数学模型实验指导书

合集下载

数学模型(第五版)

数学模型(第五版)
数学模型(第五版)
2018年高等教育出版社出版的图书
01 成书过程
03 教材特色 05 作者简介
目录
02 内容简介 04 教学资源
《数学模型(第五版)》是由姜启源、谢金星、叶俊编写,高等教育出版社出版的 “十二五”普通高等教育 本科国家级规划教材,适合作为高等学校各专业学生学习数学建模课程的教材和参加数学建模竞赛的辅导材第五版)习题参考解答》是为配合《数学模型(第五版)》而编写的学习指导书,书号为9787-04--4,2018年5月23日由高等教育出版社出版,170千字、128页。
《数学模型(第五版)》开通有数字课程、MOOC课程的资源。
作者简介
《数学模型(第五版)》是由姜启源、谢金星、叶俊编写。 姜启源:同济大学应用数学系教授。 谢金星:清华大学数学科学系教授。 叶俊:清华大学数学科学系教授。
内容简介
《数学模型(第五版)》共11章,包括建立数学模型、初等模型、简单的优化模型、微分方程模型、微分方 程模型、差分方程与代数方程模型、离散模型、概率模型、统计模型、博弈模型。
教材特色
教材参考中国国内外数学建模教材和教学单元,第五版在保持前四版基本结构和风格的基础上,进行补充与 修订:增加了一些实用性较强、生活气息浓烈、数学推导简化的案例,改写、合并、调整了若干案例和章节,删 除了个别案例,并对习题作了相应的修订。
全书共11章,包括建立数学模型、初等模型、简单的优化模型、微分方程模型、微分方程模型、差分方程与 代数方程模型、离散模型、概率模型、统计模型、博弈模型。
成书过程
第五版在保持前四版基本结构和风格的基础上,进行增删与修订,新增和改编的案例接近案例总数的一半, 新版本于2018年5月由高等教育出版社出版(《即数学模型(第五版)》)。
感谢观看

《运筹学》课程实验指导书09级

《运筹学》课程实验指导书09级

《运筹学》课程实验指导书实验一线性规划问题模型的建立及求解1.实验目的和要求理解线性规划模型的基本思想,熟悉运筹学软件的安装及基本使用方法,能够使用运筹学软件对线性规划问题进行求解。

2.实验前准备复习教材第一、二、三、四、五、六章相关内容。

3.实验条件每名同学使用一台计算机。

小组同学相邻,方便讨论。

4.实验内容(1)熟悉运筹学软件的安装及基本使用方法。

(2)练习教材第二章习题8a,b的数学模型,使用运筹学软件求解,分析输出数据。

(3)选择教师指定的实际问题,进行分析、建模和求解(实验报告内容)。

5.实验报告完成本次实验的报告,写清实验步骤及实验结果。

指定问题:问题一:任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。

假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。

问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?问题二:某厂每日8小时的产量不低于1800件。

为了进行质量控制,计划聘请两种不同水平的检验员。

一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15件/小时,正确率95%,计时工资3元/小时。

检验员每错检一次,工厂要损失2元。

为使总检验费用最省,该工厂应聘一级、二级检验员各几名?问题三:某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日,春夏季4000人日,如劳动力本身用不了时可外出干活,春夏季收入为2.1元/人日,秋冬季收入为1.8元/人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养动物时每头奶牛投资400元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲草,并占用人工秋冬季100人日,春夏季为50人日,年净收入400元/每头奶牛。

高中数学模型训练教案

高中数学模型训练教案

高中数学模型训练教案一、教学目标1. 了解数学模型的概念和基本构成要素;2. 掌握构建数学模型的基本方法和步骤;3. 运用数学模型解决实际问题,并能正确解释结果;4. 培养学生的数学建模能力和实际问题解决能力。

二、教学内容1. 数学模型的概念和基本构成要素;2. 构建数学模型的方法和步骤;3. 应用数学模型解决实际问题;4. 分析和解释数学模型的结果。

三、教学过程1. 导入(5分钟):引入教学内容,介绍数学模型的概念和基本构成要素。

2. 讲解(15分钟):讲解构建数学模型的方法和步骤,包括问题分析、建立数学关系、求解等内容。

3. 案例分析(20分钟):以实际问题为例,让学生分组进行数学建模训练,帮助他们应用所学知识解决问题。

4. 讨论与交流(15分钟):让学生展示他们的解题过程和结果,并进行专家点评和讨论。

5. 总结与拓展(5分钟):总结教学内容,拓展数学模型的应用领域,激发学生的兴趣和求知欲。

四、教学评价1. 考查方式:结合实际问题,布置数学建模作业;2. 评价标准:解题思路清晰,数学推导正确,结果合理可靠;3. 个性化辅导:针对学生在数学建模过程中出现的问题,进行个性化指导和辅导。

五、课后作业1. 完成数学建模作业,对实际问题进行模型构建和求解;2. 阅读相关数学建模资料,扩展知识面,提升自身能力。

六、教学反思1. 教学目标是否达到;2. 学生掌握程度如何;3. 教学方法是否得当;4. 存在的问题和改进方向。

以上是一份高中数学模型训练教案范本,供参考使用。

教师可根据具体教学情况和学生水平进行调整和拓展。

高中数学建模教案

高中数学建模教案

高中数学建模教案
目标:通过本课程,学生将能够了解数学建模的基本概念和方法,能够运用数学知识解决实际问题,提高数学思维和问题解决能力。

教学内容:
1. 什么是数学建模
2. 数学建模的基本步骤
3. 建模的实例分析
4. 基本数学工具:微积分、线性代数等
5. 模型评价和改进
教学方法:
1. 经验引导:通过实例引导学生了解数学建模的基本概念和方法
2. 基础讲解:介绍数学建模的基本步骤和所需的数学工具
3. 分组讨论:组织学生分组进行实际问题的建模和讨论
4. 评价与反馈:对学生的建模结果进行评价和反馈,引导他们不断改进
教学过程:
1. 介绍数学建模的定义和意义
2. 讲解数学建模的基本步骤和所需的数学工具
3. 通过实例分析,让学生感受建模的过程
4. 组织学生分组进行实际问题的建模和讨论
5. 对学生的建模结果进行评价和反馈,引导他们不断改进
课后作业:
1. 尝试运用所学知识解决一个实际问题,并撰写建模报告
2. 思考数学建模对实际生活的应用价值,并做出总结
参考资料:
1. 《高中数学建模导论》
2. 《数学建模实例解析》
3. 《数学建模案例分析与解决》
评估方式:
1. 课堂参与度:包括听课态度、课堂表现等
2. 作业质量:包括实际问题的建模过程和报告撰写
3. 考试成绩:包括数学建模相关知识的理解程度
希望通过本课程的学习,学生能够掌握数学建模的基本概念和方法,培养他们的创新意识和问题解决能力,为将来的学习和工作打下坚实的基础。

运筹学实验指导书

运筹学实验指导书

运筹学实验指导书-CAL-FENGHAI.-(YICAI)-Company One1实验一、线性规划综合性实验一、实验目的与要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。

通过实验,使学生更深入、直观地理解和掌握线性规划的基本概念及基本理论和方法。

要求学生能对一般的线性规划问题建立正确的线性规划数学模型,掌握运筹学软件包线性规划模块的操作方法与步骤,能对求解结果进行简单的应用分析。

二、实验内容与步骤:1.选择合适的线性规划问题学生可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。

2.建立线性规划数学模型学生针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。

3.用运筹学软件求解线性规划数学模型学生应用运筹学软件包线性规划模块对已建好的线性规划数学模型进行求解。

4.对求解结果进行应用分析学生对求解结果进行简单的应用分析。

三、实验例题:(一)线性规划问题某集团摩托车公司产品年度生产计划的优化研究1)问题的提出某集团摩托车公司是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验。

近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。

为此公司决策层决心顺应市场,狠抓管理,挖潜创新,从市场调查入手,紧密结合公司实际,运用科学方法对其进行优化组合,制定出1999年度总体经济效益最优的生产计划方案。

2)市场调查与生产状况分析1998年,受东南亚金融风暴的影响,国内摩托车市场出现疲软,供给远大于需求,该集团的摩托车生产经营也出现开工不足、库存增加和资金周转困难等问题。

该集团共有三个专业厂,分别生产轻便摩托车、普通两轮车和三轮摩托车三大系列产品。

20000辆和22000辆。

为1600万元。

根据以上情况,该公司应如何制定1999年度总体经济效益最优的生产计划方案(二)线性规划建模设X j表示生产M j型摩托车的数量(j=1,2,…,9),则总利润最大的摩托车产品生产计划数学模型为:MaxZ=×+×+×+×+×+×+×+×+×=++++++++满足 X1+X2+X3≤50000 (1)X4+X5+X6≤60000 (2)X7+X8+X9≤10000 (3)++++++++≤4000×5 (4)X3≤20000 (5)X6≤22000 (6)×(X1+X2+X3)+×(X4+X5+X6)+×3(X7+X8+X9)≤3000 (7)++++++++≤1600(8)X j≥0(j=1,2,3,4…9)模型说明:约束(1)、(2)、(3)分别表示三种系列摩托车的最大生产能力限制;约束(4)表示摩托车的生产受流动资金的限制;约束(5)和(6)表示M3和M6两种车产量受发动机供应量限制;约束 (7)表示未销售的产量受库存能力的限制;约束(8)表示未销售产品占用资金的限制。

高中数学模型教案

高中数学模型教案

高中数学模型教案
目标:学生能够通过建立数学模型来解决实际问题,并能够正确地应用一元二次方程进行求解。

教学目标:
1. 了解一元二次方程的定义和一般形式。

2. 掌握一元二次方程的解法和应用。

3. 能够建立数学模型,解决实际问题。

教学过程:
一、导入(5分钟)
1. 引入实际问题,让学生思考如何用数学方法来解决问题。

2. 提出问题及相关数据,引导学生建立数学模型。

二、知识讲解(15分钟)
1. 回顾一元二次方程的定义和一般形式。

2. 讲解一元二次方程的解法,包括因式分解、配方法、求根公式等。

3. 演示如何应用一元二次方程解决实际问题。

三、练习与巩固(20分钟)
1. 让学生在小组或个人完成相关练习题,巩固所学知识。

2. 提供实际问题让学生建立数学模型,求解一元二次方程。

四、拓展应用(10分钟)
1. 让学生自主设计一个实际问题,建立数学模型并求解。

2. 学生进行展示和讨论。

五、总结与评价(5分钟)
1. 总结本节课所学内容,强调重点和难点。

2. 对学生进行课堂表现和作业情况评价,鼓励他们继续努力。

教学资源:
1. PowerPoint课件
2. 教材相关练习题
3. 实际问题材料
教学反思:
在教学中要充分引导学生将抽象的数学知识与实际问题相结合,培养他们解决问题的能力和思维方式。

同时要注重引导学生自主学习和实践,激发他们的学习兴趣和动力。

数学教师实验教案模板

数学教师实验教案模板

数学教师实验教案模板教案题目:数学中的立体几何概念教学教学目标:1. 理解立体几何的基本概念,包括面、棱、顶点等。

2. 掌握不同立体几何的特征和性质。

3. 能够通过实际操作和观察,对立体几何进行认知和理解。

教学资源:1. 教师提供的立体几何模型2. 教学PPT3. 学生的实验记录本4. 视频和图像资料教学步骤:第一步:引入与概念解释(约15分钟)1. 让学生观察教室中的各种几何物体,如书桌、椅子等。

引导学生思考并提出他们对这些物体的认识。

2. 通过提问,引导学生分辨物体的二维和三维特征,并引入立体几何的概念。

3. 利用PPT展示不同的立体几何形状,并解释每个形状的特征和性质。

第二步:实验观察与记录(约20分钟)1. 将学生分成小组,每组派发一套立体几何模型。

2. 要求学生用手触摸和观察模型,记录每个模型的特征和性质,包括表面的形状、边的长度等。

3. 学生可利用实验记录本进行记录,可以使用图表、文字或者图像等形式。

第三步:学生交流与分享(约20分钟)1. 鼓励学生在小组内交流和分享各自观察到的结果。

2. 让每个小组派代表分享他们所记录的立体几何模型的特征和性质。

3. 整合学生的观察结果,共同总结每个形状的特征和性质,并和学生进行讨论。

第四步:巩固与拓展(约25分钟)1. 通过实际生活中的例子,让学生应用立体几何的知识。

例如,利用一些常见的物体进行案例分析。

2. 利用PPT或者视频,展示一些与立体几何相关的实际应用,如建筑设计、工程制图等。

3. 鼓励学生提出自己的问题和思考,并引导他们进一步拓展对立体几何的认识。

第五步:练习与反馈(约20分钟)1. 教师提供一些练习题,让学生运用所学的立体几何知识进行解答。

2. 教师进行即时评价和反馈,纠正学生可能存在的错误。

3. 鼓励学生互相检查答案,并提出问题进行讨论。

第六步:课堂小结与延伸(约10分钟)1. 教师对本节课的教学内容进行小结,并强调学生所掌握的知识点和技能。

数学建模实验教学大纲

数学建模实验教学大纲

数学建模实验教学⼤纲《数学建模》实验教学⼤纲课程名称:数学建模课程编号:011850课程类别:专业基础选修课学时/学分:32/2开设学期:第4、5学期开设单位:数学与统计学院适⽤专业:数学与应⽤数学说明⼀、课程性质专业任选课⼆、教学⽬标通过上机实验, 对⼀些数学模型进⾏实际计算, 可以达到熟悉数学软件, 提⾼解决问题的能⼒. 要求学⽣先理解问题, 弄懂模型, 对软件有⼀定了解, 然后上机操作编程和利⽤专门软件计算. 数模实验是进⾏数学建模的实践性环节, 学⽣以三⼈为⼀组组成兴趣⼩组进⾏研究. 经过⼀段时间的探讨, 完成⼀篇数模论⽂, 包括模型的假设、建⽴和求解、计算⽅法的设计和计算机实现、结果的分析和检验、模型的改进等⽅⾯内容.三、学时分配表四、实验⽅法与要求建议实验课教师不再讲授, 主要靠学⽣⾃学, 教师可以适当指导. 学⽣上机时⼀边学习Matlab 软件介绍, ⼀边仿照例题的格式进操作和运⾏并针对实验内容完成实验操作.五、考核⽅式及要求1.考核⽅式:考试;考查2.成绩评定:计分制:百分制;五级分制;两级分制成绩构成:总评成绩由平时考核成绩、中期考核成绩和期末考核成绩综合评定本⽂实验⼀⼈⼝的预测⼀、实验性质:实验类别:专业⽅向/选修实验类型:综合性计划学时:2学时实验分组:⼆、实验⽬的:1.了解数据拟合的基本原理;会⽤matlab 求解数据拟合问题;2.要求学⽣了解Matlab 软件的基本操作、基本功能、基本运算和作图.三、实验的基本内容和要求:1.熟习Matlab 软件的作图;2. 掌握利⽤Matlab 软件解决拟合问题的⽅法;3.对上机实验的内容写出算法步骤, 记录和分析计算结果, 写出实验报告. 四、实验仪器设备及材料:计算机, Matlab数学软件五、实验操作要点:1.上机时⼀边学习Matlab 软件介绍⼀边仿照例题的格式进操作和运⾏;2.对具体问题建⽴的模型进⾏求解.六、实验教学建议:实验课教师不再讲授, 主要靠学⽣⾃学, 教师可以适当指导.实验⼆炼油⼚的⽣产计划⼀、实验性质:实验类别:专业⽅向/选修实验类型:综合性计划学时:2学时实验分组:⼆、实验⽬的:1. 了解线性规划模型的建⽴⽅法;2. 会⽤Matlab 软件求解线性规划问题.三、实验的基本内容和要求:1. 要求学⽣掌握Matlab 软件的操作;2. 利⽤Matlab 软件求解炼油⼚的⽣产计划;3. 对上机实验的内容写出算法步骤, 记录和分析计算结果, 写出实验报告.四、实验仪器设备及材料:计算机, Matlab数学软件五、实验操作要点:1.上机时⼀边学习Matlab 软件介绍⼀边仿照例题的格式进操作和运⾏;2.对具体问题建⽴的模型进⾏求解.六、实验教学建议:实验课教师不再讲授, 主要靠学⽣⾃学, 教师可以适当指导.实验三⼈寿保险的影响因素⼀、实验性质:实验类别:专业⽅向/选修实验类型:综合性计划学时:2学时实验分组:⼆、实验⽬的:1.了解统计回归的基本原理;2. 掌握线性回归与⾮线性回归.三、实验的基本内容和要求:1. 会⽤matlab 求解统计回归问题;2. 要求学⽣进⼀步了解Matlab 软件的操作;3. 对上机实验的内容写出算法步骤, 记录和分析计算结果, 写出实验报告.四、实验仪器设备及材料:计算机, Matlab数学软件五、实验操作要点:1.上机时⼀边学习Matlab 软件介绍⼀边仿照例题的格式进操作和运⾏;2.利⽤Matlab 软件求解⼈寿保险的影响因素.六、实验教学建议:实验课教师不再讲授, 主要靠学⽣⾃学, 教师可以适当指导.实验四⽔塔流量的估计⼀、实验性质:实验类别:专业⽅向/选修实验类型:综合性计划学时:2学时实验分组:⼆、实验⽬的:1. 掌握模型的建⽴⽅法;2. 掌握值⽅法三、实验的基本内容和要求:1. 表述⽔塔流量问题的分析过程;2. 利⽤插值计算⽔塔的流量;利⽤曲线拟合计算⽔塔的流量;3. 对上机实验的内容写出算法步骤, 记录和分析计算结果, 写出实验报告四、实验仪器设备及材料:计算机, Matlab数学软件五、实验操作要点:⾸先在上机前写出源程序, 上机时进⼊matlab 语⾔运⾏环境输⼊源程序, 然后调试和运⾏.六、实验教学建议:实验课教师不再讲授, 主要靠学⽣⾃学, 教师可以适当指导.实验五微分⽅程实验⼀、实验性质:实验类别:专业⽅向/选修实验类型:综合性计划学时:2学时实验分组:⼆、实验⽬的:1. 认识微分⽅程的建模过程;2. 认识微分⽅程的数值解法.三、实验的基本内容和要求:1. 熟练应⽤Matlab的符号求解⼯具箱求解常微分⽅程;2. 掌握机理分析建⽴微分⽅程的⽅法和步骤;3. 提⾼Matlab的编程应⽤技能.四、实验仪器设备及材料:计算机, Matlab数学软件五、实验操作要点:1.上机时⼀边学习Matlab 软件介绍⼀边仿照例题的格式进操作和运⾏;2.对具体问题建⽴的模型进⾏求解.六、实验教学建议:实验课教师不再讲授, 主要靠学⽣⾃学, 教师可以适当指导.指导书与参考资料:[1]. 姜启源, 谢⾦星等.数学模型(第三版)[M].北京:⾼等教育出版社, 2003.8[2]. 张志涌等Matlab教程(2009年修订)[M].北京:北就航空航天⼤学出版社2009.8.[3]. 周义仓, 赫孝良.数学建模实验[M].西安:西安交通⼤学出版社, 1999.8.执笔:王汝军审核:朱睦正制(修)订时间:2011-10-20。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学模型》实验指导书实验项目与学时分配表实验项目一:预测模型一、实验目的和要求:熟悉科学计算软件MATLAB的图形功能,会用软件画图,并进行数据模拟。

掌握数据预测方法。

二、实验内容:某乡镇企业2010-2016年的生产利润如下表;试预测2017年和2018年的利润。

三、过程:1.利用MATLAB软件或其它绘图软件,对所给数据画出散点图;2.根据散点图,分析合适的函数,并试探(画图作对比);3.确定函数类型,作数据拟合,确定函数中的参数;4.作误差分析;5. 考虑用cftool进行数据拟合,并作出结果分析.实验项目二:初等模型一、实验目的和要求:掌握线性方程组建模,并会用它解决一些实际问题;熟悉科学计算软件MATLAB求线性方程组的命令。

二、实验内容:问题一:某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开的车数相等,图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组;(2)使用MATLAB求线性方程组;(3)分析哪些流量数据是多余的;(4)为了唯一确定未知流量, 需要增添哪几条道路的流量统计;问题二:某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求过程:(1)建立确定的线性方程组;(2)使用MATLAB求线性方程组;实验项目三:简单优化模型一、实验目的和要求:学习函数极值的相关知识,熟悉科学计算软件MATLAB求极值的方法。

二、实验内容:问题一:一栋楼房的后面是一个很大的花园。

在花园中紧靠着楼房有一个温室,温室伸入花园宽2m ,高3m ,温室正上方是楼房的窗台。

清洁工打扫窗台周围,他得用梯子越过温室,一头放在花园中,一头靠在楼房的墙上。

因为温室是不能承受梯子压力的,所以梯子太短是不行的。

现清洁工只有一架7m 长的梯子,你认为它能达到要求吗?能满足要求的梯子的最小长度为多少?过程:1、 设温室宽为a ,高为b ,梯子倾斜的角度为x ,当梯子与温室顶端 A 处恰 好接触时,梯子的长度L 只与x 有关。

试写出函数L (x ) 及其定义域。

3、 在 Matlab 环境,先用命令 clear x 清除x 的值,再定义函数L(x) ,并求导。

4、 将a 、b 赋值,画出L(x) 的图形。

注意自变量x 的范围选取。

5、 求驻点,即求方程()0L x '=的根,有什么命令求根?并计算函数在驻点的值。

驻点唯一吗?6、 观测图形,选取初始点,用fminbnd 直接求L(x)的极小值。

并与(5)的结果比较。

7、 取a=2,b=2.8,重新运行程序,结果如何?问题二:在某医院走廊拐角处,垂直相交的两通道宽度分别是1m 与1.5m, 病床宽为0.80m ,问病床至多为多长才能被推过此拐角? 过程:1 建立数学模型;2 求解数学模型;3 改动模型中一些数据,再求解,观测结果。

实验项目四:数学规划问题一、实验目的和要求:熟悉数学规划软件LINGO 的运用,理解数学规划模型及其应用,建模过程和求解方法。

重点是模型的约束条件的建立和结果的分析。

二、实验内容:1、某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及信用等级、到期年限、收益如表2所示。

按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税。

此外还有以下限制:(1)政府及代办机构的证券总共至少要够进400万元;(2)所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高); (3)所购证券的平均年限不超过5年;表2证券以及信用等级、到期年限、收益2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C 的税前收益减少为4.8%,投资应否改变?实验项目五:微分方程模型一、实验目的和要求:理解一阶、二阶微分法在建模过程中的应用,熟悉利用MATLAB软件求解微分方程的方法。

注意模型的普遍性和模型的广泛性。

二、实验内容:问题一:一个半球体状的雪堆,其体积V的融化速率与半球面面积S成正比,比例系数K>0. 假设在融化过程中雪堆始终保持半球体状,已知初始半径为r0的雪堆在开始融化的3小时内,融化了其原体积的7/8,问该雪堆全部融化需要多少时间?过程:1.分析雪堆的融化过程;2.建立雪堆融化的微分方程模型;3.利用所给数据,确定参数;4.确定初始条件,求解方程(模型).5.扩展讨论:雪堆形状不同时的建模和求解方法(供参考,不作要求)问题二:现有一只兔子、一匹狼,兔子位于狼的正西100米处,假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子。

已知兔子、狼是匀速跑且狼的速度是兔子的两倍。

问兔子能否安全回到巢穴?过程:(1)建立狼的运动轨迹微分模型。

(2)画出兔子与狼的运动轨迹图形。

(3)用解析方法求解,问兔子能否安全回到巢穴?(4)用数值方法求解,问兔子能否安全回到巢穴?实验项目六:差分方程模型一、实验目的和要求:理解差分法在建模过程中的应用,熟悉利用MATLAB软件求解差分方程的方法。

注意模型的普遍性和模型的广泛性。

二、实验内容:1、作为房产公司的代理人,你要迅速准确地回答客房各方面的问题。

现有人看中了贵公司一套建筑面积为S(m2),单价为P(元/ m2)的房子。

他计划首付30%,其余70%用20年按揭贷款(贷款年利率r)。

请你提供下列信息:房屋总价格、首付款额、月付还款额。

当S=120m2,P=5200元/ m2,r=5.58% 时上述三个值。

要求:先求出房屋总价格、首付款额、月付还款额三者的符号解;再求出当S=120m2,P=5200元/ m2,r=5.58% 时三者的数值解。

过程:(1)给出模型假设及建立相应的差分方程;(2)利用递推公式法求解差分方程的符号解;(3)利用Matlab求解差分方程的符号解;(4)求出当S=120m2,P=5200元/ m2,r=5.58% 时三者的数值解;(5)分析按月还款与按年还款哪种对贷款者更有利?2、一年生植物春季发芽,夏天开花,秋季产种,没有腐烂,风干,被人为掠取的那些种子可以活过冬天,其中一部分能在第2年春季发芽,然后开花,产种,其中的另一部分虽未能发芽,但如又能活过一个冬天,则其中一部分可在第三年春季发芽,然后开花,产种,如此继续,一年生植物只能活1年,而近似的认为,种子最多可以活过两个冬天,试建立数学模型研究这种植物数量变化的规律,及它能一直繁殖下去的条件。

过程:(1)记一棵植物秋季产种的平均数为c,种子能活过一个冬天的(1岁种子)比例为b,活过一个冬天没有发芽又活过一个冬天的(2岁种子)比例仍为b,1岁种子发芽率a1,2岁种子发芽率a2。

建立相应的差分方程研究这种植物数量变化的规律;(2)利用递推公式法求解差分方程的符号解;(3)利用Matlab求解差分方程的符号解;(4)考察当X0=100,a1=0.5,a2=0.25,c=10,b=0.18~0.20这种植物能一直繁殖的条件实验项目七:层次分析法模型一、实验目的和要求:理解层次分析法,熟悉层次分析法在实际问题中的应用。

注意层次分析法建模的几个基本步骤,重点是成对比较矩阵的建立和一致性检验。

二、实验内容:假设你是一位应届毕业生,现有P1、P2、P3等三个就业单位可供你选择。

结合你的实际情况,建立一个优选模型,作出你的最优选择。

P1:广东某计算机软件公司,从事软件编程工作;P2:上海某国际贸易公司,从事报关工作;P3:武汉某机械制造公司,从事生产管理工作。

过程:1.分析自己选择就业岗位所要考虑的因素;2.构建目标层、准则层、方案层的层次结构模型;3.利用1-9尺度,依据个人的认同,构造各成对比较矩阵;4.对各成对比较矩阵进行一致性检验,不通过,应作修改,直到全部通过;5.求权向量和组合权向量,并作组合权向量的一致性检验,不通过,应作修改(主要是对一致性比率较大的成对比较矩阵作调整),直到全部通过.6.根据组合权向量,选取权向量最大的方案,作为决策方案.实验项目八:概率统计模型一、实验目的和要求:理解概率统计模型的应用,了解蒙特卡洛算法来进行模拟随机数。

二、实验内容:某报童以每份0.03元的价格买进报纸,以0.05元的价格出售. 根据长期统计,报纸每天的销售量及百分率为已知当天销售不出去的报纸,将以每份0.02元的价格退还报社.试用模拟方法确定报童每天买进报纸数量,使报童的平均总收入为最大?过程:(1)给出模型假设;(2)让时间从1开始变化到365产生销售量的随机数;(3)计算当天的收入,计算累计利润;(4)通过比较得出最优订货量。

相关文档
最新文档