2021版高考数学一轮复习第九章立体几何9.7.2利用空间向量求二面角与空间距离练习理北师大版

合集下载

2020年高考数学一轮复习专题9.7空间向量在几何体中的运用(一)练习(含解析)

2020年高考数学一轮复习专题9.7空间向量在几何体中的运用(一)练习(含解析)

9.7 空间向量在空间几何体的运用(一)一.设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为1n ,2n ,则有如下结论:二.点面距已知AB 为平面α的一条斜线段(A 在平面α内),n 为平面α的法向量,则B 到平面α的距离为|||cos ,|||||||||AB d AB AB AB AB ⋅===<>n n n ||||AB ⋅n n .注:空间中其他距离问题一般都可以转化为点面距问题.考向一 利用空间向量证明平行【例1】在正方体ABCD ­A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD . 【答案】见解析【解析】法一 如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,1,1,于是DA 1→=(1,0,1),DB →=(1,1,0),MN →=⎝ ⎛⎭⎪⎫12,0,12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥DA 1→,n ⊥DB →,即⎩⎪⎨⎪⎧n ·DA 1→=x +z =0,n ·DB →=x +y =0,取x =1,则y =-1,z =-1,∴平面A 1BD 的一个法向量为n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n .∴MN ∥平面A 1BD .法二 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN →∥DA 1→,∴MN ∥平面A 1BD .法三 MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12DA →-12A 1A →=12()DB →+BA →-12()A 1B →+BA →=12DB →-12A 1B →. 即MN →可用A 1B →与DB →线性表示,故MN →与A 1B →,DB →是共面向量,故MN ∥平面A 1BD . 【拓展】1.(变条件)本例中条件不变,试证明平面A 1BD ∥平面CB 1D 1.[证明] 由例题解析知,C (0,1,0),D 1(0,0,1),B 1(1,1,1), 则CD 1→=(0,-1,1),D 1B 1→=(1,1,0), 设平面CB 1D 1的法向量为m =(x 1,μ1,z 1),则⎩⎪⎨⎪⎧m ⊥CD 1→m ⊥D 1B 1→,即⎩⎪⎨⎪⎧m ·CD 1→=-y 1+z 1=0,m ·D 1B 1→=x 1+y 1=0,令y 1=1,可得平面CB 1D 1的一个法向量为m =(-1,1,1), 又平面A 1BD 的一个法向量为n =(1,-1,-1). 所以m =-n ,所以m ∥n ,故平面A 1BD ∥平面CB 1D 1. 2.(变条件)若本例换为:在如图3­2­4所示的多面体中,EF ⊥平面AEB ,AE ⊥EB ,AD ∥EF ,EF ∥BC ,BC =2AD =4,EF =3,AE =BE =2,G 是BC 的中点,求证:AB ∥平面DEG .图3­2­4[证明] ∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB , ∴EF ⊥AE ,EF ⊥BE .又∵AE ⊥EB ,∴EB ,EF ,EA 两两垂直.以点E 为坐标原点,EB ,EF ,EA 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0),C (2,4,0),F (0,3,0),D (0,2,2),G (2,2,0),∴ED →=(0,2,2),EG →=(2,2,0),AB →=(2,0,-2).设平面DEG 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ED →·n =0,EG →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,2x +2y =0,令y =1,得z =-1,x =-1,则n =(-1,1,-1), ∴AB →·n =-2+0+2=0,即AB →⊥n . ∵AB ⊄平面DEG , ∴AB ∥平面DEG .考向二 垂直、【例2】如图1,在四棱锥S ABCD -中,底面ABCD 是正方形,AS ⊥底面ABCD ,且A S A B =,E 是SC 的中点.求证:(1)直线AD ⊥平面SAB ; (2)平面BDE ⊥平面ABCD .图1 图2【答案】见解析【解析】如图2,以A 为原点, AB ,AD ,AS 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Axyz ,设2AS AB ==,则(0,0,0)A ,(0,2,0)D ,(2,2,0)C ,(2,0,0)B ,(0,0,2)S ,(1,1,1)E 易得(0,0,2)AS =,(2,0,0)AB =设平面SAB 的法向量为(,,)x y z =n ,则AS AB ⎧⎪⎨⎪⎩⊥⊥n n ,即2020AS z AB x ⎧⋅==⎪⎨⋅==⎪⎩n n取1y =,可得平面SAB 的一个法向量为(0,1,0)=n又(0,2,0)AD =,所以2AD =n ,所以AD ∥n ,所以直线AD ⊥平面SAB 方法1:如图2,连接AC 交BD 于点O ,连接OE ,则点O 的坐标为(1,1,0) 易得(0,0,1)OE =,(0,0,2)AS =,显然2AS OE =,故AS OE ∥,所以AS OE ∥ 又AS ⊥底面ABCD ,所以OE ⊥底面ABCD 又OE ⊂平面BDE ,所以平面BDE ⊥平面ABCD 方法2:易得(1,1,1)BE =-,(2,2,0)BD =-设平面BDE 的法向量为(,,)x y z =m ,则BE BD ⎧⎪⎨⎪⎩⊥⊥m m ,即0220BE x y z BD x y ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩m m取1x =,得1y =,0z =,所以平面1A BD 的一个法向量为(1,1,0)=mAS ⊥底面ABCD ,可得(0,0,2)AS =是平面ABCD 的一个法向量因为(0,0,2)(1,1,0)0AS ⋅=⋅=m ,所以AS ⊥m ,所以平面BDE ⊥平面ABCD【举一反三】1.如图所示,正三棱柱ABC ­A 1B 1C 1的所有棱长都为2,D 为CC 1的中点,求证:AB 1⊥平面A 1BD .【答案】见解析【解析】法一:如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC ­A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系, 则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 所以AB 1→=(1,2,-3),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为AB 1→·BA 1→=1×(-1)+2×2+(-3)×3=0.AB 1→·BD →=1×(-2)+2×1+(-3)×0=0.所以AB 1→⊥BA 1→,AB 1→⊥BD →,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,所以AB 1⊥平面A 1BD . 法二:建系同方法一.设平面A 1BD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ⊥BA 1→n ⊥BD→,即⎩⎪⎨⎪⎧n ·BA 1→=-x +2y +3z =0,n ·BD →=-2x +y =0,令x =1得平面A 1BD 的一个法向量为n =(1,2,-3), 又AB 1→=(1,2,-3),所以n =AB 1→,即AB 1→∥n . 所以AB 1⊥平面A 1BD .考向三 利用空间向量解决平行与垂直关系中的探索性问题【例3】如图,三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,BC ⊥AC ,BC =AC =AA 1=2,D 为AC 的中点.(1)求证:AB 1∥平面BDC 1;(2)设AB 1的中点为G ,问:在矩形BCC 1B 1内是否存在点H ,使得GH ⊥平面BDC 1.若存在,求出点H 的位置,若不存在,说明理由. 【答案】见解析【解析】(1)证明:连接B 1C ,设B 1C ∩BC 1=M ,连接MD ,在△AB 1C 中,M 为B 1C 中点,D 为AC 中点, ∴DM ∥AB 1,又∵AB 1不在平面BDC 1内,DM 在平面BDC 1内, ∴AB 1∥平面BDC 1.(2)以C 1为坐标原点,C 1A 1→为x 轴,C 1C →为y 轴,C 1B 1→为z 轴建立空间直角坐标系. 依题意,得C 1(0,0,0),D (1,2,0),B (0,2,2),G (1,1,1),假设存在H (0,m ,n ), GH →=(-1,m -1,n -1),C 1D →=(1,2,0),DB →=(-1,0,2),由GH ⊥平面BC 1D ,得GH →⊥C 1D →⇒(-1,m -1,n -1)·(1,2,0)=0⇒m =32.同理,由GH →⊥DB →得n =12,即在矩形BCC 1B 1内存在点H ,使得GH ⊥平面BDC 1.此时点H 到B 1C 1的距离为32,到C 1C 的距离为12.【举一反三】1.如图所示,在四棱锥P -ABCD 中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,E ,F 分别为PA ,BD 中点,PA =PD =AD =2.(1)求证:EF ∥平面PBC ;(2)在棱PC 上是否存在一点G ,使GF ⊥平面EDF ?若存在,指出点G 的位置;若不存在,说明理由.【答案】见解析【解析】(1)证明:如图所示,连接AC .因为底面ABCD 是正方形,AC 与BD 互相平分.F 是BD 中点,所以F 是AC 中点.在△PAC 中,E 是PA 中点,F 是AC 中点,所以EF ∥PC . 又因为EF ⊄平面PBC ,PC ⊂平面PBC ,所以EF ∥平面PBC . (2)取AD 中点O ,连接PO .在△PAD 中,PA =PD ,所以PO ⊥AD .因为平面PAD ⊥底面ABCD ,且平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD . 因为OF ⊂平面ABCD ,所以PO ⊥OF . 又因为F 是AC 中点,所以OF ⊥AD .以O 为原点,OA ,OF ,OP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.因为PA =PD =AD =2,所以OP =3,则C (-1,2,0),D (-1,0,0),P (0,0,3),E ⎝ ⎛⎭⎪⎫12,0,32,F (0,1,0).于是DE →=⎝ ⎛⎭⎪⎫32,0,32,DF →=(1,1,0).设平面EFD 的法向量n =(x 0,y 0,z 0).因为⎩⎪⎨⎪⎧n ·DF →=0,n ·DE →=0,所以⎩⎪⎨⎪⎧x 0+y 0=0,32x 0+32z 0=0,即⎩⎨⎧y 0=-x 0,z 0=-3x 0.令x 0=1,则n =(1,-1,-3).假设在棱PC 上存在一点G ,使GF ⊥平面EDF . 设G (x 1,y 1,z 1),则FG →=(x 1,y 1-1,z 1). 因为EDF 的一个法向量n =(1,-1,-3). 因为GF ⊥平面EDF ,所以FG →=λn .于是⎩⎨⎧x 1=λ,y 1-1=-λ,z 1=-3λ,即⎩⎨⎧x 1=λ,y 1=1-λ,z 1=-3λ.又因为点G 在棱PC 上,所以GC →与PC →共线.因为PC →=(-1,2,-3),CG →=(x 1+1,y 1-2,z 1), 所以x 1+1-1=y 1-22=z 1-3, 即1+λ-1=-λ-12=-3λ-3,无解.故在棱PC 上不存在一点G ,使GF ⊥平面EDF . 考向四 点面距【例4】如图,已知正方体1111ABCD A B C D -的棱长为3a ,求平面11AB D 与平面1BDC 之间的距离..【解析】由正方体的性质,易得平面11AB D ∥平面1BDC , 则两平面间的距离可转化为点B 到平面11AB D 的距离.如图,以D 为坐标原点,DA ,DC ,1DD 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,【举一反三】1.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bie nao ).已知在鳖臑P ABC -中,PA ⊥平面ABC ,2PA AB BC ===,M 为PC 的中点,则点P 到平面MAB 的距离为_____.【解析】以B 为坐标原点,BA,BC 所在直线分别为x 轴,y 轴建立空间直角坐标系,如图,则()()()()0,0,0,2,0,0,2,0,2,0,2,0B A P C ,由M 为PC 的中点可得()1,1,1M ;()()1,1,1,2,0,0BM BA ==, ()2,0,2BP =.设(),,x y z =n 为平面ABM 的一个法向量,则00n BA n BM ⎧⋅=⎨⋅=⎩,即200x x y z =⎧⎨++=⎩,令1z =-,可得()0,1,1=-n ,点P 到平面MAB 的距离为BP d ⋅==n n.1.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点A 关于平面BDC 1对称点为M ,则M 到平面A 1B 1C 1D 1的距离为( )A .32B .54C .43D .53【答案】D【解析】以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,D (0,0,0),B (1,1,0),C 1(0,1,1),A (1,0,0),A 1(1,0,1),DB =(1,1,0),1DC =(0,1,1), 设平面BDC 1的法向量n =(x ,y ,z ),则100n DB x y n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x=1,得n =(1,-1,1),∴平面BDC 1的方程为x-y+z=0,过点A (1,0,0)且垂直于平面BDC 1的直线方程为: (x-1)=-y=z ,令(x-1)=-y=z=t ,得x=t+1,y=-t ,z=t ,代入平面方程x-y+z=0,得t+1+t+t=0,解得t=13- ,∴过点A (1,0,0)且垂直于平面BDC 1的直线方程与平面BDC 1的交点为211333⎛⎫ ⎪⎝⎭,,-∴点A 关于平面BDC 1对称点M 122333⎛⎫ ⎪⎝⎭,,-, 1225333A M ⎛⎫=- ⎪⎝⎭,,-,平面A 1B 1C 1D 1的法向量m =(0,0,1),∴M 到平面A 1B 1C 1D 1的距离为d=15=3m A M m⋅故选:D . 2.在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )AB.2C.3λ D【答案】D【解析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED =(﹣2,0,1),EF =(0,2,0)1sin()cos 22C C π+===(0,λ,1), 设平面D 1EF 的法向量n =(x ,y ,z ),则1·20·20n ED x z n EF y ⎧=-+=⎨==⎩,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d=5EM n n==N 为EM 中点,所以N ,选D .3.如图:正三棱柱111ABC A B C -的底面边长为3,D 是CB 延长线上一点,且BD BC =,二面角1B AD B --的大小为60︒;(1)求点1C 到平面1B AD 的距离;(2)若P 是线段AD 上的一点 ,且12DP A A =,在线段1DC 上是否存在一点Q ,使直线//PQ 平面1ABC ?若存在,请指出这一点的位置;若不存在,请说明理由.【答案】(1)4; (2)存在,当113C Q QD =时,1//PQ AC 知//PQ 平面1ABC . 【解析】(1)设E 为AD 的中点,则BE AD ⊥,在正三棱柱111ABC A B C -中,1BB ⊥平面ABC ,而AD ⊂平面ABC ,所以1BB AD ⊥,而1BB EB B =,因此AD ⊥平面1BB E ,而1B E ⊂平面1BB E ,所以有1B E AD ⊥1BEB ∴∠为二面角1B AD B --的平面角,如下图所示:160BEB ∴∠=︒120ABD ∠=︒,32BE =,11tan BB BEB BE ∴∠==侧棱11AA BB ==;111111C ADB A C DB A BB C V V V ---==11273328⎛=⨯= ⎝⎭又AD =11AB B D ==知1112ADB S AD B E ∆=⋅=∴点1C 到平面1ADB 的距离2738d =⨯=(2)由(1)可知AD =1AA =,12DP AA =,13AP PD ∴=,当113C Q QD =时,有1//PQ AC 成立,而 1AC ⊂平面1ABC ,所以 //PQ 平面1ABC ,故存在,当113C Q QD =时,符合题意。

二面角的求法公式

二面角的求法公式

二面角的求法公式
二面角的求法有多种,以下是其中的一些:
1. 一般求法:先找到二面角的平面角,然后用量角器直接测量。

2. 法向量法:利用向量的数量积来求二面角。

设两个法向量分别为
$\mathbf{a}$ 和 $\mathbf{b}$,则二面角的大小为
$\arccos(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \times
\mathbf{b}})$。

3. 平行向量法:利用向量的平行性质来求二面角。

设两个平行的向量分别为$\mathbf{a}$ 和 $\mathbf{b}$,则二面角的大小为
$\arccos(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \times
\mathbf{b}})$。

4. 方程方法:利用空间几何的知识,建立二面角的方程,然后求解。

这些方法各有优缺点,具体使用哪种方法需要根据具体的情况来决定。

新课改地区2021版高考数学一轮复习核心素养测评四十五利用空间向量求二面角与空间距离新人教B版202

新课改地区2021版高考数学一轮复习核心素养测评四十五利用空间向量求二面角与空间距离新人教B版202

核心素养测评四十五利用空间向量求二面角与空间距离(30分钟60分)一、选择题(每小题5分,共25分)1.在空间直角坐标系O-xyz中,平面OAB的一个法向量为n=(2,-2,1),已知点P(-1,3,2),则点P到平面OAB的距离d等于( )A.4B.2C.3D.1【解析】选B.P点到平面OAB的距离为d===2.2.三棱锥A-BCD中,平面ABD与平面BCD的法向量分别为n1,n2,若<n1,n2>=,则二面角A-BD-C 的大小为( )A. B. C.或 D.或【解析】选C.如图所示,当二面角A-BD-C为锐角时,它就等于<n1,n2>=;当二面角A-BD-C 为钝角时,它应等于π-<n1,n2>=π-=.3.已知正四棱柱ABCD-A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为 ( )A.2B.C.D.1【解析】选D.以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系(如图),则D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),C1(0,2,2),E(0,2,),易知AC1∥平面BDE.设n=(x,y,z)是平面BDE的法向量.则取y=1,则n=(-1,1,-)为平面BDE的一个法向量.又=(2,0,0),所以点A到平面BDE的距离是d===1.故直线AC1到平面BED的距离为1.4.如图,点C在圆锥PO的底面圆O上,AB是直径,AB=8,∠BAC=30°,圆锥的母线与底面成的角为60°,则点A到平面PBC的距离为( )A. B.2C. D.【解析】选C.如图,过点O作AB的垂线Ox,以Ox,OB,OP分别为x,y,z轴建立空间直角坐标系,由题意可得A(0,-4,0),B(0,4,0),C(-2,2,0),P(0,0,4).设平面PBC的法向量为m=(x,y,z),则所以所以y=z=-x,所以取m=(-1,,1),因为=(0,4,4),所以d===,所以点A到平面PBC的距离为.5.(多选)如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4,AC,BD交于点E,则( )A.M为PB的中点B.二面角B-PD-A的大小为C.若O为AD的中点,则OP⊥OED.直线MC与平面BDP所成的角为【解析】选ABC.如图①,连接ME,因为PD∥平面MAC,平面MAC∩平面PDB=ME,所以PD∥ME.因为四边形ABCD是正方形,所以E为BD的中点,所以M为PB的中点.如图②,取AD的中点O,连接OP,OE.因为PA=PD,所以OP⊥AD.又因为平面PAD⊥平面ABCD,且OP⊂平面PAD,所以OP⊥平面ABCD.因为OE⊂平面ABCD,所以OP⊥OE.因为四边形ABCD是正方形,所以OE⊥AD.如图②,建立空间直角坐标系O-xyz,则P(0,0,),D(2,0,0),B(-2,4,0),=(4,-4,0),=(2,0,-).设平面BDP的法向量为n=(x,y,z),则即令x=1,则y=1,z=.于是n=(1,1,).平面PAD的法向量为p=(0,1,0),所以cos<n,p>==.由题意知二面角B-PD-A为锐角,所以它的大小为.由题意知M,C(2,4,0),=.设直线MC与平面BDP所成角为α,则si nα=|cos<n,>|==,所以直线MC与平面BDP所成角不为.二、填空题(每小题5分,共15分)6.如图所示,P是二面角α-AB-β棱上一点,分别在α,β内引射线PM,PN,若∠BPM=∠BPN=45°,∠MPN=60°,则二面角α-AB-β大小为________.【解析】如图,过M在α内作MF⊥AB,过F在β内作FN⊥AB交PN于点N,连接MN.因为∠MPB=∠NPB=45°,所以△PMF≌△PNF.设PM=1,则MF=NF=,PM=PN=1,又因为∠MPN=60°,所以MN=PM=PN=1,所以MN2=MF2+NF2,所以∠MFN=90°.答案:90°7.在四面体P-ABC中,PA,PB,PC两两垂直,设PA=PB=PC=a,则点P到平面ABC的距离为________.【解析】根据题意,可建立如图所示的空间直角坐标系P-xyz,则P(0,0,0),A(a,0,0),B(0,a,0),C(0,0,a).过点P作PH⊥平面ABC,交平面ABC于点H,则PH的长即为点P到平面ABC的距离.因为PA=PB=PC,所以H为△ABC的外心.又因为△ABC为正三角形,所以H为△ABC的重心,可得H点的坐标为,,.所以PH== a.所以点P到平面ABC的距离为a.答案: a8.如图,在空间直角坐标系中有棱长为a的正方体ABCD-A1B1C1D1,点M是线段DC1上的动点,则点M到直线AD1距离的最小值为________.【解析】设M(0,m,m)(0≤m≤a),=(-a,0,a),直线AD1的一个单位方向向量s 0=-,0,,由=(0,-m,a-m),故点M到直线AD1的距离d===,根式内的二次函数当m=-=时取最小值2-a×+a2=a2,故d的最小值为 a.答案: a三、解答题(每小题10分,共20分)9.如图所示,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,D是棱CC1上的一点,P是AD 的延长线与A1C1的延长线的交点,且PB1∥平面BDA1.(1)求证:CD=C1D.(2)求二面角A-A1D-B的平面角的余弦值.(3)求点C到平面B1DP的距离.【解析】(1)连接AB1,交BA1于点O,连接OD.因为B1P∥平面BDA1,B1P⊂平面AB1P,平面AB1P∩平面BA1D=OD,所以B1P∥OD.又因为O为B1A的中点,所以D为AP的中点.因为C1D∥AA1,所以C1为A1P的中点.所以DC1=AA1=CC1,所以C1D=CD.(2)建立如图所示的空间直角坐标系A1-xyz,则B1(1,0,0),B(1,0,1),D0,1,,所以=(1,0,0),=(1,0,1),=0,1,.设平面BA1D的一个法向量为n=(x1,y1,z1).由得令z1=2,则x1=-2,y1=-1,所以n=(-2,-1,2).又=(1,0,0)为平面AA1D的一个法向量,所以cos<n,>===-.由图形可知二面角A-A1D-B为锐角,所以二面角A-A1D-B的平面角的余弦值为.(3)因为C(0,1,1),D0,1,,B1(1,0,0),P(0,2,0),所以=0,0,-,=1,-1,-,=0,1,-.设平面B1DP的一个法向量为m=(x2,y2,z2).由得令z2=2,则x2=2,y2=1,所以m=(2,1,2).所以点C到平面B1DP的距离d==.10.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M 是上异于C,D的点.(1)证明:平面AMD⊥平面BMC.(2)当三棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.【解析】(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以 DM⊥CM.又 BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz.当三棱锥M-ABC体积最大时,M为的中点.由题设得D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),M(0,1,1),=(-2,1,1),=(0,2,0),=(2,0,0),设n=(x,y,z)是平面MAB的法向量,则即可取n=(1,0,2).是平面MCD的法向量,因此cos<n,>==,si n<n,>=,所以平面MAB与平面MCD所成二面角的正弦值是.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析

用空间向量法求解立体几何问题典例及解析以多面体为载体,以空间向量为工具,来论证和求解空间角、距离、线线关系以及线面关系相关问题,是近年来高考数学的重点和热点,用空间向量解立体几何问题,极大地降低了求解立几的难度,很大程度上呈现出程序化思想。

更易于学生们所接受,故而执教者应高度重视空间向量的工具性。

首先,梳理一下利用空间向量解决立体几何的知识和基本求解方法 一:利用空间向量求空间角 (1)两条异面直线所成的夹角范围:两条异面直线所成的夹角的取值范围是 。

向量求法:设直线,a b 的方向向量为a,b ,其夹角为θ,则有cos ___________.θ= (2)直线与平面所成的角定义:直线与平面所成的角是指直线与它在这个平面内的射影所成的角。

范围:直线和平面所夹角的取值范围是 。

向量求法:设直线l 的方向向量为a ,平面的法向量为n ,直线与法向量所成角的余弦值为|cos |___________.θ=直线与平面所成的角为ϕ,则有sin ___________.ϕ=或在平面内任取一个向量m ,则|cos |___________.θ=.(3)二面角二面角的取值范围是 . 二面角的向量求法:方法一:在两个半平面内任取两个与棱垂直的向量,则这两个向量所成的 即为所求的二面角的大小;方法二:设1n ,2n 分别是两个面的 ,则向量1n 与2n 的夹角(或其补角)即为所求二面角的平面角的大小。

二:利用空间向量求空间距离 (1)点面距离的向量公式平面α的法向量为n ,点P 是平面α外一点,点M 为平面α内任意一点,则点P 到平面α的距离d 就是 ,即d =||||M P ⋅ n n .(2)线面、面面距离的向量公式平面α∥直线l ,平面α的法向量为n ,点M ∈α、P ∈l ,平面α与直线l 间的距离d 就是MP 在向量n 方向射影的绝对值,即d = .平面α∥β,平面α的法向量为n ,点M ∈α、P ∈β,平面α与平面β的距离d 就是MP 在向量n 方向射影的绝对值,即d =||||M P ⋅ n n .(3)异面直线的距离的向量公式设向量n 与两异面直线a 、b 都垂直,M ∈a 、P ∈b ,则两异面直线a 、b 间的距离d就是MP 在向量n 方向射影的绝对值,即d =||||M P n n .三:利用空间向量解证平行、垂直关系1:①所谓直线的方向向量,就是指 的向量,一条直线的方向向量有 个。

2021高考数学题源探究——立体几何空间向量在求空间角及距离中的应用

2021高考数学题源探究——立体几何空间向量在求空间角及距离中的应用

空间向量在求空间角及距离中的应用【考点梳理】1.异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围(0,π) 求法 cos β=a ·b |a ||b | cos θ=|cos β|=|a ·b ||a ||b | 2.求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB→,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).4.利用空间向量求距离(1)两点间的距离设点()111,,x y z A ,点()222,,x y z B ,则AB =AB()()()222121212x x y y z z =-+-+-(2)点到平面的距离 如图所示,设AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离n dnAB⋅=.【教材改编】1.(选修2-1 P111A组T1改编)在正方体ABCD-A1B1C1D1中,点M为棱CC1上的中点,则A1M与D1C所成的角为()A.30°B.45°C.60°D.90°[答案] B[解析] 以D A,DC,1DD为x,y,z轴正方向建立空间直角坐标系,设正方体棱长为2,则D1(0,0,2),C(0,2,0),A1(2,0,2),M(0,2,1),∴1A M=(-2,2,-1),1D C=(0,2,-2),设A1M与D1C所成角为θ,∴cos θ=|cos〈1A M,1D C〉|=1111D CD CA M⋅A M=63×22=22,∴θ=45°.2. (选修2-1 P118A组T10改编)如图,棱长为a的正方体OEAC-BFGD中,P是AB上的一点,Q是CD上的一点.当点P为对角线AB的中点,点Q在棱CD上运动时,则PQ的最小值为()A.a B.22aC.32aD.52a[答案] B[解析] 建立如图所示的空间直角坐标系O -xyz ,当点P 为对角线AB 的中点时,点P 的坐标是⎝⎛⎭⎫a 2,a 2,a 2.因为点Q 在线段CD 上,设Q (0,a ,z ). PQ =⎝⎛⎭⎫a 22+⎝⎛⎭⎫a 2-a 2+⎝⎛⎭⎫a 2-z 2 = ⎝⎛⎭⎫z -a 22+12a 2. 当z =a 2时,PQ 的最小值为22a . 即点Q 在棱CD 的中点时,PQ 有最小值22a .故选B.3.(选修2-1 P 112A 组T 4改编)在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22[答案] B[解析] 以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1),E (1,0,12),D (0,1,0), ∴1D A =(0,1,-1),1A E =⎝⎛⎭⎫1,0,-12,所以有1111D 00n n ⎧A ⋅=⎪⎨A E⋅=⎪⎩,即⎩⎪⎨⎪⎧ y -z =0,1-12z =0,解得⎩⎪⎨⎪⎧y =2,z =2. ∴1n =(1,2,2).∵平面ABCD 的一个法向量为2n =(0,0,1),∴cos 〈1n ,2n 〉=23×1=23. 即所成的锐二面角的余弦值为23.4.(选修2-1 P 97练习T 3改编)如图,正方体ABCD -A 1B 1C 1D 1中,点M 是AB 的中点,则D 1B 与CM 所成角的余弦值为( )A.105 B.1510 C.1515 D.155[答案] C[解析] 建立如图所示的空间直角坐标系D -xyz .设正方体棱长为2,则M (2,1,0),C (0,2,0),B (2,2,0),D 1(0,0,2),∴C M=(2,-1,0),1D B=(2,2,-2),cos〈C M,1D B〉=11C DC DM⋅BM B=25×23=1515.∴D1B与CM所成角的余弦值为1515,故选C.5.(选修2-1 P111练习T3改编)如图,在正方体ABCD-A1B1C1D1中,E为BC1的中点,则DE与平面BCC1B1所成角的正切值为()A.62 B.63C. 2D.22[答案] C[解析] 设正方体ABCD-A1B1C1D1的棱长为2,以D为原点,以DA为x轴,DC为y轴,DD1为z轴,建立如图所示的空间直角坐标系,∵E为BC1的中点,∴D(0,0,0),E(1,2,1),∴D E=(1,2,1),设DE与平面BCC1B1所成角的平面角为θ,∵平面BCC1B1的法向量n=(0,1,0),∴sin θ=|cos〈D E,n〉|=⎪⎪⎪⎪26=63,∴cos θ=1-23=33,∴tan θ=6333=2,故选 C.6.(选修2-1 P 98A 组T 4改编)正四面体ABCD 棱长为2,E ,F 分别为BC ,AD 中点,则EF 的长为________.[答案] 2[解析] |F E |2=F E 2=(C E +CD +DF )2=C E 2+CD 2+DF 2+2(C E ·CD +C E ·DF +CD ·DF ) =12+22+12+2(1×2×cos 120°+0+2×1×cos 120°)=2,∴|F E |=2,∴EF 的长为 2.7.(选修2-1 P 118A 组T 12改编)如图将正方形纸片ABCD 沿对角线AC 折成直二面角,点E 、F 分别为AD 、BC 的中点,O 是原正方形ABCD 的中心,则折叠后∠EOF 的大小为________.[答案] 120[解析] 如图所示,以OA ,OB ,D O 方向为x ,y ,z 轴正方向建立空间直角坐标系, 设正方形边长为22,则A (2,0,0),B (0,2,0),C (-2,0,0),D (0,0,2)∴E (1,0,1),F (-1,1,0),∴OE =(1,0,1),F O =(-1,1,0),∴cos 〈OE ,F O 〉=F F OE ⋅O OE O =-12×2=-12, ∴∠EOF =120°.8.(选修2-1 P 117A 组T 5改编)已知三点A (0,2,3),B (-2,1,6),C (1,-1,5),则△ABC 的面积为________.[答案] 73 [解析] AB =(-2,-1,3),C A =(1,-3,2),∴|AB |=14,|C A |=14.∴cos 〈AB ,C A 〉=CCAB⋅A AB A =714=12. 则sin 〈AB ,C A 〉=32. ∴S △ABC =12|AB |·|C A |sin 〈AB ,C A 〉=12×14×14×32=732. 9. (选修2-1 P 112A 组T 6改编)如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =23,则点A 到平面MBC 的距离为________,平面ACM 与平面BCD 所成二面角的正弦值为________.[答案] 215 25[解析] 取CD的中点O,连接OB,OM,则OB⊥CD,OM⊥CD,又平面MCD⊥平面BCD,则MO⊥平面BCD.以O为原点,直线OC,BO,OM为x轴,y轴,z轴,建立如图所示的空间直角坐标系,OB=OM =3,则各点的坐标分别为O(0,0,0),C(1,0,0),M(0,0,3),B(0,-3,0),A(0,-3,23).①设n=(x,y,z)是平面MBC的法向量,则CB=(1,3,0),BM=(0,3,3).由n⊥CB,得x+3y=0;由n⊥BM,得3y+3z=0.取n=(3,-1,1),BA=(0,0,23),则距离d=nnBA⋅=2155.②C M=(-1,0,3),C A=(-1,-3,23).设平面ACM的法向量为1n=(x,y,z),由11CCnn⎧⊥M⎪⎨⊥A⎪⎩得⎩⎨⎧-x+3z=0,-x-3y+23z=0,解得x=3z,y=z,取1n=(3,1,1).平面BCD的法向量为2n=(0,0,1),则cos〈1n,2n〉=1212n nn n⋅=15.设所求二面角为θ,则sin θ=1-⎝⎛⎭⎫152=255.10.(选修2-1 P118A组T11改编)某几何体ABC-A1B1C1的三视图和直观图如图所示.(1)求证:A1C⊥平面AB1C1;(2)求二面角C 1-AB 1-C 的余弦值.[解析] (1)证明:由三视图可知,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面A 1B 1C 1, B 1C 1⊥A 1C 1,且|AA 1|=|AC |=4,|BC |=3.以点C 为原点,分别以CA 、CB 、CC 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示.由已知可得A (4,0,0),B (0,3,0),C (0,0,0),A 1(4,0,4),B 1(0,3,4),C 1(0,0,4). ∴1C A =(-4,0,-4),1C A =(4,0,-4),11C B =(0,3,0). ∴1C A ·1C A =0,1C A ·11C B =0.∴A 1C ⊥C 1A ,A 1C ⊥C 1B 1.又C 1A ∩C 1B 1=C 1,∴A 1C ⊥平面AB 1C 1.(2)由(1)得,C A =(4,0,0),1C B =(0,3,4).设平面AB 1C 的法向量为n =(x ,y ,z ),则1C B ⊥n ,C A ⊥n . ∴1C 0C 0n n ⎧B ⋅=⎪⎨A⋅=⎪⎩,即⎩⎪⎨⎪⎧3y +4z =04x =0. 令y =4,得平面AB 1C 的一个法向量为n =(0,4,-3). 由(1)知,1C A 是平面AB 1C 1的一个法向量.∴cos 〈n ,1C A〉=11C C n n ⋅AA =12202=3210. 故二面角C 1-AB 1-C 的余弦值为3210. 11.(选修2-1 P 119B 组T 3改编)在四棱锥S -ABCD 中,底面ABCD 是直角梯形,∠DAB =∠CDA =90°,SA ⊥平面ABCD ,CD =2AB ,E 为SC 中点.(1)求证:BE ∥平面SAD ;(2)若SA =AD =2,且平面SBC 与平面SAD 所成的二面角的余弦值为63,求四棱锥S -ABCD 的体积.[解析] (1)证明:设点F 为SD 的中点,连接AF ,EF , ∵E 点为SC 的中点,∴EF 为△SDC 的中位线,∴EF //12DC , 又∵∠DAB =∠CDA =90°且CD =2AB ,∴AB //12CD , ∴AB //EF ,∴四边形ABEF 为平行四边形,∴BE ∥AF ,又∵AF ⊂平面SAD ,BE ⊄平面SAD ,∴BE ∥平面SAD .(2)∵SA ⊥平面ABCD ,则可建以A 为原点的空间直角坐标系(如图所示),SA =AD =2,∴A (0,0,0),D (-2,0,0),S (0,0,2),设B (0,m,0),∴C (-2,2m,0),∴S B =(0,m ,-2),C B =(-2,m,0),设平面SBC 的法向量为n =(x ,y ,z )且SB ∩BC =B ,∴SB 0C 0n n ⎧⋅=⎪⎨B ⋅=⎪⎩,∴n =(m 2,1,m 2), 显然,平面SAD 的法向量为AB =(0,m,0),又∵平面SBC 与平面SAD 所成的二面角的余弦值为63,∴|cos 〈AB ,n 〉|=n nAB ⋅AB , ∴⎪⎪⎪⎪⎪⎪⎪⎪m |m | m 22+1=63,∴m =1,∴|AB |=1,|CD |=2, ∴S 直角梯形ABCD =3,∴V 四棱锥S -ABCD =13×3×2=2.。

高三数学一轮复习 第九章《立体几何》9-1精品

高三数学一轮复习 第九章《立体几何》9-1精品
• (3)能用向量方法证明有关线、面位置关系的一些定理 (包括三垂线定理)
• (4)能用向量方法解决线线、线面、面面的夹角的计算 问题,体会向量方法在研究几何问题中的作用.
精选版ppt
7
• ●命题趋势
• 1.空间几何体
• 空间几何体是立体几何初步的重要内容,高考非常重视 对这一部分的考查.一是在选择、填空题中有针对性地 考查空间几何体的概念、性质及主要几何量(角度、距 离、面积、体积)的计算等.二是在解答题中,以空间 几何体为载体考查线面位置关系的推理、论证及有关计 算.
精选版ppt
9
• 3.空间向量与立体几何(理)
• 高考试题中的立体几何解答题,包括部分选择、填空题, 大多都可以使用空间向量来解答.高考在注重对立体几 何中传统知识和方法考查的同时,加大了对空间向量的 考查.给考生展现综合利用所学知识解决实际问题的才 能提供更宽阔的舞台.
• 这一部分高考命题主要有以下几个方面:
精选版ppt
27
• 1°球面被经过球心的平面截得的圆叫做大圆. • 2°不过球心的截面截得的圆叫做球的小圆.
精选版ppt
28
• (3)球面距离:
• 1°定义:在球面上两点之间的最短距离,就是经过这
两点的 在这两点间的一段
的长度,这个弧
长叫做两大点圆的球面距离.
劣弧
• 2°地球上的经纬线
• 当把地球看作一个球时,经线是球面上从北极到南极的 半个大圆,纬线是与地轴垂直的平面与球面的交线,其
• ②棱锥的高、斜高和斜高在底面内的射影组成一个直角 三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成 一个直角三角形.
• 4.棱台的概念及性质
• (1)定义:棱锥被 的部分叫做棱台.

空间向量与立体几何向量法求二面角(二

空间向量与立体几何向量法求二面角(二

D
AB CD
面面角:
②法向量法n1,n2源自 n1,n2n2
n1,n2
n2
n1,n2
n1




n1
l
l
cos cos n1, n2 cos cos n1, n2
注意法向量的方向:一进一出,二面角等于法向量夹角; 同进同出,二面角等于法向量夹角的补角
(2)求证:PB⊥平面EFD
(2)证明:依题意得B(1,1,0),PB (1,1,1)
又DE (0, 1 , 1),故PB DE 0 1 1 0
22
所以PB DE
2 2Z
由已知EF PB,
P
且EF DE E,
所以PB 平面EFD
E F
D
C Y
A B
X
BC SO,BC AO,SO AO O BC 平面SOA, BC SA
(2)求直线SD与平面SAB所成角的正弦值。 z
解:由(1)知SO,OA,BC两两垂直。
S
故以OA、OB、OS为正交基底建立
空间直角坐标系如图。则 S(0,0,1),D( 2,- 2 2,0),
C O By
四边形,侧面SBC 底面ABCD。已知 ABC 450
AB=2,BC= 2 2 ,SA=SB= 3 .
(1)求证 SA BC.
(2)求直线SD与平面SAB所成角的正弦值。
S
C
OB
D
A
证明:(1)取BC中点O,连接OA、OS。 S
则由BC 2 2得OB 2,
又AB 2,ABC 450, 得OA 2
依题意得A(1, 0, 0), P(0, 0,1), P

2021版高考数学一轮复习第九章立体几何9.7.2利用空间向量求二面角与空间距离练习理北师大版202005130224

2021版高考数学一轮复习第九章立体几何9.7.2利用空间向量求二面角与空间距离练习理北师大版202005130224

9.7.2 利用空间向量求二面角与空间距离核心考点·精准研析考点一求二面角命题精解读1.考什么:(1)考查与二面角相关的问题.(2)考查直观想象与数学运算的核心素养.2.怎么考:以柱、锥、台等几何体为载体考查与二面角相关的证明、求值问题.3.新趋势:以求二面角或某一三角函数值为主要命题方向.学霸好方法1.利用空间向量求二面角的两种方法:(1)分别在二面角的两个半平面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小;(2)通过平面的法向量来求:设二面角的两个半平面的法向量分别为n1和n2,则二面角的大小等于<n1,n2>(或π-<n1,n2>).2.交汇问题: 常常与证明线面的平行、垂直关系同时考查.求二面角或某一三角函数值【典例】 (2019·全国卷Ⅱ)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1.(2)若AE=A1E,求二面角B-EC-C1的正弦值.【解析】(1)由已知得,B1C1⊥平面ABB1A1,BE平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,EC1∩B1C1=C1,所以BE⊥平面EB1C1.(2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=45°,故AE=AB,AA1=2AB.以D为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系D-xyz,则C(0,1,0),B(1,1,0),C1(0,1,2),E(1,0,1),=(1,0,0),=(1,-1,1),=(0,0,2).设平面EBC的法向量为n=(x,y,z),则即所以可取n=(0,-1,-1).设平面ECC1的法向量为m=(x,y,z),则即所以可取m=(1,1,0).于是cos<n,m> ==-.所以二面角B-EC-C1的正弦值为.与二面角有关的综合问题【典例】如图,在梯形ABCD中,AB∥CD,∠BCD=,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF=1.(1)求证:EF⊥平面BCF.(2)点M在线段EF(含端点)上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值.【解析】(1)在梯形ABCD中,因为AB∥CD,AD=CD=BC=1,又因为∠BCD=,所以∠ADC=π,∠ACD=,所以∠ACB=,故AC⊥BC.因为CF⊥平面ABCD,AC平面ABCD,所以AC⊥CF,而CF∩BC=C,所以AC⊥平面BCF,因为EF∥AC,所以EF⊥平面BCF.(2)由(1)可建立分别以直线CA,CB,CF为x轴,y轴,z轴的空间直角坐标系如图所示,AD=CD=BC=CF=1,令FM=λ(0≤λ≤),则C(0,0,0),A(,0,0),B(0,1,0),M(λ,0,1),所以=(-,1,0),=(λ,-1,1),设n1=(x,y,z)为平面MAB的一个法向量,由得取x=1,则n1=(1,,-λ),因为n2=(1,0,0)是平面FCB的一个法向量,所以cos θ===,因为0≤λ≤,所以当λ=0时,cos θ有最小值,所以点M与点F重合时,平面MAB与平面FCB所成锐二面角最大,此时二面角的余弦值为.1.在正方体ABCD-A1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为( )A. B. C. D.【解析】选B.以A为原点建立如图所示的空间直角坐标系A-xyz,设棱长为1,则A1(0,0,1),E1,0,,D(0,1,0),所以=(0,1,-1),=1,0,-,设平面A1ED的一个法向量为n1=(1,y,z),则所以所以n1=(1,2,2).因为平面ABCD的一个法向量为n2=(0,0,1),所以cos<n1,n2>==.即所成的锐二面角的余弦值为.2.如图,四棱锥P ABCD中,底面ABCD是正方形,PD⊥平面ABCD且PD=AD=2,点E是射线AB上一点,当二面角P-EC-D为时,AE= ( )A.1B.C.2-D.2+2【解析】选D.设AE=a(a≥0),以点D为原点,DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则D(0,0,0),C(0,2,0),E(2,a,0),P(0,0,2),则=(0,2,-2),=(2,a,-2),设平面PEC的法向量为m=(x,y,z),则即故x∶y∶z=(2-a)∶2∶2,故令m=(2-a,2,2),设平面ECD的法向量为n=(0,0,1),二面角P EC D的平面角θ=,所以cosθ===,所以a=2+2或a=-2+2(舍去),故AE=2+2.1.在矩形ABCD中,AB=4,BC=3,沿对角线AC把矩形折成二面角D-AC-B的平面角为60°时,BD=________________.【解析】在矩形ABCD中,AB=4,BC=3,过点D作DE⊥AC于点E,过点B作BF⊥AC于点F,则||=||==,||=5-2×=.沿对角线AC把矩形折成二面角D-AC-B的平面角为60°时,则=++,=+++2·+2·+2·=×2++0+0+2×××cos(180°-60°)=.所以,BD=.答案:2.(2019·全国卷Ⅲ)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE.(2)求图2中的二面角B-CG-A的大小.【解析】(1)由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,BE∩BC=B,故AB⊥平面BCGE.又因为AB平面ABC,所以平面ABC⊥平面BCGE.(2)作EH⊥BC,垂足为H.因为EH平面BCGE,平面BCGE⊥平面ABC,所以EH⊥平面ABC.由已知,菱形BCGE的边长为2,∠EBC=60°,可求得BH=1,EH=.以H为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系H-xyz,则A(-1,1,0),C(1,0,0),G(2,0,),=(1,0,),=(2,-1,0).设平面ACGD的法向量为n=(x,y,z),则即所以可取n=(3,6,-).又平面BCGE的法向量可取为m=(0,1,0),所以cos n,m ==.因此二面角B-CG-A的大小为30°.考点二求空间距离【典例】1.设正方体ABCD-A1B1C1D1的棱长为2,则点D1到平面A1BD的距离是________________.2.已知斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2,且AA1⊥A1C,AA1=A1C.(1)求这个三棱柱的体积.(2)求顶点C 到侧面A1ABB1的距离.【解题导思】序号联想解题1 在正方体中,求点D1到平面A1BD的距离,首先想到利用向量法.2 观察所给图形,想到尝试利用转化法或等体积法.【解析】1.如图建立空间直角坐标系,则D1(0,0,2),A1(2,0,2),D(0,0,0),B(2,2,0),所以=(2,0,0),=(2,0,2),=(2,2,0),设平面A1BD的一个法向量n=(x,y,z),则.令x=1,则n=(1,-1,-1),所以点D1到平面A1BD的距离d===.答案:2.(1)取AC的中点D,连接A1D,因为AA1⊥A1C,AA1=A1C,AC=2,所以A1D⊥AC,A1D=,又因为侧面A1ACC1与底面ABC垂直,所以A1D⊥底面ABC,所以A1D就是三棱柱的高,因为∠ABC=90°,BC=2,AC=2,所以AB=2,所以底面积为S△ABC=×2×2=2,所以三棱柱的体积为V=S△ABC·A1D=2×=2.(2)等体积法:连接A1B,根据定义,点C到面A1ABB1的距离,即为三棱锥C-A1AB的高h,由=得·h=S△ABC·A1D,即×2h=×2×,所以h=为所求.求点到平面的距离的常用方法(1)直接法:过P点作平面α的垂线,垂足为Q,把PQ放在某个三角形中,解三角形求出PQ的长度就是点P到平面α的距离.(2)转化法:若点P所在的直线l平行于平面α,则转化为直线l上某一个点到平面α的距离来求.(3)等体积法:求点面距离可以转化为求三棱锥的高,如四面体中点A到平面BCD的距离,用等体积法求得h=.(4)向量法:设平面α的一个法向量为n,A是α内任意点,则点P到α的距离为d=.如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2,求点A到平面MBC的距离.【解析】如图,取CD的中点O,连接OB,OM,因为△BCD与△MCD均为正三角形,所以OB⊥CD,OM⊥CD,又平面MCD⊥平面BCD,所以MO⊥平面BCD.以O为坐标原点,直线OC,BO,OM分别为x轴,y轴,z轴,建立空间直角坐标系O-xyz.因为△BCD与△MCD都是边长为2的正三角形,所以OB=OM=,则O(0,0,0),C(1,0,0),M(0,0,),B(0,-,0),A(0,-,2),所以=(1,,0),=(0,,).设平面MBC的法向量为n=(x,y,z),由得即取x=,可得平面MBC的一个法向量为n=(,-1,1).又=(0,0,2),所以所求距离为d==.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.7.2 利用空间向量求二面角与空间距离核心考点·精准研析考点一求二面角命题精解读1.考什么:(1)考查与二面角相关的问题.(2)考查直观想象与数学运算的核心素养.2.怎么考:以柱、锥、台等几何体为载体考查与二面角相关的证明、求值问题.3.新趋势:以求二面角或某一三角函数值为主要命题方向.学霸好方法1.利用空间向量求二面角的两种方法:(1)分别在二面角的两个半平面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小;(2)通过平面的法向量来求:设二面角的两个半平面的法向量分别为n1和n2,则二面角的大小等于<n1,n2>(或π-<n1,n2>).2.交汇问题: 常常与证明线面的平行、垂直关系同时考查.求二面角或某一三角函数值【典例】 (2019·全国卷Ⅱ)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1.(2)若AE=A1E,求二面角B-EC-C1的正弦值.【解析】(1)由已知得,B1C1⊥平面ABB1A1,BE平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,EC1∩B1C1=C1,所以BE⊥平面EB1C1.(2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=45°,故AE=AB,AA1=2AB.以D为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系D-xyz,则C(0,1,0),B(1,1,0),C1(0,1,2),E(1,0,1),=(1,0,0),=(1,-1,1),=(0,0,2).设平面EBC的法向量为n=(x,y,z),则即所以可取n=(0,-1,-1).设平面ECC1的法向量为m=(x,y,z),则即所以可取m=(1,1,0).于是cos<n,m> ==-.所以二面角B-EC-C1的正弦值为.与二面角有关的综合问题【典例】如图,在梯形ABCD中,AB∥CD,∠BCD=,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF=1.(1)求证:EF⊥平面BCF.(2)点M在线段EF(含端点)上运动,当点M在什么位置时,平面MAB与平面FCB所成锐二面角最大,并求此时二面角的余弦值.【解析】(1)在梯形ABCD中,因为AB∥CD,AD=CD=BC=1,又因为∠BCD=,所以∠ADC=π,∠ACD=,所以∠ACB=,故AC⊥BC.因为CF⊥平面ABCD,AC平面ABCD,所以AC⊥CF,而CF∩BC=C,所以AC⊥平面BCF,因为EF∥AC,所以EF⊥平面BCF.(2)由(1)可建立分别以直线CA,CB,CF为x轴,y轴,z轴的空间直角坐标系如图所示,AD=CD=BC=CF=1,令FM=λ(0≤λ≤),则C(0,0,0),A(,0,0),B(0,1,0),M(λ,0,1),所以=(-,1,0),=(λ,-1,1),设n1=(x,y,z)为平面MAB的一个法向量,由得取x=1,则n1=(1,,-λ),因为n2=(1,0,0)是平面FCB的一个法向量,所以cos θ===,因为0≤λ≤,所以当λ=0时,cos θ有最小值,所以点M与点F重合时,平面MAB与平面FCB所成锐二面角最大,此时二面角的余弦值为.1.在正方体ABCD-A1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为( )A. B. C. D.【解析】选B.以A为原点建立如图所示的空间直角坐标系A-xyz,设棱长为1,则A1(0,0,1),E1,0,,D(0,1,0),所以=(0,1,-1),=1,0,-,设平面A1ED的一个法向量为n1=(1,y,z),则所以所以n1=(1,2,2).因为平面ABCD的一个法向量为n2=(0,0,1),所以cos<n1,n2>==.即所成的锐二面角的余弦值为.2.如图,四棱锥P ABCD中,底面ABCD是正方形,PD⊥平面ABCD且PD=AD=2,点E是射线AB上一点,当二面角P-EC-D为时,AE= ( )A.1B.C.2-D.2+2【解析】选D.设AE=a(a≥0),以点D为原点,DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则D(0,0,0),C(0,2,0),E(2,a,0),P(0,0,2),则=(0,2,-2),=(2,a,-2),设平面PEC的法向量为m=(x,y,z),则即故x∶y∶z=(2-a)∶2∶2,故令m=(2-a,2,2),设平面ECD的法向量为n=(0,0,1),二面角P EC D的平面角θ=,所以cosθ===,所以a=2+2或a=-2+2(舍去),故AE=2+2.1.在矩形ABCD中,AB=4,BC=3,沿对角线AC把矩形折成二面角D-AC-B的平面角为60°时,BD=________________.【解析】在矩形ABCD中,AB=4,BC=3,过点D作DE⊥AC于点E,过点B作BF⊥AC于点F,则||=||==,||=5-2×=.沿对角线AC把矩形折成二面角D-AC-B的平面角为60°时,则=++,=+++2·+2·+2·=×2++0+0+2×××cos(180°-60°)=.所以,BD=.答案:2.(2019·全国卷Ⅲ)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE.(2)求图2中的二面角B-CG-A的大小.【解析】(1)由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,BE∩BC=B,故AB⊥平面BCGE.又因为AB平面ABC,所以平面ABC⊥平面BCGE.(2)作EH⊥BC,垂足为H.因为EH平面BCGE,平面BCGE⊥平面ABC,所以EH⊥平面ABC.由已知,菱形BCGE的边长为2,∠EBC=60°,可求得BH=1,EH=.以H为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系H-xyz,则A(-1,1,0),C(1,0,0),G(2,0,),=(1,0,),=(2,-1,0).设平面ACGD的法向量为n=(x,y,z),则即所以可取n=(3,6,-).又平面BCGE的法向量可取为m=(0,1,0),所以cos n,m ==.因此二面角B-CG-A的大小为30°.考点二求空间距离【典例】1.设正方体ABCD-A1B1C1D1的棱长为2,则点D1到平面A1BD的距离是________________.2.已知斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2,且AA1⊥A1C,AA1=A1C.(1)求这个三棱柱的体积.(2)求顶点C 到侧面A1ABB1的距离.【解题导思】序号联想解题1 在正方体中,求点D1到平面A1BD的距离,首先想到利用向量法.2 观察所给图形,想到尝试利用转化法或等体积法.【解析】1.如图建立空间直角坐标系,则D1(0,0,2),A1(2,0,2),D(0,0,0),B(2,2,0),所以=(2,0,0),=(2,0,2),=(2,2,0),设平面A1BD的一个法向量n=(x,y,z),则.令x=1,则n=(1,-1,-1),所以点D1到平面A1BD的距离d===.答案:2.(1)取AC的中点D,连接A1D,因为AA1⊥A1C,AA1=A1C,AC=2,所以A1D⊥AC,A1D=,又因为侧面A1ACC1与底面ABC垂直,所以A1D⊥底面ABC,所以A1D就是三棱柱的高,因为∠ABC=90°,BC=2,AC=2,所以AB=2,所以底面积为S△ABC=×2×2=2,所以三棱柱的体积为V=S△ABC·A1D=2×=2.(2)等体积法:连接A1B,根据定义,点C到面A1ABB1的距离,即为三棱锥C-A1AB的高h,由=得·h=S△ABC·A1D,即×2h=×2×,所以h=为所求.求点到平面的距离的常用方法(1)直接法:过P点作平面α的垂线,垂足为Q,把PQ放在某个三角形中,解三角形求出PQ的长度就是点P到平面α的距离.(2)转化法:若点P所在的直线l平行于平面α,则转化为直线l上某一个点到平面α的距离来求.(3)等体积法:求点面距离可以转化为求三棱锥的高,如四面体中点A到平面BCD的距离,用等体积法求得h=.(4)向量法:设平面α的一个法向量为n,A是α内任意点,则点P到α的距离为d=.如图,△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,AB=2,求点A到平面MBC的距离.【解析】如图,取CD的中点O,连接OB,OM,因为△BCD与△MCD均为正三角形,所以OB⊥CD,OM⊥CD,又平面MCD⊥平面BCD,所以MO⊥平面BCD.以O为坐标原点,直线OC,BO,OM分别为x轴,y轴,z轴,建立空间直角坐标系O-xyz.因为△BCD与△MCD都是边长为2的正三角形,所以OB=OM=,则O(0,0,0),C(1,0,0),M(0,0,),B(0,-,0),A(0,-,2),所以=(1,,0),=(0,,).设平面MBC的法向量为n=(x,y,z),由得即取x=,可得平面MBC的一个法向量为n=(,-1,1).又=(0,0,2),所以所求距离为d==.。

相关文档
最新文档