2013新北师大版数学八上2.1《平方根》(第1课时)word教学设计
北师大版数学八年级上册《算术平方根》说课稿1

北师大版数学八年级上册《算术平方根》说课稿1一. 教材分析北师大版数学八年级上册《算术平方根》是学生在学习了有理数的乘方、平方根的基础上,进一步研究算术平方根的概念和性质。
本节课的内容包括算术平方根的定义、性质和求法,以及算术平方根在实际问题中的应用。
通过本节课的学习,学生能够理解算术平方根的概念,掌握求算术平方根的方法,并能应用于解决实际问题。
二. 学情分析学生在七年级时已经学习了平方根的概念和性质,对平方根有一定的了解。
但算术平方根与平方根有所不同,需要学生进一步理解和掌握。
另外,学生在之前的学习中,已经接触过一些实际问题的解决方法,但对于一些复杂的实际问题,还需要进一步的学习和实践。
三. 说教学目标1.知识与技能目标:学生能够理解算术平方根的概念,掌握求算术平方根的方法,并能应用于解决实际问题。
2.过程与方法目标:学生通过自主学习、合作交流的方式,培养观察、思考、表达和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,增强对数学学习的兴趣和自信心。
四. 说教学重难点1.教学重点:算术平方根的概念和性质,求算术平方根的方法。
2.教学难点:理解算术平方根与平方根的区别,以及在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师引导的教学方法,让学生在探究中学习,培养观察、思考、表达和解决问题的能力。
2.教学手段:利用多媒体课件、实物模型等辅助教学,帮助学生直观地理解算术平方根的概念和性质。
六. 说教学过程1.导入:通过回顾平方根的概念和性质,引导学生思考算术平方根的含义,激发学生的学习兴趣。
2.新课导入:介绍算术平方根的概念,引导学生通过观察、思考,总结算术平方根的性质。
3.实例讲解:通过具体的例子,讲解求算术平方根的方法,让学生在实践中掌握求解技巧。
4.课堂练习:设计一些练习题,让学生巩固所学知识,提高解决问题的能力。
5.应用拓展:结合实际问题,引导学生运用算术平方根的知识解决问题,提高学生的应用能力。
北师大版八年级数学上册2.2.1《平方根》教案

举例:
-难点解释:对于负数没有平方根的概念,可以通过数轴上的点来解释,正数的平方根在数轴上对称,而负数没有对应的正数平方根。
-计算方法:以√9为例,讲解如何通过试错法或近似法(如牛顿迭代法)来估算平方根,强调计算过程的逐步精确。
4.应用平方根解决实际问题。
二、核心素养目标
1.理解平方根的定义,形成对数学概念的本质认识,培养数学抽象素养。
2.通过对平方根性质的探究,提高逻辑推理能力和数学运算能力,发展数学逻辑思维。
3.学会运用平方根解决实际问题,培养数学建模素养,增强数学应用意识。
4.在探索平方根的过程中,增强数据分析能力,学会从数学角度发现问题和提出问题,培养数学探究素养。
首先,我发现在导入新课的环节,虽然我试图通过日常生活中的例子来引起学生的兴趣,但可能由于例子不够贴近他们的实际经验,部分学生显得不够投入。下次我可以尝试寻找更贴近学生生活的例子,或者让学生自己分享他们在哪里见过平方根,以提高他们的参与度。
在理论介绍环节,我讲解了平方根的定义和性质,但可能讲解得太快,导致一些学生跟不上。我应该在讲解时更加注意语速,并在关键点处暂停,让学生有时间消化和理解。此外,我可以通过提问的方式检查学生的理解程度,确保他们能够跟上课程的进度。
在实践活动和小组讨论中,学生们表现得比较积极,但我也注意到有些小组在讨论时偏离了主题。未来,我应该在分组讨论时提供更明确的指导,确保每个小组都能围绕核心知识点进行深入的探讨。
对于教学难点,比如负数没有平方根的概念,我尝试通过数轴来解释,但效果似乎并不理想。我考虑在下次课中引入更多的图形和实际操作,如使用卡片或教具来直观展示正数平方根的对称性,从而帮助学生更好地理解负数平方根的不存在。
八年级数学上册第二章实数:平方根第1课时算术平方根教案新版北师大版

八年级数学上册教案新版北师大版:2.2平方根第1课时算术平方根教学目标1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点)2.根据算术平方根的概念求出非负数的算术平方根;(重点)3.了解算术平方根的性质.(难点)教学过程一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念 【类型一】求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402. 解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32; (3)∵0.62=0.36,∴0.36的算术平方根是0.6; (4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用. 【类型二】利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质 【类型一】含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算.解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1.方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计 算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a ≥0,a ≥0教学反思让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.。
北师大版数学八年级上册2.2平方根(第一课时)教学设计

教师应及时对学生的学习情况进行评价,关注他们在知识掌握、思维能力和情感态度等方面的表现。根据评价结果,调整教学策略,以提高教学效果。
四、教学内容与过程
(一)导入新课,500字
1.复习导入:让学生回顾乘方的概念及性质,提出问题:“乘方是解决什么问题的运算?乘方的逆运算是什么?”引导学生思考乘方与平方根的关系。
针对不同学生的学习能力,设计不同难度的题目,使每个学生都能在课堂上得到锻炼和提升。关注学困生,给予他们更多的关注和指导,提高他们的学习兴趣和自信心。
7.创设互动环节,提高课堂氛围
在教学过程中,教师应注重与学生的互动,鼓励学生提问和发表观点,营造积极向上的课堂氛围。通过提问、讨论等方式,激发学生的思维,提高他们的课堂参与度。
2.自主探究,理解概念
让学生自主探究平方根的定义,引导他们从乘方的角度去理解平方根,并学会用符号表示平方根。在此过程中,关注学生对概念的理解,及时解答学生的疑问。
3.案例分析,掌握方法
通过讲解典型例题,让学生掌握求简单数的平方根的方法,如:完全平方数、近似计算等。强调平方根符号的正确书写,培养学生严谨的学术态度。
1.在自主探究平方根的定义和性质的过程中,培养学生的逻辑思维能力。
2.在求解实际问题的过程中,培养学生将数学知识应用于实际情境的能力。
3.在合作交流中,培养学生倾听他人意见、表达自己观点的能力。
(三)情感态度与价值观
1.培养学生积极探究数学知识的精神,激发学生对数学的好奇心和求知欲。
2.鼓励学生面对数学问题时,保持积极的态度,相信自己能够解决问题。
(二)讲授新知,500字
1.讲解平方根的定义,用符号表示平方根,强调平方根符号的正确书写。
北师大版数学八年级上册《算术平方根》教案1

北师大版数学八年级上册《算术平方根》教案1一. 教材分析《算术平方根》是北师大版数学八年级上册的一章内容。
本章主要介绍了算术平方根的概念、性质和运算方法。
通过学习本章,学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够运用算术平方根解决实际问题。
二. 学情分析学生在学习本章之前,已经掌握了实数的概念和运算方法,具备了一定的数学基础。
但是,对于算术平方根的概念和运算方法可能较为陌生,需要通过实例和练习来加深理解和掌握。
三. 教学目标1.知识与技能:学生能够理解算术平方根的定义,掌握求算术平方根的方法,并能够运用算术平方根解决实际问题。
2.过程与方法:学生能够通过观察、操作、思考、交流等方式,培养解决问题的能力。
3.情感态度与价值观:学生能够对数学产生兴趣,培养积极的学习态度,增强自信心。
四. 教学重难点1.重点:算术平方根的定义和求法。
2.难点:算术平方根在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和实际问题,引发学生的兴趣和思考,培养解决问题的能力。
2.启发式教学法:通过提问和引导,激发学生的思维,引导学生主动探索和发现。
3.合作学习法:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学素材:准备相关的实例和实际问题,用于引发学生的兴趣和思考。
2.教学工具:准备黑板、粉笔等教学工具,用于展示和讲解。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如测量物体长度、计算土地面积等,引发学生的兴趣和思考,引出算术平方根的概念。
2.呈现(15分钟)教师通过讲解和展示,介绍算术平方根的定义和性质,让学生初步了解和认识算术平方根。
3.操练(15分钟)教师给出一些算术平方根的题目,学生独立完成,教师进行个别指导和讲解。
通过反复练习,让学生掌握求算术平方根的方法。
4.巩固(10分钟)教师给出一些实际问题,学生运用算术平方根的知识解决。
通过解决实际问题,巩固学生对算术平方根的理解和掌握。
平方根(1)教学设计 北师大版数学八年级上册

2.2平方根(1)一、教学目标知识与技能目标:理解算术平方根的概念,能正确地读写有关算术平方根的式子;会求非负数的算术平方根,并初步了解算术平方根具有双重非负性。
过程与方法目标:让学生经历从实际例子归纳出算术平方根概念的过程,理解概念的本质,体会求非负数的算术平方根的运算与平方运算的互逆性。
情感、态度、价值观:通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,激发学生学习数学的兴趣。
同时在学习新知识的过程中,培养良好的数感,体会算术平方根的实际应用价值。
二、重难点分析教学重点:了解数的算术平方根的概念,会求某些非负数的算术平方根,会用根号表示一个数的算术平方根。
算术平方根的教学不但是本章教学的重点,也是今后数学学习的重点。
在后面学习的根式运算中,归根结底是算术根的运算,非算术根也要转化为算术根。
因此学好算术平方根才能为下一节打好良好的基础,而本节掌握算术平方根的概念,会求某些非负数的算术平方根,会用根号表示一个数的算术平方根是非常重要的。
教学难点:算术平方根具有双重非负性;理解算术平方根的概。
.学生虽然对数有一定的基础,但求一个正数的算术平方根,理解算术平方根的概念问题需进一步加强理解,另外就是算术平方根具有双重非负性。
因此教师在突破这个难点时,可采取引导学生多角度分析,多维度思考的方式,逐步突破难点,让学生更好的理解算术平方根。
三、学生分情分析有关数的内容,学生在七年级上册已经系统地学过有理数,对有理数的概念和运算等有了较深刻的认识,本节是在有理数的基础上学习实数的初步知识,平方根是学习无理数的基础,学好平方根才能更系统的认识无理数,了解以前学习的数的范围不够用了,第一学时是学生对算术平方根的认识,这节学生理解较好,对后面的学习至关重要。
因此在教学时一定注重知识间的相互联系以及联系生活实际,使学生更好地体会数的扩充过程中表现出来的概念、运算等的一致性和发展变化。
四、教学过程(一)创设情境,引入新课如图,请大家根据勾股定理,结合图形完成填空:x 2= ; y 2= ;z 2= ;w 2= ; 由学生回答得出:x 2= 2 ; y 2= 3 ;z 2= 4 ;w 2= 5 ;老师问:x,y,z,w 中哪些是有理数,哪些是无理数?学生答:z 有理数,x,y,w 是无理数;问:上述式子中,已知幂和指数,求底数,你能分别求出来吗?请仍然分别表示出来。
数学北师大版八年级上册平方根(第1课时).1 平方根(第1课时)教学设计

第二章 实数平方根(第1课时)一、教学目标:1、使学生了解算术平方根的概念,懂得如何表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质。
2、在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识。
3、让学生积极参与教学活动,激发他们对数学的好奇心和求知欲。
二、教学重、难点:了解算术平根与平方是互逆的运算关系;求一个正数的算术平方根。
三、教学过程:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别。
比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习。
方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:=2x ,=2y ,=2z ,=2w .第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗? 内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=。
内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14。
解:(1)因为900302=,所以900的算术平方根是30,即30900=;(2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14。
北师大版数学八年级上册2.2.1 算术平方根教案

2平方根第1课时算术平方根●置疑导入前面我们学习了勾股定理,请大家根据勾股定理,结合图形(如图)完成下列问题:(多媒体出示)问题1:x2=__2__,y2=__3__,z2=__4__,w2=__5__.问题2:你能求出x,y,z,w的具体值吗?x,y,z,w中哪些是有理数?哪些是无理数?你是怎么判断的呢?没有任何整数或分数的平方等于2,3,5,所以x,y,w不是有理数而是无理数,因为z2=4,所以z=2,是有理数.【教学与建议】教学:通过让学生独立解决问题,既复习了勾股定理的相关知识,同时又为下面算术平方根概念的探究埋下了伏笔.建议:问题2要给学生充足的时间进行感知,让学生学会发现.●复习导入上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道了有理数和无理数的区别:有理数是有限小数或无限循环小数,无理数是无限不循环小数.上一节课我们解决了这样一个问题:有两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a的大正方形,那么有a2=2,2是有理数,而a是无理数.那么该怎样表示a呢?在前面我们学过:若x2=a,则a叫x的平方,反过来,x叫a的什么呢?本节课我们一起来学习.【教学与建议】教学:利用复习拼图例子引入,学生知道大正方形的边长是无理数,自然地想知道这个无理数该怎样表示.建议:可把上节课的题目投在屏幕上,让学生看着图形直观体会.命题角度1求算术平方根直接利用算术平方根的定义,求一个非负数的算术平方根.【例1】(1)9的算术平方根是(D)A.±3B.3C.±3 D.3(2)(-2)2的算术平方根是__2__;-916=__-34__.命题角度2已知算术平方根求原数熟练掌握算术平方根的定义,已知算术平方根求出原数.【例2】(1)一个数的算术平方根是4,则这个数是__16__.(2)若一个数的算术平方根是a,则这个数是__a2__.命题角度3概念的双重应用此类型题目,重点考查算术平方根的定义,注意概念的双重应用.【例3】(1)1104=__1100__.(2)16的算术平方根是__2__.命题角度4算术平方根的非负性算术平方根具有非负性,借助“几个非负数的和为零,那么每一个非负数都为零”的性质求字母的值.【例4】(1)若a-3与b-5互为相反数,则a=__3__,b=__5__.(2)若a-2+|b+1|=0,则(a+b)2 023=__1__.高效课堂教学设计1.了解算术平方根的概念,会用根号表示一个正数的算术平方根.2.经历算术平方根及其性质的产生过程,能用概念及性质解决有关问题.▲重点算术平方根与平方根的概念.▲难点算术平方根的性质的应用.◆活动1 创设情境 导入新课(课件)前面我们学习了勾股定理,请大家根据勾股定理,结合图形(投影教材P 26图2-4)完成下列问题:问题1:x 2=__2__,y 2=__3__, z 2=__4__,w 2=__5__.问题2:x ,y ,z ,w 中,__z __是有理数,__x ,y ,w __是无理数.◆活动2 实践探究 交流新知【探究】认识算术平方根(投影出示)一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做__a 的算术平方根__,记作__ a __,读作“__根号a __”.a 叫做__被开方数__,0的算术平方根是__0__.问题1:你能根据132=169说出169的算术平方根是多少吗?169的算术平方根是__13__.问题2:你能根据x 2=7(x >0)说出7的算术平方根是多少吗?7的算术平方根是__x __.◆活动3 开放训练 应用举例【例1】(教材P 26例1)求下列各数的算术平方根:(1)900; (2)1; (3)4964; (4)14. 【方法指导】利用算术平方根的性质求解.解:(1)因为__30__2=900,所以900的算术平方根是__30__,即900 =__30__;(2)因为__1__2=1,所以1的算术平方根是__1__,即1 =__1__;(3)因为__⎝⎛⎭⎫78 __2=4964 ,所以4964 的算术平方根是__78 __,即4964 =__78__; (4)14的算术平方根是__14 __.【例2】(教材P 26例2)s (m)与下落时间t (s)的关系为s =4.9t 2.有一铁球从19.6 m 高的建筑物上自由下落,到达地面需要多长时间?【方法指导】一个正数的算术平方根是正数.解:将s =19.6代入公式s =4.9t 2,得t 2=__4__,所以t =__4 __=__2__(s),即铁球到达地面需要__2__s.【例3】求一个数的算术平方根. (1)(-64)2 =__64__;(2)⎝⎛⎭⎫-361212 =__36121__; (3)(-7.2)2 =__7.2__.【方法指导】当a 为负数时,a 2 =__-a __.◆活动4 随堂练习1.下列各式中正确的是(D)A .49 =±9B .(-8)2 =-8C .(3 )2=-3D .(-5 )2=52.求下列各数的算术平方根:(1)81;(2)121169;(3)0.36;(4)10-6;(5)225;(6)⎝⎛⎭⎫79 0 . 解:(1)9;(2)1113;(3)0.6;(4)10-3;(5)15;(6)1. 3.已知|x -2|+y -4 =0,求y x 的算术平方根.解:∵|x -2|+y -4 =0,∴x -2=0,y -4=0,∴x =2,y =4,∴y x =42=16,16 =4,∴y x 的算术平方根为4.4.在户外活动中,刺激度排名榜首的是“蹦极”(如图).“蹦极”就是跳跃者站在高约40 m以上(相当于10层楼高)的跳台上,把一端固定的长长的橡皮条绑牢跳下,跳跃者在空中享受“自由落体”[已知自由下落物体下落的距离s(m)与下落时间t(s)的关系为s=4.9t2].如果“蹦极”运动起跳点的高度为44.1 m,那么跳跃者在空中能享受多少秒的“自由落体”?解:把s=44.1代入s=4.9t2,得t2=9,所以t=9=3(s),故跳跃者在空中能享受3 s的“自由落体”.◆活动5课堂小结与作业学生活动:这节课的主要收获是什么?有什么感受?教学说明:掌握算术平方根的概念和性质.作业:课本P27习题2.3中的T1、T2、T3.这节课的重点是算术平方根的概念教学和正数的算术平方根的求法,在讲解概念时应注意概念的自然引导和概念的解释,特别是在x2=a中,正数x是a的算术平方根,x为正数,这一点一定要强调清楚.通过师生间频繁地互动,使学生深刻理解概念,准确表述,并通过练习巩固掌握.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章实数
2. 平方根(第1课时)
成都铁中刘强霍佳
一、学生起点分析
学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.
学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.
二、教学任务分析
本节课是义务教育课程标准实验教科书北师大版八年级(上)第二章《实数》的第二节《平方根》.本节内容计2个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下:
①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.
②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.
③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.
三、教学过程设计
本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布
置.
本节课教学流程为:
第一环节:问题情境
方法一:问题导入
内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我
们做过的:由两个边长为1的小正方形,通过剪一剪,
拼一拼,得到一个边长为a 的大的正方形,那么有
22=a ,a = ,2是有理数,而a 是无理数.在
前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a
的什么呢?本节课我们一起来学习.
方法二:问题导入
内容:前面我们学习了勾股定理,请大家根据勾股定理,结
合图形完成填空:
=2x ,=2y ,=2z ,
=2w .
目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.
效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.
说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.
第二环节:初步探究
内容1:情境引出新概念
22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗?
目的:让学生体验概念形成过程,感受到概念引入的必要性.
效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.
说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”
内容2:在上面思考的基础上,明晰概念:
一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.
目的:对算术平方根概念的认识.
效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.
内容3:简单运用 巩固概念
例1 求下列各数的算术平方根:
(1) 900; (2) 1; (3) 64
49; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算。