190泊松比0.40黏聚力/kPa140内摩擦角/(°)25节理黏聚力/kPa60节理内摩擦角/(°)15图12 离散元和校准的Subiquitous模型位移和塑性区对比Fig.12 Comparison of displacement and plastic zones of discontinuum and calibrated Subiquitous model138第 9 期黄娟等:遍布节理模型在层状岩体模拟中的适用性研究提供参考,且层理的存在对围岩的变形和破坏有重要影响. 此外,就计算效率而言,两者计算时长相差30~40倍.3.4 层理倾角对隧道开挖的影响当隧道施工穿越炭质页岩地层时,围岩和支护结构的变形很可能因围岩层理倾角的变化产生显性差异. 为分析层理倾角对围岩和支护结构变形的影响,用FLAC3D 依次建立层理倾角为0°、30°、45°、60°和90°等5种工况的仿真模型. 采用校准的Subiquitous 模型,除倾角外其余参数保持不变. 计算得到岩体围岩和支护结构的变形以及围岩塑性区分布,如图14所示,提取各个角度下拱顶的沉降得图15所示曲线. 由图14、图15可知:1)围岩和支护结构的变形显著受到层理倾角的影响. 层理倾角从0°到90°变化过程中,初期支护拱顶沉降呈现出倒“V ”形变化,即先增大后减小,45°时达到最大值. 位移场分布随着倾角改变,只有0°和90°时存在对称性.2)隧道开挖引起的塑性区形状和范围与层理倾角密切相关. 0°时塑性区范围最小,当层理倾角小于30°时,围岩深部塑性区沿垂直于层理方向发展;而当倾角为75°~90°时,深部塑性区主要沿层理方向发展;层理倾角为45°~60°时,塑性区呈现出“X ”形状,且范围较大,与前文所述岩体在45°~60°时强度较低相对应,表明该倾角范围内易使隧道围岩产生破坏.4 结论本文通过对比分析遍布节理模型与离散元模型在层状岩体三轴压缩以及层状围岩隧道开挖应用中的模拟效果,探讨采用等效参数的遍布节理模型在层状岩体模拟中的适用性,得出以下结论:1)离散元模型能够更好地体现层状岩体的变形图13 实测和模拟的拱顶沉降(Y =25 m )Fig.13 Measured and simulated vault settlement (Y =25 m)图14 不同层理倾角下围岩变形和塑性区Fig.14 Deformation and plastic zone of adjacent rock mass at various bedding angles拱顶沉降/m m层理倾角/(°)图15 拱顶沉降随层理倾角的变化Fig.15 Vault settlement varies with bedding angles139湖南大学学报(自然科学版)2023 年和破坏特性,但若考虑计算效率,更适合于描述中小尺度层状岩体力学性质;而遍布节理模型由于其本身对节理裂隙考虑的不足,在模拟层状岩体时,需要对部分参数(弹性模量、泊松比以及岩石基质的黏聚力和内摩擦角)进行修正才能用于工程分析,且更适用于大尺度工程岩体的力学行为研究.2)对于新华山隧道工程而言,两种模型在网格单元划分接近的情况下,计算效率相差30~40倍,而校准的遍布节理模型得到的围岩位移与实测结果分别相差8.7%和9.0%,差异性较小,表明该模型兼顾效率的情况下准确度良好.3)层理弱面的抗剪强度和抗拉强度较低,故层状岩体在工程扰动的情况下,容易造成层理剪切滑移破坏以及张拉破坏,在工程中要重点关注.参考文献[1]GAO M,LIANG Z Z,JIA S P,et al.An equivalent anchoring method for anisotropic rock masses in underground tunnelling[J].Tunnelling and Underground Space Technology,2019,85:294-306.[2]CHEN Z Q,HE C,XU G W,et al.A case study on the asymmetric deformation characteristics and mechanical behaviorof deep-buried tunnel in phyllite[J].Rock Mechanics and RockEngineering,2019,52(11):4527-4545.[3]王培涛,杨天鸿,于庆磊,等.含层理构造黑云变粒岩单轴压缩试验及数值模拟[J].东北大学学报(自然科学版),2015,36(11):1633-1637.WANG P T,YANG T H,YU Q L,et al.Uniaxial compression testand numerical simulation of stratified biotite granulite[J].Journal of Northeastern University (Natural Science),2015,36(11):1633-1637.(in Chinese)[4]SINGH M,SINGH B.High lateral strain ratio in jointed rock masses[J].Engineering Geology,2008,98(3/4):75-85.[5]刘爱华,董蕾,董陇军.节理岩体强度参数的数值模拟及工程应用[J].中南大学学报(自然科学版),2011,42(1):177-183.LIU A H,DONG L,DONG L J.Numerical simulation andengineering application of strength parameters of jointed rock mass[J].Journal of Central South University (Science andTechnology),2011,42(1):177-183.(in Chinese)[6]DO N A,DIAS D,DINH V D,et al.Behavior of noncircular tunnels excavated in stratified rock masses - Case of undergroundcoal mines[J].Journal of Rock Mechanics and GeotechnicalEngineering,2019,11(1):99-110.[7]赵勐,肖明,陈俊涛,等.地震动斜入射下层状岩体隧洞接触响应分析[J].湖南大学学报(自然科学版),2021,48(5):129-139.ZHAO M,XIAO M,CHEN J T,et al.Analysis on contactresponse of tunnel in layered rock mass subjected to obliquelyincidence earthquake[J].Journal of Hunan University (NaturalSciences),2021,48(5):129-139.(in Chinese)[8]左双英,叶明亮,唐晓玲,等.层状岩体地下洞室破坏模式数值模型及验证[J].岩土力学,2013,34(S1):458-465.ZUO S Y,YE M L,TANG X L,et al.Numerical model andvalidation of failure mode for underground Caverns in layered rockmass[J].Rock and Soil Mechanics,2013,34(S1):458-465.(inChinese)[9]SUN X M,ZHAO C W,ZHANG Y,et al.Physical model test and numerical simulation on the failure mechanism of the roadway inlayered soft rocks[J].International Journal of Mining Scienceand Technology,2021,31(2):291-302.[10]DENG P H,LIU Q S,HUANG X,et al.FDEM numerical modeling of failure mechanisms of anisotropic rock masses arounddeep tunnels[J]. Computers and Geotechnics,2022,142:104535.[11]WANG S Y,SLOAN S W,TANG C A,et al.Numerical simulation of the failure mechanism of circular tunnels intransversely isotropic rock masses[J]. Tunnelling andUnderground Space Technology,2012,32:231-244.[12]RIAHI A,CURRAN J H.Full 3D finite element Cosserat formulation with application in layered structures[J].AppliedMathematical Modelling,2009,33(8):3450-3464.[13]KARAMPINOS E,HADJIGEORGIOU J,HAZZARD J,et al.Discrete element modelling of the buckling phenomenon in deephard rock mines[J]. International Journal of Rock Mechanics andMining Sciences,2015,80:346-356.[14]刘春,乐天呈,施斌,等.颗粒离散元法工程应用的三大问题探讨[J].岩石力学与工程学报,2020,39(6):1142-1152.LIU C,LE T C,SHI B,et al.Discussion on three major problemsof engineering application of the particle discrete elementmethod[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(6):1142-1152.(in Chinese)[15]蒋青青,胡毅夫,赖伟明.层状岩质边坡遍布节理模型的三维稳定性分析[J].岩土力学,2009,30(3):712-716.JIANG Q Q,HU Y F,LAI W M.Three-dimensional stabilityanalysis of stratified rock slope based on ubiquitous-jointmodel[J].Rock and Soil Mechanics,2009,30(3):712-716.(inChinese)[16]朱泽奇,盛谦,梅松华,等.改进的遍布节理模型及其在层状岩体地下工程中的应用[J].岩土力学,2009,30(10):3115-3121.ZHU Z Q,SHENG Q,MEI S H,et al.Improved ubiquitous-jointmodel and its application to underground engineering in layeredrock masses[J].Rock and Soil Mechanics,2009,30(10):3115-3121.(in Chinese)140。

表面活性剂湍流减阻研究进展

表面活性剂湍流减阻研究进展

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2016年第35卷第6期·1660·化工进展表面活性剂湍流减阻研究进展魏进家,黄崇海,徐娜(西安交通大学动力工程多相流国家重点实验室,陕西西安 710049)摘要:表面活性剂较高分子聚合物在流体管道输运中具有可逆机械降解特性的优点,更适用于存在高剪切的场合以及封闭的循环回路进行减阻,但存在对其复杂流变特性及减阻机理认识不完善的问题,使得其在减阻领域的应用受到了限制。

本文回顾了作者近年来在表面活性剂溶液微观结构、复杂流变学特性、湍流结构以及其与减阻和传热性能之间的内在联系方面的研究进展;介绍了表面活性剂减阻和壁面微沟槽协同作用减阻的研究成果;指出通过拉伸流的方式能够在压损较小的情况下更有效地提高表面活性剂溶液的传热性能。

针对表面活性剂现有研究的不足,本文提出4条建议作为表面活性剂的未来研究方向,分别为开发环境友好型高效表面活性减阻剂、强化换热装置的优化设计及优化布置、表面活性剂与其他减阻方式耦合特性的深入研究以及表面活性剂在尺度放大、防腐和减阻持久性方面的实际工业应用研究。

关键词:表面活性剂;湍流;流变学;传热中图分类号:TE08;TV131 文献标志码:A 文章编号:1000–6613(2016)06–1660–16DOI:10.16085/j.issn.1000-6613.2016.06.007Research progress concerning turbulent drag reduction of surfactantsolutionWEI Jinjia,HUANG Chonghai,XU Na(State Key Laboratory of Multiphase Flow in Power Engineering,Xi’an Jiaotong University,Xi’an 710049,Shaanxi,China)Abstract:In turbulent flow drag reduction applications,surfactant additive is more applicable than polymer for the flow with high shear or in the closed circulation system due to its reversible mechanical degradation advantage. However,there is not enough understanding of the complicated rheology and drag-reduction mechanism of surfactant solution,limiting its practical application in the drag reduction field. This review introduces the research progress of surfactant drag reduction conducted by the authors in recent years on microstructure,complicated rheology characteristics,turbulent structure,as well as their relations with drag reduction and heat transfer,and analyzes the combined drag reduction effect of surfactant additives in the flow and microgroove fabricated on the wall. The stretch devices can significantly improve the heat transfer performance of surfactant drag-reducing flow with a lower pressure loss penalty. To the shortages of present surfactant drag reduction research,several suggestions are given for the future study. The first is to develop environmentally friendly and effective surfactant,the second is optimal design and layout of heat transfer enhancement device for drag-reducing flow,the third is the study on synergetic effect of drag收稿日期:2016-01-15;修改稿日期:2016-02-15。

加州理工学院钱璐璐

加州理工学院钱璐璐

加州理工学院钱璐璐:利用人工合成的DNA制成迄今最复杂生化电路2011美国加州理工学院研究人员利用人工合成的DNA(脱氧核糖核酸)分子,在试管中制成了迄今最复杂的生化电设计这样的电路,目的并非要与电子计算机竞争,而是用来探索生物系统处理信息的原理。

在传统计算机中,集成电路的基本元件逻辑门由晶体管制成,但在这一新制成的生化电路中,逻辑门由短的单链链特征DNA组成。

晶体管以电子流入和流出晶体管作为信号,而DNA逻辑门以接收和发出分子作为信号。

研究人员在最新一期《科学》杂志上报告说,他们设计了多个电路,其中最大的一个包括74个不同的DNA分超过15的整数的平方根,给出的答案是小于该平方根的最大整数。

研究人员通过监测试管溶液中输出信号分子的浓案。

整个运算过程需要大约10个小时。

研究人员表示,设计具有决策能力的生化电路,可以帮助更好掌控应用于生物工程、化学工程以及生化工业中的说在未来,一个设计合成的生化电路可以被放入临床血液样本中,检测各种分子在样本中的水平,然后根据这些信息断。

“我们试图借用已为电子世界带来巨大成功的理念,例如对运算的抽象、编程语言以及编译器,并将它们应用到中,”论文第一作者、加州理工学院生物工程系博士后钱璐璐说。

此前在实验室里制造的生化电路普遍具有局限性,因为当电路的规模增大时,工作的稳定性和可预测性也随之降说,造成这种局限性最可能的原因是,不同的电路功能需要用不同结构的分子元件来实现,这样当电路变得越来越大试的难度也随之增加。

在此次设计的新生化电路中,分子元件的结构非常简单且标准化,运作稳定且容易升级。

钱璐璐说,在计算机工业中,大家努力制造越来越好的计算机,“我们也在做相同的努力。

我们要制造越来越好成更加尖端的任务,让分子设备根据它们的环境而行动。

”裔博士最新Science文章走在世界最前沿点击次数:360 发布时间:2011-6-7来自加州理工学院生物工程系,计算机科学、计算与神经系统学的研究人员利用人工合成的DNA分子,在试管中完成了迄今最复杂的生化电路。

基于分子动力学模拟的扩展青霉棒曲霉素MFS蛋白转运机制研究

基于分子动力学模拟的扩展青霉棒曲霉素MFS蛋白转运机制研究

杨琪,王艳玲. 基于分子动力学模拟的扩展青霉棒曲霉素MFS 蛋白转运机制研究[J]. 食品工业科技,2023,44(18):200−208. doi:10.13386/j.issn1002-0306.2022110341YANG Qi, WANG Yanling. Investigation on the Transport Mechanism of Penicillium expansum MFS Protein Based on Molecular Dynamics Simulation[J]. Science and Technology of Food Industry, 2023, 44(18): 200−208. (in Chinese with English abstract). doi:10.13386/j.issn1002-0306.2022110341· 生物工程 ·基于分子动力学模拟的扩展青霉棒曲霉素MFS 蛋白转运机制研究杨 琪,王艳玲*(兰州理工大学生命科学与工程学院,甘肃兰州 730050)摘 要:扩展青霉可产生具有毒性的次生代谢产物—棒曲霉素。

PatC 基因编码MFS 转运蛋白将棒曲霉素的前体物质转运至胞外,在棒曲霉素防治中具有较高的参考价值。

为研究PatC 蛋白的转运机制,利用生物信息学方法预测PatC 的空间结构,采用分子对接和分子动力学模拟解析棒曲霉素前体分子(E-ascladiol )与PatC 的作用位点及可能的作用机制。

结果表明,该蛋白含有546个氨基酸,含有14个跨膜螺旋且具有MFS 功能结构域;分子对接结果显示,该蛋白与E-ascladiol 存在4个结合位点,分别为SER353、TYR336、PRO339、PRO188。

针对Wild 蛋白复合体系及P188A 突变体系进行200 ns 的分子动力学模拟,结果显示小分子底物与PatC 结合紧密,且位于氨基酸序列Pro188~Ser197aa 和Gly231~Val241aa 区域内形成复合体后,蛋白的柔性发生强烈变化,由此可推测这两个区域可能存在作用位点。

作者姓名:卢滇楠

作者姓名:卢滇楠

附件6作者姓名:卢滇楠论文题目:温敏型高分子辅助蛋白质体外折叠的实验和分子模拟研究作者简介:卢滇楠,男,1978年4月出生, 2000年9月师从清华大学化工系生物化工研究所刘铮教授,从事蛋白质体外折叠的分子模拟和实验研究,于2006年1月获博士学位。

博士论文成果以系列论文形式集中发表在相关研究领域的权威刊物上。

截至2007年发表与博士论文相关学术论文21篇,其中第一作者SCI论文9篇(有4篇IF>3),累计他引20次(SCI检索),EI收录论文14篇(含双收),国内专利1项。

中文摘要引言蛋白质体外折叠是重组蛋白质药物生产的关键技术,也是现代生物化工学科的前沿领域之一,大肠杆菌是重要的重组蛋白质宿主体系,截止2005年FDA批准的64种重组蛋白药物中有26种采用大肠杆菌作为宿主体系,目前正在研发中的4000多种蛋白质药物中有90%采用大肠杆菌为宿主表达体系。

但由于大肠杆菌表达系统缺乏后修饰体系使得其生产的目标蛋白质多以无生物学活性的聚集体——包涵体的形式存在,在后续生产过程中需要对其进行溶解,此时蛋白质呈无规伸展链状结构,然后通过调整溶液组成诱导蛋白质发生折叠形成具有预期生物学活性的高级结构,这个过程就称之为蛋白质折叠或者复性,由于该过程是在细胞外进行的,又称之为蛋白质体外折叠技术。

蛋白质体外折叠技术要解决的关键问题是避免蛋白质的错误折叠以及形成蛋白质聚集体。

目前本领域的研究以具体技术和产品折叠工艺居多,折叠过程研究方面则多依赖宏观的结构和性质分析如各类光谱学和生物活性测定等,在研究方法上存在折叠理论、分子模拟与实验研究结合不够的问题,这些都不利于折叠技术的发展和应用。

本研究以发展蛋白质新型体外折叠技术为目标,借鉴蛋白质体内折叠的分子伴侣机制,提出以智能高分子作为人工分子伴侣促进蛋白质折叠的新思路,即通过调控高分子与蛋白质分子的相互作用,1)诱导伸展态的变性蛋白质塌缩形成疏水核心以抑制蛋白质分子间疏水作用所导致的聚集,2)与折叠中间态形成多种可逆解离复合物,丰富蛋白质折叠的途径以提高折叠收率。

在不同营养条件下铜绿微囊藻对模拟微重力胁迫的响应

在不同营养条件下铜绿微囊藻对模拟微重力胁迫的响应
置“ 模拟 ” 重 力 。由于 进行 太空 实验 的机 会难 得并 微
且 费 用高 昂,科 学研 究 中一 般 使用 回转 器来 模 拟微 重 力 环境 ¨。 回转 器 的使 用极 大地 促进 了空 间生物 】
学的发 展 。
微重 力可 以改变 微生 物 的生 长 和生 理代 谢 ,比
如缩 短延滞 期 、增加 最终 细胞 数量 、促 进次 级代谢
模 拟微 重力 是如 何调 控微囊 藻 的毒 素代谢 以及 其他
生理过 程 的。
收稿 B期 :2 1 .32 ;修 订 日期: 0 0 1—4 0 00 —4 2 1— 12
基 金项 目:载人航 天项 目资助 作者 简介 :肖 1 8—) 女, 媛( 3 , 湖北武汉人 ; 9 博士; 主要从事空间环境对藻类生理生态影 响方面的研究。E m i hh - ay a @sh . r — a :a a u nu n o u o l y cn 通 讯作者 :刘永定 (9 4 ) 1 4 一 ,男,湖南人 ;博士 , 研究 员;主要从 事藻类 环境生 物学研 究 。E ma :iy @i . . - il d hac l u bcn
第 3卷 第2 5 期
2 i年 3月 0 1
水 生 生 物 学 报
AC A HYDR T 0B1 0GI A I CA 0L C SNI
Vo1 .35.N O. 2
M a . 20 11 r.
DOI 0 3 2 / P J 1 3 . 01 . 0 0 :1 .7 4 S .. 0 5 2 10 3 0
中图分类号 : 4 Q12 文 献标 识码 : A
文 章 编 号 :10 —2 72 1 20 0 —7 0 03 0 (0 ・3 00 00

马苏大马哈鱼籽营养成分分析及其卵磷脂对胰岛素抵抗的改善作用

马苏大马哈鱼籽营养成分分析及其卵磷脂对胰岛素抵抗的改善作用

马苏大马哈鱼籽营养成分分析及其卵磷脂对胰岛素抵抗的改善作用武瑞赟】,王安】,陈春山2,尚楠3,*(1.中国农业大学食品科学与营养工程学院,北京100083;2.北京市水生野生动植物救护中心,北京102100;3.中国农业大学工学院,北京100083)摘要:从氨基酸组成、矿物质含量、维生素和卵磷脂含量等角度分析大马哈鱼(Oncorhynchus血他)和马苏大马哈鱼(Oncorhynchus masou)鱼籽的基本营养组成,并通过构建胰岛素抵抗HepG2肝细胞模型,以葡萄糖吸收水平为指标,研究马苏大马哈鱼籽来源的卵磷脂对H e pG2细胞胰岛素抵抗的改善效果。

结果表明:马苏大马哈鱼籽中的氨基酸、B族维生素和卵磷脂含量显著高于大马哈鱼籽,其中卵磷脂含量为234mg/g,约占总质量的23%,是细胞膜的主要构成成分,具有多种生物学活性;二肽基态酶-IV活性抑制实验结果表明卵磷脂具有潜在的降血糖能力。

模型组葡萄糖消耗量为3.87mmol/L,显著低于正常对照组(5.86mmol/L)(P<0.05),说明模型建立成功;与模型组相比,马苏大马哈鱼籽卵磷脂处理组均能够促进胰岛素抵抗HepG2细胞的葡萄糖消耗,其质量浓度为800卩g/mL时,葡萄糖消耗量与空白对照组(5.86mmol/L)接近,为5.60mmol/L。

采用实时荧光定量聚合酶链式反应测定胰岛素蛋白激酶B信号通路中关键酶基因的表达水平,卵磷脂降低胰岛素抵抗HepG2细胞中磷酸烯醇式丙酮酸羧化酶、葡萄糖-6-磷酸酶和糖原合成酶激酶邛(glycogen synthase kinase3p,GSK(3)fi)基因的相对表达量,其中GSK QM目对表达量由模型组的2.60倍下调至1.59倍,增加了HepG2细胞中糖原合成酶基因表达水平,促进细胞内糖原合成,糖原相对含量从30.67%增加到73.00%,抑制糖异生过程的发生,改善了胰岛素抵抗HepG2细胞对葡糖糖的利用水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Brownian Dynamics Simulation of Nucleosome Formation andDisruption under StretchingWei Li, Shuo-Xing Dou, Peng-Ye Wang∗Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, ChinaAbstractUsing a Brownian dynamics simulation, we numerically studied the interaction of DNA with histone and proposed an octamer-rotation model to describe the process of nucleosome formation. Nucleosome disruption under stretching was also simulated. The theoretical curves of extension versus time as well as of force versus extension are consistent with previous experimental results. Keywords: DNA, histone, interaction, nucleosome formation, nucleosome disruption1. IntroductionIn all eukaryotic genomes, the basic unit of chromatin structure is nucleosome which is made up of 146 bp of DNA and histones —H2A, H2B, H3, H4 and H1 (H5) (Wolffe, 1998). Histones H2A, H2B, H3 and H4, with each contributing two molecules, form a histone octamer around which DNA wraps in approximate two turns in a left-handed way. H1 (H5) is a linker histone. It binds at the point where DNA enters and exits the nucleosome. The histone octamer is a tripartite assembly in which a centrally located (H3-H4)2 tetramer is flanked by two H2A-H2B dimmers, and the eight histone molecules form a left-handed protein superhelix (Klug et al., 1980; Arents et al., 1991; Hamiche et al., 1996; Luger et al., 1997; Luger and Richmond, 1998). Nucleosome represents the first level of packing of DNA in chromatin in a nucleus. At a higher level, many nucleosomes form a ‘zig-zag’ structure (Woodcock et al., 1993; Leuba et al., 1994). As DNA is negatively charged and histones are positively charged, the main interaction between DNA and histones should be of electrostatic nature. With the development of single molecule manipulation methods, quite a few experiments have been done on stretching DNA molecules to investigate their mechanical behaviors (Smith et al., 1992;Strick et al., 1996;Cluzel et al., 1996; Wang et al., 1997; Katritch et al., 2000; Cui and Bustamante, 2000). In the case of chromatin stretching with optical tweezers, force-induced nucleosome disruption was clearly observed (Bennink et al., 2002; Brower-Toland et al., 2002).In parallel with experimental studies of DNA and chromatin, many numerical studies have been done on the structural formation of polymer chain systems by molecular dynamics simulations or by Monte Carlo simulations. (Stevens and Kremer, 1995; Noguchi et al., 1996; Fujiwara and Sato, 1997; Noguchi and Yoshikawa, 1998; Chodanowski and Stoll, 1999). Some∗ Corresponding author. E-mail address: pywang@numerical studies of DNA have given good explanations to experimental results (Schellman and Harey, 1995; Marko and Siggia, 1995, 1997; Marky and Manning, 1995; Coleman et al., 2000; Kunze and Netz, 2000). For kinetics studies of DNA or nucleosome, a Brownian dynamics simulation method has been developed, with which Noguchi and Yoshikawa (2000) studied the toroidal morphology of DNA chain, and Sakaue et al., (2001) studied the Brownian motion of histone core particle along DNA. The previous numerical studies have demonstrated that Brownian dynamics simulation is a useful method for studying the kinetics of DNA and nucleosome. In our earlier work, we built a simple model to describe the interaction between DNA and a histone octamer (Li et al., 2003). In the present paper, by taking into account the fact that at some locations on DNA the interaction between the histone octamer and DNA is stronger than elsewhere, we used Brownian dynamics simulations to study the process of nucleosome formation and that of disruption under stretching. The theoretical results on the mechanical behaviors of nucleosomal arrays under stretching are compared with that obtained experimentally by Brower-Toland et al., (2002).2. ModelThe DNA chain is modeled as a semi-flexible homopolymer chain and a histone octamer as a spherical core particle. The homopolymer chain is further modeled by N spheres that are connected by bonds. As in the experiment of Brower-Toland et al., (2002), H1 histone is absent and thus not taken into account.The self-avoiding effect of DNA chain is considered by using the repulsive part of the Morse potential,,exp{()} ,m rep m m i j m B U k T r εα=−−,σ∑ (1)where 0.2m ε= and . In this potential, is the Boltzmann constant and we set it to unity in this paper. T is the absolute temperature of the system, and we choose 298 K for it. is the distance between the i th and j th spheres of the DNA chain. 2.4m α=B k ,i j r m σ is the minimum distance between two spheres of the DNA chain which gives the self-avoiding separation. Thus the diameter of one sphere of the DNA chain is m σ. As the width of DNA molecules is 2.3 nm (i.e.,2.3m σ=nm), one sphere in our model corresponds to the length of 7 base pairs (bp) of DNA.Throughout the paper we use m σ as the length unit.The bonds between neighboring spheres of the DNA chain are considered through harmonic bonding potential,212(||) ,2B i m i bond mkk TU r r σσ+=−−∑ (2) where k = 400, and are the location vectors of the i th and (i+1)th spheres of the DNAi r 1i r +chain. We model the chain stiffness by using the bending potential,12()()(1) ,i i i i B bend mr r r r U k T κσ−1+−−=−∑ i (3)where we choose 5κ= so that the DNA’s persistence length in our model is consistent with the actual value, ~50 nm at physiological salt concentration of 0.1 M (Kunze and Netz, 2000).The interaction between the DNA chain and a histone octamer is simulated with the Morse potential,[exp{2()}2exp{()}] ,M B i i U k T r r εασα=−−−−−∑σ (4a)where 6ε=, 6α=. is the distance between the histone octamer and the i th sphere of the DNA chain. The diameter of the histone octamer is chosen as ~2.8i r m σso that the relative sizes of the histone octamer and DNA are the same as the actual ones: in nature, the width of DNA is about 2.3 nm and the diameter of a histone octamer is about 6.4 nm. Thus the equilibrium distance between a sphere and the histone octamer is 0.5 1.91.4m m m σσσσ+==. In the interaction potential as expressed in Eq. (4a), a large value of parameter ε corresponds to a low salt concentration in the experiment.Mapping methods in vivo reveal that in some cases nucleosomes are preferentially localized at specific genomic positions. The positioning may prevent specific protein binding to nucleosomal DNA or facilitate binding proteins to recognize specific DNA sequences (Straka and Horz, 1991; Lu et al., 1995). On the other hand, it has been shown that a histone octamer has some specific sites which strongly bind with DNA (Luger et al., 1997; Luger and Richmond, 1998; Wolffe, 1998) To numerically simulate the sequence preference and the nonuniform binding, we assume some locations (termed S-locations) on DNA where the interaction of DNA with the histone octamer is much stronger than elsewhere (see Fig. 1).A 1B A 2Histone octamerDNA chainFIG 1. Schematic illustration of the histone octamer and DNA with three equally-distanced S-locations (green): A 1, A 2 and B .The interactions between the histone octamer and the three S-locations are chosen as follow,,111[exp{2()}2exp{()}] ,M A B A A U k T r r εασα′=−−−−−∑σσσ S-location A 1 (4b) ,222[exp{2()}2exp{()}] ,M A B A A U k T r r εασα′=−−−−−∑ S-location A 2 (4c) ,[exp{2()}2exp{()}] ,M B B B B U k T r r εασα′′=−−−−−∑ S-location B (4d)where 15εε′= and 3εε′′=. , and 1A r 2A r B r are the distances between the histone octamerand S-locations A 1、A 2 and B , respectively. As will be discussed later, the separations of these S-locations are closely related to the stretching curves obtained.In the case of more than one histone octamer, we use the repulsive part of the Morse potential for the coulomb repulsion among them,,exp{()} ,M rep M B M i j M U k T R εα=−−,σ∑ (5) where 5M ε=, 6M α=. M σ is the minimum distance between two neighboring histone octamersand is chosen as 3m M σσ=. ,i j R is the distance between the i th and j th histone octamers.The overdamped Langevin equations are used to describe the motion of each sphere of the DNA chain and each histone octamer,,()0 ,i m m i idr U R t dt r γ∂−+−=∂(6a),()0,jMM j j dR UR t dtR γ∂−+−=∂ (6b)where m γ and M γ are the friction constants of a sphere and a histone octamer, respectively.They are calculated according to Stokes law. ,m i R and ,MjRare the Gaussian white noiseswhich obey the fluctuation-dissipation theorem,,,,,()0, <()()> = 6() ,m i m i m j B m i j R t R t R t k T t t γδδ′′<>=−i (7a),,,,()0,<()()>=6().M i M i M j B M i j R t R t R t k T t t γδδ′′<>=−i (7b)The total internal energy U in Eqs. (6a) and (6b) consists of five terms:.,,m rep bond bend M M rep U U U U U U =++++For the process of force-induced nucleosome disruption, we modify Eq. (6a) as following,,()0 , 1i m m i i dr U R t F i dt r γ∂−+−+==∂ (8a),()0 , i m m i idr U R t F i dt r γ∂−+−−==∂ N (8b),()0 ,1, i m m i i dr U R t dtr i N γ∂−+−=∂≠ (8c)where F is the force exerted on the first sphere of the DNA chain and F −is the force exertedon the N th sphere (the last one) of the DNA chain.We perform the dynamics of this system using a stochastic Runge-Kutta algorithm (white noise) (Honeycutt, 1992). We choose B T k as the unit energy, m σas the unit length, andm γσi as the unit time step in our simulation.The dynamic process of interaction between a 40-sphere DNA (70-sphere DNA) and a histon 3. Resultse octamer (two histone octamers) is shown in detail in Fig. 2 (Fig. 3). It can be seen that the dynamic processes are quite similar in the two cases. DNA and the histone octamer(s) first come close to each other, then DNA wraps around the octamer(s) gradually to about two turns, forming a stable nucleosome structure. It can be noticed in both cases that during DNA wrapping, the shape of the DNA chain nearby the histone octamer changes drastically while other parts of the DNA chain are only drawn towards the histone octamer. And the wrapping involves looping of the DNA chain and then rotation of the looped DNA over the surface of the spherical histone octamers [from (d) to (e) in the case of Fig. 2]. In the simulation the histone octamer does not rotate, but as will be discussed later, it should rotate simultaneously with the looped DNA. From Figs. 2 and 3 the importance of the S-locations on DNA in the nucleosome formation can also be clearly noticed: they determine both the wrapping process and nucleosome positioning. The relative positions of the three S-locations in all nucleosomes are the same and agree with that given by Brower-Toland et al., (2002). Note that the separation between S-locations A 1 and A 2 used in the simulations is 12m σ, i.e., ~81 bp of DNA. (a) (b)(d)(c)(e) (f)FIG 2. Snapshots of the dynamic process of interaction between a 40-sphere DNA and a histone octamer. The time step is 5610−× and the simulation time t is: (a) 0; (b) 0.3; (c) 4.5; (d) 9; (e) 45; (f) 90. The S-locations on DNA are shown in green here and in following figures.(a) (b)(e) (f)(d)(c)FIG 3. Snapshots of the dynamic process of interaction between a 70-sphere DNA andtwo histone octamers. The simulation time t is: (a) 0; (b) 0.48; (c) 16.8; (d) 48; (e) 86.4; (f)288.In the experiment, the chromatin can be stretched in two different ways (Brower-Toland et al., 2002). One is to keep the stretching force constant (force clamp mode), which gives the time evolution of the DNA extension. The other is to keep the stretching velocity constant (velocity clamp mode), which gives the force-extension curve.The simulated processes of nucleosome disruption under stretching in the force clamp modewith one and two nucleosomes are shown in Figs. 4 and 5, respectively. They look essentially justlike the reverse of that in the cases of nucleosome formation (Figs. 2 and 3).(a) (b)(c) (d)FIG 4. Snapshots of the dynamic process of a nucleosome disruption under stretching inthe force clamp mode. The force applied is 8. The simulation time t is: (a) 0.5; (b) 3.8; (c) 5;(d) 5.9.(e) (f)(d)(c)(a) (b)FIG 5. Snapshots of the dynamic process of two nucleosome disruptions under stretching in the force clamp mode. The force applied is 9. The simulation time t is: (a) 1; (b) 3.8; (c) 5.6; (d) 8; (e) 9.6; (f) 11.The extension vs. time and the force vs. extension curves for DNA with one nucleosome (two nucleosomes) are shown in Fig. 6 (Fig. 7). A nucleosome disruption corresponds to an obvious step in the extension vs. time curves, and to a peak in the force vs. extension curves. These results agree with the experimental observations (Brower-Toland et al., 2002). More discussion will be given later.1234567810203040E x t e n s i o nTime010********5101520F o r c eExtensionFIG 6. (a) Extension versus time curve of DNA with one nucleosome. I to IV correspond to the 4 snapshots in Fig. 4. (b) Force versus extension curve. A constant stretching velocity of 4.8 length unit per time unit is used.24681012141610203040E x t e n s i o nTime 01020304050600102030F o r c eExtensionFIG 7. (a) Extension versus time curve of DNA with two nucleosomes. I to VI correspond to the 6 snapshots in Fig.5. (b) Force versus extension curve. A constant stretching velocity of 4.8 length unit per time unit is used.4. DiscussionOur simulation results (Fig. 2 and Fig. 3) show an overall picture of the DNA wrapping process around the histone octamers. From these results we can see that the wrapping process almost involves only the DNA parts which are near the histone octamers, and the rest of DNA has no sharp structural changes. In addition, a histone octamer has some specific sites which stronglybind with DNA (Luger et al., 1997; Luger and Richmond, 1998; Wolffe, 1998). Because of these fixed binding positions for DNA on its surface the histone octamer should rotate simultaneously in the DNA wrapping process. With these considerations, we propose an octamer-rotation model for the nucleosome formation process as shown in Fig. 8. Because in our model the histone octamer is taken as a spherical ball which has no any chiral priority, the modeled nucleosome may be either left-handed or right-handed (with equal possibilities). In nature, a histone octamer is consisted of 8 proteins and has a left-handed superhelix structure. Therefore, in the formation of a real nucleosome the histone octamer should rotate only in one direction determined by its chirality and the final nucleosome should be left-handed. For considering chirality in our future work, we will build up a more realistic model for the histone octamer. Although this will consume much more computer time for the simulation, we expect to obtain more information about the rotation of the histone octamers. The torsion of DNA will also need to be considered.FIG 8. Octamer-rotation model for the process of nucleosome formation. Therotation direction of the histone octamer (with the binding DNA) determines the chirality of the nucleosome. In the presentcase, the histone octamer rotates in the clockwise direction and the chirality of the nucleosome is left-handed. If the histone octamer rotates in the anti-clockwisedirection, the chirality of the nucleosome would be right-handed. Nucleosome disruption may be represented as from (d) to (a) [The rotation direction in (b) shouldbe reversed in this case].(a)(b)(c)(d)A 1BA2In the simulated stretching curves, we have sudden changes in extension or in force. Such a change corresponds to a separation between DNA and a histone octamer, that is, a nucleosome disruption. In the case of two nucleosomes there are two such changes, indicating that the nucleosome disruption occurs one by one. In the experiment of Brower-Toland et al., (2002), sawtooth pattern was observed in force-extension curves of saturated nucleosomal arrays, alsosuggesting sequential nucleosome disruption. So whether some order exists in the disruption of individual nucleosomes or whether the process is purely stochastic (Hayes and Hansen, 2002)? We repeat our simulation with two nucleosomes and find they are disrupted randomly. In the future we will address this question by doing simulation work on stretching-induced disruption of more nucleosomes.It is believed that a step in the extension vs. time curves (force clamp mode with high force) in experiment (Brower-Toland et al., 2002) corresponds to a process from (c) to (b) to (a) in Fig. 8[It should be noted that the rotation direction in (b) should be reversed for the stretching process]. Their measured step size was about 26 nm. In our preceding simulations, the distance between A 1 and A 2 is 12 length units (corresponding to 27.6 nm, or 81 bp). With this distance value, we obtain a theoretical step size of 8.5 length units (corresponding to 19.55 nm) which is shorter than the A 1-A 2 distance. This is because in our simulation, the strong DNA-histone-interaction locations lie on the DNA chain and during stretching the two S-locations are already separated to the opposite sides of the histone octamer sphere [see, for example, Fig. 4(b)] before the step occurs [Fig. 6(a), point II]. Actually, the strong DNA-histone-interaction locations lie on the histone octamer surface and thus the DNA loop remains closed on the histone octamer as shown in Fig. 8(c) before the step occurs. We also noticed that, for this A 1-A 2 distance (27.6 nm), our theoretical step size value (19.55 nm) is smaller than the experimental one (~26 nm) (Brower-Toland et al., 2002). Because the step size is strongly dependent on the distance between A 1 and A 2, as shown in Fig.9, we can fit the experimental step size by adjusting A 1-A 2 distance. We find that with an A 1-A 2 distance value of 15 length units (34.5 nm), the simulation gives a step size of 26.45 nm. This A 1-A 2 distance corresponds to 101 bp of DNA which is very close to the 90-bp DNA length between the two strong binding sites of the histone octamer at superhelix locations ±4.5 (Luger and Richmond, 1998).0123456010203040E x t e n s i o n Time 0246810010203040E x t e n s i o n TimeFIG 9. Extension versus time curves with two A 1-A 2 distances: (a) 20 length unitsand (b) 6 length units. The step sizes are 15 and 4 length units, respectively.Here we discuss the effect of the relative binding strengths of the S-locations. In all the above simulations, the S-location B has been assumed to have weaker interaction with the histone octamer than the S-locations A 1 and A 2 [15εε′= and 3εε′′= in Eqs. 4(b)-(d)]. Assuming there is no S-location B , we find that there is no obvious change in the stretching curve, as shown in Fig. 10(a). On the contrary, when the interaction of the histone octamer with S-location B is as strong as that with A 1 and A 2, we find that the step is decomposed to two substeps [see Fig. 10(b)] due to the prolonged existence in the unwrapping process of the structure represented by Fig. 8(b). It should be noted that in the experiment of Brower-Toland et al., (2002) such subteps have not been observed. One possible reason is that the substeps are absent because some allostery or cooperativity is operative and thus the unwrapping of the two halves of DNA in the nucleosome[see Fig. 8(c)] occurs simultaneously (Hayes and Hansen, 2002) or because the interaction of the histone octamer with the S-location B is indeed not strong enough. Another possible reason is that although there exist substeps, the time interval between the two substeps is relatively too short or the second substep is too small to be resolved in the experiment. We think the latter is more probable because firstly the two S-locations A 1 and A 2 bind to different histone contacts sites (Luger and Richmond, 1998) and therefore, the cooperativity, if existing, should be weak; and secondly, the structural data show that the S-location B has the highest binding stability (Luger and Richmond, 1998) and therefore, the interaction strength of the histone octamer with S-location B is at least as large as that with A 1 and A 2.0246810121416E x t e n s i o n Time 024681012010203040E x t e n s i o n TimeFIG 10. Extension versus time curves of DNA with one nucleosome. (a) The S-locationB is absent; (b) The S-location B is as strong as A 1 and A 2 when interacting with a histoneoctamer.We also simulated the stretching process for DNA without any S-location. As shown in Fig. 11, both the step in the extension vs. time curve and the peak in the force vs. extension curve disappear.024*******203040E x t e n s i o n Tim e010203040F o r c e ExtensionFIG 11. Stretching curves of a DNA with one nucleosome. There is no S-locations onthe DNA. (a) Extension versus time curve; (b) Force versus extension curve.5. SummaryWe have studied the processes of nucleosome formation and disruption by Brownian dynamics numerical simulation. Locations where DNA interacts strongly with histone octamers are included. From the simulation results, we propose an octamer-rotation model to describe the process of interaction between DNA and histone octamer(s) during nucleosome formation. In the present case of spherical histone octamers, it is the direction of octamer rotation that determines the chirality of the nucleosome formed. Actually, histone octamers are left-handed and this chirality should determine the octamer-rotation direction as well as the chirality of the nucleosome formed.The disruption process of a nucleosome structure under stretching has also been simulated. From simulations we get stretching curves that are consistent with previous experimental results. The appearance of steps in the extension vs. time curve (or peaks in the force vs. extension curve) demonstrates that the interaction strength of DNA with histone octamers is indeed not uniform in the nucleosomes.In our future work, to get a more precise picture of the interaction process of DNA and histone octamers, we need to make an improved model for the histone octamer that includesspatial distribution of its strong DNA-binding sites. The torsion of DNA chain will also be taken into account. We will also investigate how individual nucleosomes are disrupted sequentially when there are more nucleosomes.AcknowledgementsThis research was supported by National Natural Science Foundation of China Grants 60025516 and 10334100, and the Innovation Project of the Chinese Academy of Sciences.ReferencesArents, G., Rufus, W. B., Wang, B. -C., Love, W. E. & Moudrianakis, E. N. (1991). The nucleosomal core histone octamer at 3.1 Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. U.S.A. 88, 10148–10152.Bennink, M. L., Leuba, S. H., Leno, G. H., Zlatanova, J., Grooth, B. G. & Greve, J. (2002). Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Natu. Stru. Bio. 8, 606–610Brower-Toland, B. D., Smith, C. L., Yeh, R. C., Lis, J. T., Peterson, C. L. & Wang, M. D. (2002). Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl. Acad. Sci. U.S.A. 99, 1960–1965.Chodanowski, P. & Stoll, S. (1999). Monte Carlo simulations of hydrophobic polyelectrolytes: evidence of complex configurational transitions. J. Chem. Phys.111, 6069–6081Cluzel, P., Lebrun, A., Heller, C., Lavery, R., Viovy, J. -L., Chatenay, D. & Caron, F. (1996). DNA: An extensible molecule. Science271, 792–794Cui, Y. & Bustamante, C. (2000). Pulling a single chromatin fiber reveals the forces that maintain its higher-order structure. Proc. Natl. Acad. Sci. U.S.A.97, 127–132.Coleman, B.D., Swigon, D., Tobias, I., 2000. Elastic stability of DNA configurations. II. Supercoiled plasmids with self-contact. Phys. Rev. E61, 759-770.Fujiwara, S. & Sato, T. (1997). Molecular dynamics simulations of structural formation of single polymer chain: bond-orientational order and conformational defects. J. Chem. Phys.107, 613–622Hamiche, A., Carot, V., Alilat, M., Lucia, F. D., O’donohue, M. -F., Revet, B. & Prunell, A. (1996). Interaction of histone (H3-H4)2 tetramer of the nucleosome with positively supercoiled DNA minicircles: potential flipping of the protein from a left- to a right-handed superhelical form. Proc. Natl. Acad. U.S.A. 93, 7588–7593.Hayes, J. J. & Hansen, J. C. (2002). New insights into unwrapping DNA from the nucleosomefrom a single-molecule optical tweezers method. Proc. Natl. Acad. U.S.A. 99, 1752–1754.Honeycutt, R. L. (1992). Stochastic Runge-Kutta algorithms. I. White noise. Phys. Rev. A45,600–603.Katritch, V., Bustamante, C. & Olson, W. K. (2000). Pulling chromatin fibers: computer simulations of direct physical micromanipulations. J. Mol. Bio.295, 29–40.Klug, A., Rhodes, D., Smith, J., Finch, J. T. & Thomas, J. O. (1980). A low resolution structure for the histone core of the nucleosome. Nature287, 509–516Kunze, K. -K. & Netz, R. R. (2000). Salt-induced DNA-histone complexation. Phys. Rev. Lett.85,4389–4392Leuba, S. H., Yang, G., Robert, C., Samori, B., Hold, K. V., Zlatanova, J. & Bustamante, C. (1994).Three-dimensional structure of extended chromatin fibers as revealed by tapping-model scanning force microscope. Proc. Natl. Acad. Sci. U.S.A. 91, 11621–11625.Li, W., Wang P. -Y., Dou S. -X. & Tong, P. -Q. (2003). Interactions between DNA and histones — a dynamic process of nucleosome formation. Chin. Phys. 12, 226–230Lu, Q., Wallrath, L. L. & Elgin, S. C. R. (1995). The role of a positioned nucleosome at the Drosophila melanogaster hsp26 promoter. EMBO J.14, 4738–4746Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond T. J. (1997). X-ray structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–259.Luger, K. & Richmond T. J. (1998). DNA binding within the nucleosome core. Curr. Opin. Struct. Biol. 8, 33–40.Marko, J.F., Siggia, E.D., 1995. Stretching DNA. Macromolecules28, 8759-8770.Marko, J.F., Siggia, E.D., 1997. Driving proteins off DNA using applied tension. Biophys. J. 73, 2173-2178.Marky, N.L., Manning, G.S., 1995. A theory of DNA dissociation from the nucleosome. J. Mol. Biol. 254, 50-61Noguchi, H., Saito, S., Kidoaki, S. & Yoshikawa, K. (1996). Self-organized nanostructures constructed with a single polymer chain. Chem. Phys. Lett.261, 527–533Noguchi, H. & Yoshikawa, K. (1998). Morphological variation in a collapsed single homopolymer chain. J. Chem. Phys.109, 5070–5077Noguchi, H. & Yoshikawa, K. (2000). Folding path in a semiflexible homopolymer chain: A Brownian dynamics simulation. J. Chem. Phys.113, 854–862.Sakaue, T., Yoshikawa, K., Yoshimura, S. H. & Takeyasu, K. (2001). Histone core slips along DNA and prefers positioning at the chain end. Phys. Rev. Lett.87, 078105.Schellman, J.A., Harey, S.C., 1995. Static contributions to the persistence length of DNA and dynamic contributions to DNA curvature. Biophys. Chem. 55, 95-114.Smith, S. B., Finzi, L. & Bustamante, C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science258, 1122–1126Stevens, M.J. & Kremer, K. (1995). The nature of flexible linear polyelectrolytes in salt free。

相关文档
最新文档