轴对称综合练习

合集下载

轴对称综合练习题

轴对称综合练习题

轴对称综合训练题一、填空题1.角是轴对称图形,其对称轴是________________________. 2.点M (-2,1)关于x 轴对称点N 的坐标是_____________.3.在△ABC 中,AB =AC =14cm ,边AB 的中垂线交AC 于D ,且△BCD 的周长为24cm ,则BC =__________.4. 下列数中,成轴对称图形的有___________个5.等腰△ABC 中,AB =AC =10,∠A =30°,则腰AB 上的高等于___________.6.一个等腰三角形的一个外角等于110°,则这个三角形的三个内角分别是________________. 7.一辆汽车牌在水中的倒影为, 则该车牌照号码为 . 8.仔细观察下图的图案,并按规律在横线上画出合适的图形.9.(1)等腰三角形的一个内角等于130°,则其余两个角分别为 ; (2)等腰三角形的一个内角等于70°,则其余两个角分别为 .10.如图所示,△ABC 是等边三角形,∠1=∠2=∠3,则∠BEC 的度数为 11.如图所示,在△ABC 中,∠C=90°,DE 垂直平分AB ,交AB 于E ,交 BC 于 D , ∠1=21∠2,则∠B=12.如图所示,在△ABC 中,AB=AC ,BD 是角平分线,若∠BDC=69°,则∠A 等于13、如图,在△ABC 中,∠C=90°,AB 的垂直平分线交BC 于D ,若∠B=20°,则∠DAC= 14、等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为___ 15.点(2,5)关于直线x =1的对称点的坐标为__________.16.已知点A (x ,-4)与点B (3,y )关于y 轴对称,那么x +y 的值为_______.17.如图所示,∠A=15°,AB=BC=CD=DE=EF ,则∠DEF=_______. 18.如图所示,在△ABC 中,∠C=90°,AD 平分∠BAC , 交BC 于点D ,CD=3,BD=5,则点D 到AB 的距离为 .19.如图所示,在△ABC 中,AB=AC ,∠A=60°,BE ⊥AC 于E ,延长BC 到D , 使CD=CE ,连接DE ,若△ABC 的周长是24,BE=a ,则△BDE 的周长是 .20.已知:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .21.如图,Rt △ABC ,∠C =90°,∠B =30°,BC =8,D 为AB 中点,P 为BC 上一动点,连接AP 、DP,则AP +DP 的最小值是22.如图,点B 、D 、F 在AN 上,C 、E 在AM 上,且AB =BC =CD =ED =EF,∠A=20o,则∠FEB=____度.二、选择题1.等腰三角形的一边等于5,一边等于12,则它的周长为( )A.22B.29C.22或29D.172.如图14-110所示,图中不是轴对称图形的是( )3.已知点A (-2,1)与点B 关于直线x =1成轴对称,则点B 的坐标为( )A.(4,1)B.(4,-1)C.(-4,1)D.(-4,-1) 4.如图所示,将一张正方形纸片经过两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是( ). 5.下列轴对称图形中,对称轴条数最少的是( ) A .等腰直角三角形B .正方形C .等边三角形D .长方形P2P1P NMOBA6.已知点P (-2,1),那么点P 关于x 轴对称的点P '的坐标是( ) A .(-2,1) B .(-2,-1) C .(-1,2) D .(2, 1) 7.桌面上有A 、B 两球,若要将B 球射向桌面任意一边,使一次反弹后击 中A 球,则如图所示8个点中,可以瞄准的点有( )个. A . 1 B . 2 C .4 D .68、.下列几何图形中,是轴对称图形且对称轴的条数大于1的有( ) ⑴ 长方形; ⑵正方形; ⑶圆; ⑷三角形; ⑸线段; ⑹射线; ⑺直线. A. 3个 B. 4个 C. 5个 D. 6个 9.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个A .1个B .2个C .3个D .4个10.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 的 度数是 ( )A .45° B .55° C .60° D .75°11. 等腰梯形两底长为4cm 和10cm ,面积为21cm 2,则 这个梯形较小 的底角是( )度.A .45°B .30°C .60°D .90°12.下列图形中:①角,②正方形,③梯形,④圆,⑤菱形,⑥平行四边形,其中是轴对称图形的有( )A 、2个B 、3个C 、4个D 、5个13.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是( )A 、21:10B 、10:21C 、10:51D 、12:0114.如图所示,共有等腰三角形( )A 、5个B 、4个C 、3个D 、2个15.先将正方形纸片对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B 在MN 上的对应点为H ,沿AH 和DH 剪下,这样剪得的三角形中( )A .AD DH AH ≠=B .AD DH AH ==C .DH AD AH ≠= D .AD DH AH ≠≠ 16.平面内点A (-1,2)和点B (-1,6)的对称轴是()A 、x 轴B 、y 轴C 、直线y =4D 、直线x =-117. 如图,在△ABC 中,∠ACB=100°,AC=AE ,BC=BD ,则∠DCE 的度数为(A .20° B .25° C .30° D .40°18. 如图,ABC △中,AB AC =,30A ∠=,DE 垂直平分AC ,则BCD ∠的度数为( ) A.80 B.75 C.65 D.4519、如图,△ABC 中,∠C = 90°,AC = BC ,AD 是∠BAC 的平分线,DE ⊥AB 于E ,若A B = 10cm ,则△DBE 的周长等于( ) A .10cm B .8cm C .6cm D .9cm20、已知等腰三角形的两边a ,b ,满足532+-b a +(2a +3b-13)2=0,则此等腰三角形的周长为( ) A.7...或.8. B.6...或.10.. C.6...或.7. D.7...或.10..21、小宇同学在一次手工制作活动中,先把一张矩形纸片按图1的方式进行折叠,使折痕的左侧部分比右侧部分短1cm ;展开后按图2的方式再折叠一次,使第二次折痕的左侧部分比右侧部分长1cm ,再展开后,在纸上形成的两条折痕之间的距离是 cm .22.在下列说法中,正确的是( )A 、如果两个三角形全等,则它们必是关于直线成轴对称的图形B 、如果两个三角形关于某直线成轴对称,那么它们是全等三角形C 、等腰三角形是关于底边中线成轴对称的图形D 、一条线段是关于经过该线段中点的直线成轴对称的图形23.若一个图形上所有点的纵坐标不变,横坐标乘以-1,则所得图形与原图形的关系为( )A 、关于x 轴成轴对称图形B 、关于y 轴成轴对称图形C 、关于原点成中心对称图形D 、无法确定ABlABCDEP AEC B DED C B ABCDMNHE24如图,已知线段AB 的端点B 在直线 l 上(AB 与 l 不垂直)请在直线 l 上另找一点C ,使△ABC 是等腰三角形,这样的点能找( )A 2个B 3个C 4个D 5个25.如图B 、C 、D 在一直线上,ΔABC 、ΔADE 是等边三角形, 若CE =15cm ,CD =6cm ,则AC =_____,∠ECD =_____.26.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,PD= ( )A .4B .3C .2D .1 27.∠AOB 的平分线上一点P 到OA 的距离 为5,Q 是OB 上任一点,则 ( )A .PQ >5B .PQ≥5C .PQ <5D .PQ≤5 28.等腰三角形的周长为15cm ,其中一边长为3cm . 则该等腰三角形的底长为 ( ) A .3cm 或5cm B .3cm 或7cm C .3cm D .5cm29.如图,在Rt △ABC 中,∠ACB = 90°,∠BA C 的平分线交 BC 于D. 过C 点作CG⊥AB 于G ,交AD 于E. 过D 点作DF⊥AB 于F.下列结论: ①∠CED=∠CDE;②AEC S ∆︰AC S AEG =∆︰AG ;③∠AD F =2∠ECD ; ④DFB CED S S ∆∆=;⑤CE =DF. 其中正确结论的序号是( )A .①③④B .①②⑤C .③④⑤D .①③⑤30.如图,C 为线段AE 上一动点(不与点A 、E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下六个结论:①AD =BE;②PQ ∥AE;③AP =BQ;④DE =DP; ⑤∠AOB =60°;⑥CO 平分∠AOE. 其中正确的有( )个A .3B .4C .5D .6三.解答题1、在网格中作出关于直线m 的相应对称图 作出△PNM 关于直线n 的对称图形2、如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题: (1)画出格点△ABC (顶点均在格点上)关于 直线DE 对称的△A 1B 1C 1;(2)在DE 上画出点P ,使PC PB +1最小;(3)在DE 上画出点Q ,使QC QA +最小。

轴对称练习题及答案

轴对称练习题及答案

轴对称练习题及答案一、选择题1. 以下哪个图形是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 轴对称图形的对称轴与图形的对称点之间的关系是:A. 垂直B. 平行C. 相交D. 重合3. 一个轴对称图形的对称点到对称轴的距离是:A. 相等B. 不相等C. 有时相等有时不相等D. 无法确定4. 如果一个图形关于x轴对称,那么它的对称点的坐标关系是:A. (x,y)和(x,-y)B. (x,y)和(-x,y)C. (x,y)和(-x,-y)D. (x,y)和(y,x)5. 一个点关于y轴的对称点的坐标是:A. (-x,y)B. (x,-y)C. (-y,x)D. (y,-x)二、填空题1. 轴对称图形的对称轴是图形中所有对称点的________。

2. 如果一个图形关于y轴对称,那么它的对称点的坐标关系是(x,y)和________。

3. 一个图形关于原点对称,那么它的对称点的坐标关系是(x,y)和________。

三、解答题1. 已知点A(3,4),求点A关于x轴的对称点的坐标。

2. 已知点B(-2,-3),求点B关于y轴的对称点的坐标。

3. 已知点C(1,-1),求点C关于原点的对称点的坐标。

四、判断题1. 所有矩形都是轴对称图形。

()2. 所有等腰三角形都是轴对称图形。

()3. 所有等边三角形都是轴对称图形。

()4. 所有平行四边形都是轴对称图形。

()五、综合题1. 给出一个等腰梯形的上底长为4cm,下底长为8cm,高为3cm,求等腰梯形的对称轴。

2. 如果一个矩形的长为10cm,宽为6cm,求矩形关于x轴对称后,新的矩形的长和宽。

3. 已知一个正方形的边长为5cm,求正方形关于y轴对称后,新正方形的边长。

答案:一、选择题1. A2. D3. A4. A5. A二、填空题1. 连线中点2. (-x,y)3. (-x,-y)三、解答题1. 点A关于x轴的对称点的坐标为(3,-4)。

轴对称练习题

轴对称练习题

轴对称练习题一、选择题1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做______。

A. 对称轴B. 中心线C. 垂直线D. 平行线3. 轴对称图形的对称轴具有以下哪个特点?A. 可以是曲线B. 必须是直线C. 可以是任意形状的线D. 必须是垂直线二、填空题4. 轴对称图形的对称轴将图形分成两个完全相同的部分,这两个部分关于对称轴______。

5. 如果一个图形的中心点与对称轴的距离相等,那么这个图形是______对称图形。

6. 请列举至少三个常见的轴对称图形:______、______、______。

三、判断题7. 所有的圆形都是轴对称图形。

()8. 轴对称图形的对称轴可以是图形的边界。

()9. 轴对称图形的对称轴只能有一条。

()四、简答题10. 请简述轴对称图形在日常生活中的应用,并给出至少两个例子。

五、作图题11. 给定一个三角形ABC,请画出三角形ABC关于直线l的轴对称图形。

六、计算题12. 如果一个矩形的长为10cm,宽为5cm,求其轴对称轴的数量,并说明每条对称轴的位置。

七、论述题13. 论述轴对称图形在数学中的重要性,并解释为什么轴对称图形在艺术和建筑设计中也具有重要的地位。

八、综合应用题14. 假设你是一个建筑师,需要设计一个具有轴对称特性的建筑。

请描述你的设计思路,并画出建筑的草图。

九、拓展思考题15. 考虑一个不规则的多边形,它可能是轴对称图形吗?如果可以,请给出一个例子,并解释为什么它是轴对称的。

十、创新设计题16. 设计一个可以变换为轴对称图形的动态装置,并简要说明其工作原理。

请注意,以上练习题需要根据实际教学需求和学生的水平进行适当调整和补充。

第十三章轴对称练习题

第十三章轴对称练习题

第十三章轴对称练习题一、选择题1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 正方形C. 长方形D. 等边三角形2. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的什么?A. 对称轴B. 垂直轴C. 旋转轴D. 反射轴3. 轴对称图形的两个对称部分在对称轴上的距离是相等的,这种说法正确吗?A. 正确B. 错误4. 一个图形经过轴对称变换后,其面积大小会发生变化吗?A. 会B. 不会5. 轴对称图形的对称轴可以是曲线吗?A. 可以B. 不可以二、填空题6. 轴对称图形的对称轴可以是一条直线,也可以是一条________。

7. 如果一个图形沿着对称轴对折,两侧的图形完全重合,那么这个图形被称为________图形。

8. 在轴对称图形中,对称轴两侧的对应点到对称轴的距离是________的。

9. 一个等腰三角形的底边和两腰相等,那么它的底边中点与顶点的连线是该三角形的________。

10. 轴对称图形在数学中有着广泛的应用,例如在________几何中,轴对称可以帮助简化问题。

三、简答题11. 请简述轴对称图形的基本性质。

12. 举例说明如何判断一个图形是否是轴对称图形。

13. 解释为什么轴对称图形的对称轴两侧的图形可以完全重合。

四、计算题14. 已知一个轴对称图形的对称轴是垂直于x轴的直线,该图形在x轴上的投影是一个长为10,宽为5的矩形。

求该图形的面积。

15. 如果一个图形关于y轴对称,并且该图形的上半部分是一个半径为3的半圆,求该图形的周长。

五、应用题16. 在一个平面直角坐标系中,点A(-3,4)和点B(1,-2)关于y轴对称。

求点B关于y轴对称的点B'的坐标。

17. 一个等腰梯形的上底长为6,下底长为10,高为4。

求该等腰梯形的面积。

18. 如果一个矩形的长是宽的两倍,且矩形的面积为48平方厘米,求该矩形的长和宽。

六、证明题19. 证明:如果一个三角形是轴对称的,那么它的对称轴是其中一条中线。

第2章+轴对称图形+综合提优练习2024-2025学年苏科版八年级数学上册+

第2章+轴对称图形+综合提优练习2024-2025学年苏科版八年级数学上册+

第2章《轴对称图形》综合提优练习一、选择题1.△ABC中,BC=10,AB的垂直平分线与AC的垂直平分线分别交BC于点D,E,且DE =4,则AD+AE的值为()A.6B.14C.6或14D.8或122.如图,在△ABC中,∠BAC>90°,D为BC的中点,点E在AC上,将△CDE沿DE 折叠,使得点C恰好落在BA的延长线上的点F处,连接AD、CF,则图中所有的等腰三角形的个数为()A.1B.2C.3D.43.如图,AD∥BC,点E是线段AB的中点,DE平分∠ADC,BC=AD+2,CD=7,则BC2﹣AD2的值等于()A.14B.9C.8D.54.如图,四边形ABCD中,AB=AD,BC=BD,若∠ABD=∠BAC=α,则∠BDC的度数为()A.2αB.45°+αC.90°﹣αD.180°﹣3α5.如图,∠BAC=30°,AP平分∠BAC,GF垂直平分AP,交AC于F,Q为射线AB上一动点,若PQ的最小值为3,则AF的长为()A.3B.6C.3D.96.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.以下四个结论:①△ADC≌△AEB;②∠AEG=∠CDB;③△EGM是等腰三角形;④BG=AF+FG;恒成立的结论有()A.①②③④B.①③C.②③④D.①②④二、填空题7.如图,AE是∠CAM的角平分线,点B在射线AM上,DE是线段BC的中垂线交AE于E,过点E作AM的垂线交AM于点F.若∠ACB=28°,∠EBD=25°,则∠AED =°.8.如图,在△ABC中,∠C=60°,AC=5,BC=4,点D为CB延长线上一点.当点D 在CB延长线上运动时,AD﹣BD的最小值为.9.如图,线段OM⊥ON,O为垂足,一把角尺的直角顶点A在线段OM上,端点B在线段ON上,已知ON=AB=4,AC=2,当点B在从点O运动到点N的过程中,点C也随着运动,当线段OC最长时,∠BAO的度数为.10.如图,在Rt△ABC中,∠ACB=90°,点D为斜边AB上的一点,连接CD,将△BCD 沿CD翻折,使点B落在点E处,点F为直角边AC上一点,连接DF,将△ADF沿DF 翻折,点A恰好与点E重合,则∠CEF的度数为.11.如图,∠ABC=60°,AB=4,动点P从点B出发,以每秒1个单位长度的速度沿射线BC运动,设点P的运动时间为t秒(t>0),当△ABP为锐角三角形时,t的取值范围是.12.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ADC沿直线AD折叠后,点C落在点E的位置上,连接BE,则BE的长是.13.如图,△ABC的边AB、AC的垂直平分线m、n相交于点D,连接CD,若∠1=39°,则∠BCD的大小是度.14.如图,在△ABC中,∠ACB=90°,S△ABC=14,BC=4,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是.三、解答题15.如图,已知线段a、b,请用无刻度的直尺和圆规作出特定的三角形:(1)求作一个等腰三角形,使得它的腰长为b,底边上的高为a.(2)求作一个三角形,使得它的两边长分别为a、b,第三边上的中线为c.16.如图,在等边三角形ABC中,D是AB上的一点,E是CB延长线上一点,连接CD、DE,已知∠EDB=∠ACD.(1)求证:△DEC是等腰三角形.(2)当∠BDC=5∠EDB,EC=8时,求△EDC的面积.17.已知:A、B两点在直线l的同侧,试分别画出符合条件的点M.(不用写作法)(1)如图①,在l上求作一点M,使得AM+BM最小;(2)如图②,在l上求作一点M,使得|AM﹣BM|最小;(3)如图②,在l上求作一点M,使得|AM﹣BM|最大.18.如图钢架中,∠A=20°,焊上等长的钢条来加固钢架,若AP1=P1P2,问这样的钢条至多需要多少根?(1)请补充完整如下解答:解:由题意可知,P1P2=P2P3=P3P4=P4P5=…∵∠A=20°,AP1=P1P2,∴∠AP2P1=.∴∠P2P1P3=∠P1P3P2=40°,同理可得,∠P3P2P4=∠P2P4P3=60°,∠P4P3P5=∠P4P5P3=.∴∠P5P4B=100°>90°,∴对于直线P4B上任意一点P6(点P4除外),P4P5<P5P6,∴这样的钢条至多需要根.(2)继续探究:当∠A=15°时,这样的钢条至多需要多少根?19.在探索三角形全等的条件时,老师给出了定长线段a,b,且长度为b的边所对的角为n°(0<n<90°)小明和小亮按照所给条件分别画出了图1中的三角形,他们把两个三角形重合在一起(如图2),其中AB=a,BD=BC=b,发现它们不全等,但他们对该图形产生了浓厚兴趣,并进行了进一步的探究:(1)当n=45时(如图2),小明测得∠ABC=65°,请根据小明的测量结果,求∠ABD 的大小;(2)当n≠45时,将△ABD沿AB翻折,得到△ABD′(如图3),小明和小亮发现∠D′BC的大小与角度n有关,请找出它们的关系,并说明理由;(3)如图4,在(2)问的基础上,过点B作AD′的垂线,垂足为点E,延长AE到点F,使得EF=(AD+AC),连接BF,请判断△ABF的形状,并说明理由.20.定义:如果1条线段将一个三角形分割成2个等腰三角形,我们把这条线段叫做这个三角形的“双等腰线”.如果2条线段将一个三角形分成3个等腰三角形,我们把这2条线段叫做这个三角形的“三等腰线”.如图1,BE是△ABD的“双等腰线”,AD、BE是△ABC的“三等腰线”.(1)请在图2三个图中,分别画出△ABC的“双等腰线”,并做必要的标注或说明.(2)如果一个等腰三角形有“双等腰线”,那么它的底角度数是.(3)如图3,△ABC中,∠C=∠B,∠B<45°.画出△ABC所有可能的“三等腰线”,使得对∠B取值范围内的任意值都成立,并做必要的标注或说明.(每种可能用一个图单独表示,如果图不够用可以自己补充)。

中考数学复习《轴对称》专项练习题-带含有答案

中考数学复习《轴对称》专项练习题-带含有答案

中考数学复习《轴对称》专项练习题-带含有答案一、单选题1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.若点与关于x轴对称,则点的坐标为()A.B.C.D.3.在中,和的度数如下,能判定是等腰三角形的是()A.B.C.D.4.如图,PD垂直平分AB,PE垂直平分BC,若PA的长为7,则PC的长为()A.5 B.6 C.7 D.85.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8 B.11 C.16 D.176.如图,在等边△ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则下列结论不正确的是()A.B.BC=2DE C.∠ABE=15°D.DE=2AE7.如图,矩形中,对角线的垂直平分线分别交,于点,若AM=1,BN=2,则的长为()A.B.C.D.8.如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM、MC下列结论:①DF=DN;②ABE≌△MBN;③△CMN 是等腰三角形;④AE=CN;,其中正确的结论个数是()A.1个B.2个C.3个D.4个二、填空题9.如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=.10.已知等腰三角形ABC,其中两边,满足,则ABC的周长为.11.在中,点D为斜边上的一点,若为等腰三角形,那么的度数为.12.如图,在中AB=AC,∠A=120°,AB的垂直平分线分别交,于D,E,BE=3,则的长为.13.如图,在中,∠ACB=90°,∠A=30°,将绕点C逆时针旋转得到,点M是的中点,点N是的中点,连接,若,则线段的最大值是.三、解答题14.如图,在正方形网格上的一个△ABC.(其中点A. B. C均在网格上)①作△ABC关于直线MN的轴对称图形△A′B′C′;②以P点为一个顶点作一个与△ABC全等的△EPF(规定点P与点B对应,另两顶点都在图中网格交点处).③在MN上画出点Q,使得QA+QC最小。

小学轴对称图形练习题

小学轴对称图形练习题

小学轴对称图形练习题一、选择题(每题2分,共20分)1. 下列哪个图形是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 轴对称图形的对称轴是什么?A. 直线B. 曲线C. 折线D. 虚线3. 一个图形关于某条直线对称,这条直线被称为什么?A. 对称线B. 对称轴C. 对称面D. 对称边4. 下列哪个图形不是轴对称图形?A. 长方形B. 等边三角形C. 等腰梯形D. 等腰三角形5. 轴对称图形的对称轴可以有多少条?A. 0条B. 1条C. 2条D. 无数条6. 一个轴对称图形的对称轴最多可以有多少条?A. 1条B. 2条C. 3条D. 无数条7. 一个图形关于某条直线对称,这条直线将图形分成两个完全相同的部分,这种说法正确吗?A. 正确B. 错误8. 下列哪个图形是中心对称图形?A. 圆形B. 长方形C. 等边三角形D. 等腰梯形9. 一个图形的中心对称点是什么?A. 对称点B. 对称轴C. 对称线D. 对称面10. 一个图形关于某点对称,这个点被称为什么?A. 对称点B. 对称轴C. 对称线D. 对称面二、填空题(每空1分,共20分)11. 轴对称图形的对称轴是一条________。

12. 如果一个图形关于某条直线对称,那么这条直线是图形的________。

13. 一个轴对称图形的对称轴可以是________或________。

14. 一个图形的对称轴可以有________条。

15. 一个轴对称图形的对称轴将图形分成两个________的部分。

16. 一个图形关于某点对称,这个点是图形的________。

17. 一个轴对称图形的对称轴可以是________或________。

18. 一个图形的对称轴可以是________或________。

19. 一个图形的对称轴可以是________或________。

20. 一个图形的对称轴可以是________或________。

三、判断题(每题1分,共20分)21. 所有的圆形都是轴对称图形。

八年级数学上册《第十三章轴对称》练习题及答案

八年级数学上册《第十三章轴对称》练习题及答案

八年级数学上册《第十三章轴对称》练习题及答案学校:___________姓名:___________班级:___________一、单选题1.下列图形中,是轴对称图形的是()A.B.C.D.2.下列4个时刻中,是轴对称图形的有()A.3个B.2个C.1个D.0个3.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列图形均为表示医疗或救援的标识,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图,△ABC 与A B C '''关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .AA P '△是等腰三角形B .MN 垂直平分AA ',CC ' C .△ABC 与A B C '''面积相等D .直线AB 、A B ''的交点不一定在MN 上6.如图,在△ABC 纸片中,△ABC =90°,将其折叠,使得点C 与点A 重合,折痕为DE ,若AB =3cm ,AC =5cm ,则△ABE 的周长为( )A .4 cmB .6 cmC .7 cmD .8 cm7.如图,在平面直角坐标系中,△ABC 的顶点都在格点上,如果将△ABC 先沿x 轴翻折,再向右平移3个单位长度,得到△A ′B ′C ′,那么点B 的对应点B ′的坐标为( )A .(2,﹣3)B .(4,3)C .(﹣1,﹣3)D .(4,0)8.下列轴对称图形中,对称轴最多的是( )A .等腰三角形B .等边三角形C .正方形D .线段9.如图,ABC ∆中40A ∠=︒,E 是AC 边上的点,先将ABE ∆沿着BE 翻折,翻折后ABE ∆的AB 边交AC 于点D ,又将BCD ∆沿着BD 翻折,点C 恰好落在BE 上,此时82CDB ∠=︒,则原三角形的B 的度数为( )A .57︒B .60︒C .63︒D .70︒10.ABC ∆和A B C '''∆关于直线l 对称,若ABC ∆的周长为12cm ,则A B C '''∆的周长为( )A .24cmB .12cmC .6cmD .6cm11.如图,边长为a 的等边△ABC 中,BF 是AC 上中线且BF =b ,点D 在BF 上,连接AD ,在AD 的右侧作等边△ADE ,连接EF ,则△AEF 周长的最小值是( )A .12a 23+bB .12a +b C .a 12+b D .23a二、填空题12.线段是轴对称图形,它的一条对称轴是_______________,线段本身所在的直线也是它的一条对称轴. 13.如图,在平面直角坐标系中,等腰直角三角形△沿x 轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A 1(0,2)变换到点A 2(6,0),得到等腰直角三角形△;第二次滚动后点A 2变换到点A 3(6,0),得到等腰直角三角形△;第三次滚动后点A 3变换到点A 4(10),得到等腰直角三角形△;第四次滚动后点A 4变换到点A 5(0),得到等腰直角三角形△;依此规律…,则第2020个等腰直角三角形的面积是_____.14.轴对称图形的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的_____________. (2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的_______________.15.如图,将矩形ABCD沿AC折叠,使点B落在点B'处,B'C交AD于点E,若△1=25°,则△2的度数为_____.⨯的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形16.如图,在34组成轴对称图形,选择的位置共有______处.三、解答题17.如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A',AA'的延长线交BC于点G.(1)求证:DE A F '∥;(2)求证:2A C A B '='.18.已知二次函数21312y x x =-+, (1)若把它的图象向右平移1个单位,向下平移3个单位,求所得图象的函数表达式.(2)若把它的图象绕它的顶点旋转180°,求所得图象的函数表达式.(3)若把它绕x 轴翻折,求所得图象的表达式.19.你设计的游戏一游戏规则:游戏背后的数学原理:游戏操作后同组学生的评价:20.数学活动课上,张老师组织同学们设计多姿多彩的几何图形, 下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.规定:凡通过旋转能重合的图形视为同一种图形)参考答案:1.C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴对各选项一一进行分析即可.【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点睛】本题考查了轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.解决轴对称图形的关键是寻找对称轴.2.B【分析】根据轴对称图形的概念分别对各个图形进行判断即可.【详解】解:第1个,不是轴对称图形,故本选项不合题意;第2个,是轴对称图形,故本选项符合题意;第3个,是轴对称图形,故本选项符合题意;第4个,不是轴对称图形,故本选项不合题意;故选:B.【点睛】本题考查轴对称图形,能根据轴对称的概念找出图形的对称轴是解决此题的关键.3.D【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.既是轴对称图形又是中心对称图形,故此选项符合题意;故选:D【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.4.B【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180 ,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐项判断即可得.【详解】解:A、是轴对称图形,不是中心对称图形,则此项不符合题意;B、既是轴对称图形又是中心对称图形,则此项符合题意;C、是轴对称图形,不是中心对称图形,则此项不符合题意;D、既不是轴对称图形又不是中心对称图形,则此项不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,熟记定义是解题关键.5.D【分析】根据轴对称的性质即可解答.'''关于直线MN对称,P为MN上任意一点,【详解】解:由题意△ABC与A B C△对称轴上的任何一点到两个对应点之间的距离相等,'=,△PA PA△是等腰三角形,选项A正确,不符合题意;△AA P'△轴对称图形对应点所连的线段被对称轴垂直平分,△MN垂直平分AA',CC',选项B正确,不符合题意;△轴对称图形对应的角、线段都相等,△△ABC与A B C'''是全等三角形,面积也必然相等,选项C选项正确,不符合题意;△直线AB、A B''关于直线MN对称,因此交点一定在MN上.△选项D错误,符合题意.故选D.【点睛】本题考查轴对称的性质与运用,轴对称图形对应的角、线段都相等,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等.6.C【分析】先利用勾股定理求出BC,利用折叠得出AE=CE,然后△ABE的周长转化为AB+BC即可.【详解】解:△ABC纸片中,△△ABC=90°,AB=3cm,AC=5cm,△BC4=cm,△△DEC沿DE折叠得到△ADE,△AE=CE,△△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故选C.【点睛】本题考查勾股定理,折叠轴对称性质,三角形周长,掌握勾股定理,折叠轴对称性质,三角形周长是解题关键.7.A【分析】根据轴对称的性质和平移规律求得即可.【详解】解:由坐标系可得B(﹣1,3),将△ABC先沿x轴翻折得到B点对应点为(﹣1,﹣3),再向右平移3个单位长度,点B的对应点B'的坐标为(﹣1+3,﹣3),即(2,﹣3),故选:A.【点睛】此题考查了翻折变换的性质、坐标与图形的变化--对称和平移,解题的关键是掌握点的坐标的变化规律.8.C【分析】根据等腰三角形、等边三角形、正方形、线段的轴对称性质,依次解题.【详解】A、等腰三角形1条对称轴;B、等边三角形3条对称轴;C、正方形有4条对称轴;D、线段2条对称轴.故选:C.【点睛】本题考查轴对称图形的对称轴,是基础考点,难度较易,掌握相关知识是解题关键.9.C【分析】由折叠可得,△BDG=△BDC=82°,△ABE=△A'BE=△A'BG,依据△BDG是△BDF是外角,即可得到△DBA=△BDG﹣△A=82°﹣40°=42°,进而得到原三角形的△B为63°.【详解】解:如图,由折叠可得,△BDG=△BDC=82°,△ABE=△A'BE=△A'BG,△△BDG是△BDA是外角,△△DBA=△BDG﹣△A=82°﹣40°=42°,△△ABE=△DBE=21°,△△ABG=3×21°=63°,即原三角形的△B为63°,故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形外角性质的应用,能够根据折叠的性质发现△FBE=△ABE=△ABG是解答此题的关键.10.B【分析】根据关于成轴对称的两个图形是全等形和全等三角形的性质填则可.【详解】△△ABC和△A′B′C′关于直线l对称,△△ABC△△A′B′C′,△△A′B′C′的周长为12,故填12.【点睛】本题考查轴对称的性质和全等三角形的性质,解题的关键是熟练掌握轴对称的性质和全等三角形的性质.11.B【分析】先证明点E在射线CE上运动,由AF为定值,所以当AE+E F最小时,△AEF周长的最小,作点A关于直线CE的对称点M,连接FM交CE于E',此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.【详解】解:△△ABC、△ADE都是等边三角形,△AB=AC,AD=AE,△BAC=△DAE=60°,△△BAD=△CAE,△△BAD△△CAE,△△ABD=△ACE,△AF=CF,△△ABD=△CBD=△ACE=30°,△点E在射线CE上运动(△ACE=30°),作点A关于直线CE的对称点M,连接FM交CE于E',此时AE+FE的值最小,此时AE+FE=MF,△CA=CM ,△ACM =60°,△△ACM 是等边三角形,△△ACM △△ACB ,△FM=FB=b ,△△AEF 周长的最小值是AF+AE+EF =AF+MF =12a +b ,故选:B .【点睛】此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.12.线段的垂直平分线【详解】分析:线段的对称轴为线段的中垂线.详解:线段是轴对称图形,它的一条对称轴是线段的垂直平分线,线段本身所在的直线也是它的一条对称轴.点睛:本题主要考查的是轴对称图形的对称轴,属于基础题型.这个题目的关键就是理解轴对称图形的性质.13.22020【分析】根据A 1(0,2)确定第1个等腰直角三角形(即等腰直角三角形△)的面积,根据A 2(6,0)确定第1个等腰直角三角形(即等腰直角三角形△)的面积,…,同理,确定规律可得结论.【详解】△点A 1(0,2), △第1个等腰直角三角形的面积=1222⨯⨯=2, △A 2(6,0),△第2=△第2个等腰直角三角形的面积=12⨯=4=22,△A4(10,,△第3个等腰直角三角形的边长为10−6=4,△第3个等腰直角三角形的面积=1442⨯⨯=8=32,…则第2020个等腰直角三角形的面积是20202;故答案为:20202.【点睛】本题主要考查坐标与图形变化以及找规律,熟练掌握方法是关键.14.垂直平分线垂直平分线【解析】略15.50°【分析】根据折叠的性质可得△BCE的度数,再由矩形对边平行的性质即可求得△2的度数.【详解】由折叠的性质得:△ACE=△1=25°△△BCE=△1+△ACE=50°△四边形ABCD是矩形△AD△BC△△2=△BCE=50°故答案为:50°【点睛】本题考查了矩形的折叠,掌握矩形的性质及折叠的性质是关键.16.7【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有△下1;△下2;△中3;△中4;△上5;△上6;△上7.如图:选择的位置共有7处.故答案为:7.【点睛】掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.17.(1)见解析(2)见解析【分析】(1)设DE 与AG 的交点为O ,根据题意可得AE EF BF ==,AO A O '=,即可求证; (2)先证明ADE BAG ∆≅∆,可得AE BG =,DEA AGB ∠=∠,从而得到DEF A FB A GC ∠=∠='∠',再过点B 作BH AG ⊥,连接A D ',可得AO BH =,再由DE A F BH ∥∥,可得AO A O A H '==',从而得到45BA F ∠='︒,再根据四边形的性质可得135AA C ∠='︒,从而得到45CA G ∠='︒,可证得△A FB '∽△A GC ',从而得到A C CG A B BF='',再根据AE BG =,可得2GC BF =,即可求证. (1)证明:设DE 与AG 的交点为O ,E ,F 为边AB 上的两个三等分点,AE EF BF ∴==,AA DE '⊥,点A 关于DE 的对称点为A ',AO A O '∴=,//DE A F '∴;(2)解:AA DE '⊥,90AOE DAE ABG ∴∠=︒=∠=∠,90ADE DEA DEA EAO ∴∠+∠=︒=∠+∠,ADE EAO ∴∠=∠,在ADE ∆和BAG ∆中,90ADE EAOAD AB DAE ABG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()ADE BAG ASA ∴∆≅∆,AE BG ∴=,DEA AGB ∠=∠,A GC DEF '∴∠=∠,△DE A F '∥,DEF A FB A GC ∴∠=∠='∠',如图,过点B 作BH AG ⊥,连接A D ',ADE BAG ∆≅∆,DE AG ∴=,ΔΔADE BAG S S =, ∴1122DE AO AG BH ⨯⨯=⨯⨯,AO BH ∴=,BH AG ⊥,DE AG ⊥,A F AG '⊥,△DE A F BH ∥∥, ∴AO OA AHAE EF BF =''=,又AE EF BF ==,AO A O A H ='∴=',BH A H ∴=',45HBA BA H ∴∠=︒∠'=',45BA F ∴='∠︒,点A 关于DE 的对称点为A ',DA DA ∴=',DA DA DC '∴==,DAA DA A ∴∠='∠',DCA DA C ∠='∠',360ADC DAA DA A DA C DCA ∠+∠+∠+∠+∠=''︒'',236090AA C ∴∠=︒-'︒,135AA C ∴='∠︒,45CA G ∴='∠︒,CA G FA B ∴∠='∠',又A GC A FB ∠='∠',∴△A FB '∽△A GC ', ∴A C CG A B BF='', AE BG =,AB BC =,BE GC ∴=,2BE BF =,2GC BF ∴=, ∴2A C A B''=, 2A C A B ''∴=.【点睛】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轴对称的性质,相似三角形的判定和性质等知识,求出45FA CA B G ∠'∠='=︒是解题的关键.18.(1)213422y x x =-+ (2)21382y x x =-+- (3)21312y x x =-+-【分析】(1)先将二次函数化为顶点式,然后根据平移规律即可得出答案.(2)将图象绕顶点旋转180︒,则顶点不变,开口向下,据此可直接得出答案.(3)将图象绕x 轴翻折,此时二次函数横坐标不变,纵坐标变为相反数,由此可得出答案. (1)2211731(3)222y x x x =-+=--,∴向右平移1个单位,向下平移3个单位得:2217113(13)3(4)2222y x x =----=--213422x x =-+.(2)2211731(3)222y x x x =-+=--, ∴二次函数顶点坐标为7(3,)2-,12a =, 将图象绕顶点旋转180︒,则顶点不变为7(3,)2-,开口向下12a =-, 217(3)22y x ∴=---=21382x x -+-. (3)将图象绕x 轴翻折,此时二次函数横坐标不变,纵坐标变为相反数,所以2211(31)3122y x x x x =--+=-+-.【点睛】本题考查二次函数的性质及函数平移翻折的规律,解题的关键是熟练掌握相关内容并能灵活运用.19.见解析【分析】先设计一个游戏规则,再利用整式的加减进行计算说明游戏背后的数学原理,最后得到同组学生的评价.【详解】解:游戏规则:组员把自己的年龄加上10,结果乘以10,再减去10,再减去自己的年龄,结果除以9,将自己计算的结果告诉组长,组长就知道你的实际年龄.游戏背后的数学原理:设自己的年龄为x ,根据题意可得:10(10)10109x x x +--=-, 这说明结果总比自己的年龄大小10, 所以组长只需要将计算结果加上10,就等于组员的年龄,游戏操作后同组学生的评价:这类游戏规则的设计使得计算的结果为常数或含有未知数的较为简单的代数式.【点睛】本题考查了列代数式及整式的加减,解决本题的关键得到相应的代数式,找到数学的联系.20.见解析【分析】根据轴对称图形的定义、中心对称图形的定义画出图形即可【详解】解:如下图所示:【点睛】本题考查利用轴对称设计图案,中心对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称综合例1. 如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。

求证:ΔABC是等腰三角形。

例2. 如图,ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF 交BC于D,若EB=CF。

求证:DE=DF。

例3. △ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC 交AC于Q,求证:AB+BP=BQ+AQ。

例4. 如图,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB 。

求证:CD =AD +BC 。

A 档(巩固专练)1.下列图形中,恰好有两条对称轴的是( )A .正六边形B .矩形C .等腰梯形D .圆2.剪纸是中国的民间艺术,剪纸的方法很多,下面是一种剪纸方法的图示(•如图1,先将纸折叠,然后再剪,展开即得到图案):图2中的四个图案,不能用上述方法剪出的是( )图1图23.已知A 、B 两点的坐标分别是(-1,2)和(1,2),则下面四个结论:①A 、B 两点关于x 轴对称;②A 、B 两点关于y 轴对称;③A 、B 两点关于原点对称;④A 、B 两点之间的距离为2,其中正确的有( )A .1个B .2个C .3个D .4个4. 如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC 为等腰三角形.....,则点C 的个数是( ) A .6B .7C .8D .9、5.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为( )A .200B .1200C .200或1200D .360 6. 等腰三角形一腰的中线把周长分成33cm 和24cm 两部分,则它的腰长( )cmA 13B 、16C 、22D 、16或227.如图所示,已知△ABC 和△DCE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连结OC 、FG ,则下列结论:①AE =BD ②AG =BF ③FG ∥BE ④∠BOC =∠EOC ,其中正确结论的个数( )A.1个B.2个C.3个D.4个第7题 第8题 第9题8.如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于( ) A .70° B . 65° C . 50° D . 25°9. 如图,等腰△ ABC 中,AB=AC ,∠A=20°。

线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )A .80°B . 70°C .60°D .50°B 档(提升精练)10.如图,△ABC 是边长为3的等边三角形,△BDC 是等腰三角形,且∠BDC =120°.以D 为顶点作一个60°角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,则△AMN 的周长为 .11.已知A(2m+n,2),B(1,n-m),若A 、B 关于x 轴对称,则m= ,n= . 12.已知点M(1-a,2a+2),若点M 关于x 轴的对称点在第三象限,则a 的取值范围是 .13. 已知等腰三角形的一个内角为70°,则另外两个内角的度数是 .第10题图14. 如图,三角形纸片ABC ,10cm 7cm 6cm AB BC AC ===,,,沿过点B 的直线折叠这个三角形,使顶点C 落在AB 边上的点E 处,折痕为BD ,则AED △的周长为______cm .15. 如果等腰三角形的三边长均为整数,且它的周长为10cm ,那么它的三边长分别为 .16. 认真观察下图中的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:_________________________________________________; 特征2:_________________________________________________. (2)请在图中设计出你心中最美丽的图案,使它也具备你所写出的上述特征17.如图,小红作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取△A 1B 1C 1三边的中点A 2,B 2,C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积,用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积……,由此可得,第8个正△A 8B 8C 8的面积是 . C 档(跨越导练)18. 在△ABC 中,AD ⊥BC 于D ,∠B=2∠C.求证AB+BD=CD.19.如图所示,在△ABC 中,AB=AC ,∠A=120°,AB•的垂直平分线MN•分别交BC 、AB 于点M 、N ,求证:CM=2BM .BANM C20.如图,CE ,CF 分别平分∠ACB 和它的外角∠ACG ,EF//BC ,EF 交AC 于D 。

试问DF=DE 吗?请说出你的理由。

A BCDE F21.如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,D 为 BC 的中点.(1)写出点D 到ΔABC 三个顶点 A 、B 、C 的距离的关系(不要求证明)(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN=BM ,请判断△DMN 的形状,并证明你的结论NMDBAC22.如图,△ABC 中,∠BAC=900,D 是△ABC 内一点,若BD=AB=AC ,∠ABD=300 ,求证:AD=DC23.如图,△ABC中,AB=AC,D是形外一点,且∠ABD=600,∠ACD=600,猜想BD,DC与AB之间有什么关系.并证明你的结论.24.如图 , △ABC 为等边三角形,延长BA 到E, 使AE= BD, 连结CE、DE, 求证: CE = DE.25. △ABC中,∠C=900,AC=BC,D为BC上一点,BE⊥AD于E点,且AD=2BE.求证:AD平分∠BAC26.已知:如图,在△ABC 中,AB=AC,E 在AC 上,D 在BA 的延长线上,AD=AE ,连结DE 。

请问:DE ⊥BC 成立吗?27. 如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?28.已知:A、B两点在直线l的同侧,试分别画出符合条件的点M.(1)如图1,在l上求作一点M,使得|AM-BM|最小;作法:(2)如图2,在l上求作一点M,使得|AM-BM|最大;作法:(3)如图3,在l上求作一点M,使得AM+BM最小.轴对称综合参考答案例1. 证明:延长AD到E,使DE=AD,连接BE。

又因为AD是BC边上的中线,∴BD=DC又∠BDE=∠CDAΔBED≌ΔCAD,故EB=AC,∠E=∠2,∵AD是∠BAC的平分线∴∠1=∠2,∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC是等腰三角形。

例2. 证明:过E作EG//AC交BC于G,则∠EGB=∠ACB,又AB=AC,∴∠B=∠ACB,∴∠B=∠EGB,∴∠EGD=∠DCF,∴EB=EG=CF,∵∠EDB=∠CDF,∴ΔDGE≌ΔDCF,∴DE=DF。

例3. 证明:过O作OD∥BC交AB于D,∴∠ADO=∠ABC=180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°,∴∠ADO=∠AQO,又∵∠DAO=∠QAO,OA=AO,∴△ADO≌△AQO,∴OD=OQ,AD=AQ,又∵OD∥BP,∴∠PBO=∠DOB,又∵∠PBO=∠DBO,∴∠DBO=∠DOB,∴BD=OD,又∵∠BPA=∠C+∠PAC=70°,∠BOP=∠OBA+∠BAO=70°,∴∠BOP=∠BPO,∴BP=OB,∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。

例4. 证明:在CD上截取CF=BC,如图乙∴△FCE ≌△BCE (SAS ), ∴∠2=∠1。

又∵AD ∥BC ,∴∠ADC +∠BCD =180°, ∴∠DCE +∠CDE =90°,∴∠2+∠3=90°,∠1+∠4=90°, ∴∠3=∠4。

在△FDE 与△ADE 中,∴△FDE ≌△ADE (ASA ), ∴DF =DA , ∵CD =DF +CF , ∴CD =AD +BC 。

A 档(巩固专练)1.B2.C3.B4.C5.C6.D7.D8.C9.CB 档(提升精练)10.6 11.1,-1 12.1 a 13.55°,55°或70°,40° 14.9 15.3cm ,3cm ,4cm 或4cm ,4cm ,2cm16.(1)特征1:都是轴对称图形;特征2:都是中心对称图形;特征3:这些图形的面积都等于4个单位面积;等(2)满足条件的图形有很多,只要画正确一个,都可以得满分.17.71()4C 档(跨越导练)18.在CD 上截取DE=DB ,连接AE , ∵AD ⊥BC ,∴AE=AB.∴∠B=∠AEB.又∵∠AEB=∠C+∠CAE=2∠C ,∴∠CAE=∠C.∴AE=EC.∴AB+BD=AE+BD=EC+ED=CD.∴AB+BD=CD. 19. 证法1:如答图所示,连接AM , ∵∠BAC=120°,AB=AC , ∴∠B=∠C=30°,∵MN 是AB 的垂直平分线, ∴BM=AM ,∴∠BAM=∠B=30°,∴∠MAC=90°,∴CM=2AM ,∴CM=2BM .证法二:如答图所示,过A 作AD ∥MN 交BC 于点D .∵MN 是AB 的垂直平分线,∴N 是AB 的中点. ∵AD ∥MN ,∴M 是BD 的中点,即BM=MD . ∵AC=AB ,∠BAC=120°,∴∠B=∠C=30°, ∵∠BAD=∠BNM=90°,∴AD=BD=BM=MD ,又∵∠CAD=∠BAC-∠BAD=120°-90°=30°, ∴∠CAD=∠C ,∴AD=DC ,BM=MD=DC ,∴CM=2BM . 20. 分别证明DE=DC ,DF=DC ,所以DE=DF 21. (1)DA=DB=DC(2)△DMN 为等腰直角三角形 证明:连结AD∵∠DBA=∠DAC=45°,BM=AN ,BD=AD ∴△DBM 全等于△DAN ∴DM=DN ,∠BDM=∠ADN∵∠ADN+∠CDN=∠ADC=90°∴∠BDM+∠CDN=90° ∴∠MDN=90°22.分析:见到300角,最好将它放到某个直角三角形中。

相关文档
最新文档