【 数 列 】

合集下载

高三数学数列试题答案及解析

高三数学数列试题答案及解析

高三数学数列试题答案及解析1.对于正项数列,定义为的“光阴”值,现知某数列的“光阴”值为,则数列的通项公式为________【答案】【解析】由题意,,,所以,则时,,两式相减得,,也适合此式,故.【考点】新定义与数列的通项公式.2.已知数列的通项公式an= (n∈N*),求数列前30项中的最大项和最小项.【答案】最大项为a10,最小项为a9【解析】∵an =1+,∴当n≤9时,an随着n的增大越来越小且小于1,当10≤n≤30时,a n 随着n的增大越来越小且大于1,∴前30项中最大项为a10,最小项为a9.3.(本小题满分12分)已知数列的前项和是,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,求适合方程的的值.(Ⅲ)记,是否存在实数M,使得对一切恒成立,若存在,请求出M 的最小值;若不存在,请说明理由。

【答案】,2/9【解析】19. 解:(Ⅰ)当时,,由,得.当时,,,∴,即.∴.∴是以为首项,为公比的等比数列.故.………………6分(Ⅱ),,………………8分………10分解方程,得………………12分(2)解法一:,由错误!不能通过编辑域代码创建对象。

,当,又故存在实数M,使得对一切M的最小值为2/9。

4.把数列的所有项按照从大到小的原则写成如题15图所示的数表,其中的第行有个数,第行的第个数(从左数起)记为则_____________.【答案】【解析】略5.设等差数列的前项和为,若,,则()A.63B.45C.36D.27【答案】B【解析】在等差数列中,成等差数列。

因为,,所以。

故选B。

【考点】等差数列的性质点评:在等差数列中,成等差数列。

6.(本小题满分14分)已知曲线.从点向曲线引斜率为的切线,切点为。

(1)求数列的通项公式;(2)证明:。

【答案】(1);(2)证明见解析。

【解析】(1)设直线:,联立得:,则,∴(舍去),即,∴(2)证明:∵∴由于,可令函数,则,令,得,给定区间,则有,则函数在上单调递减,∴,即在恒成立,又,则有,即。

高考数学压轴专题专题备战高考《数列》全集汇编含答案解析

高考数学压轴专题专题备战高考《数列》全集汇编含答案解析

【高中数学】数学高考《数列》试题含答案一、选择题1.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.2.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 【答案】C【解析】 【分析】由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.3.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.4.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.5.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺B .2.5尺C .3.5尺D .4.5尺【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.6.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L()332432299=+++=.【点睛】本题考查周期数列求和,属于中档题.7.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.8.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=,解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.9.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】 由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.10.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.11.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.12.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.13.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20 C .20或-10 D .-20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B . 【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用14.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9. 故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.15.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.16.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333n n n n ⎛⎫∴==-=-≥= ⎪⎝⎭, 即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造. 故选:D .【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.17.已知数列{}n a 的前n 项和()2*23n S n n n N =+∈,则{}na 的通项公式为( ) A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C【解析】【分析】 首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可.【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立,所以41n a n =+,故选C.【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.18.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1 CD .2【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+; 接下来利用累加法可求得()12n n n a +=,从而()1211211na n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N ++=+∈且1300n S =,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n S =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值. 【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n =, 因为22485048+348503501224,132522S S ⨯+⨯====, 所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+ 因为2491149349412722S a a +⨯-=+=+, 2511151351413752S a a +⨯-=+=+, 又因为23a <,125a a +=,所以 12a >S 时,n的最大值为49所以当1300n故选:A【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.。

数列知识点归纳

数列知识点归纳

数列知识点归纳
1. 定义:数列是按照一定规律排列的数的集合。

2. 公式表示:数列可以用通项公式表示,通项公式中含有一个变量n,表示数列中的第n项。

3. 等差数列:如果一个数列中相邻两项之间的差值相等,那么这个数列就是等差数列。

其通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n为项数。

4. 等比数列:如果一个数列中相邻两项之间的比值相等,那么这个数列就是等比数列。

其通项公式为an=a1*q^(n-1),其中a1为首项,q为公比,n为项数。

5. 递推公式:数列也可以用递推公式表示,递推公式中含有一个或多个前一项的变量,表示第n项与前一项之间的关系。

6. 求和公式:数列的前n项和可以用求和公式表示,包括等差数列和、等比数列和及其它一些特殊数列和。

7. 应用:数列在数学中有广泛的应用,如在数学分析、数值计算、概率论、组合数学等领域中都有涉及。

在物理、化学、生物、经济等学科中也有广泛应用。

《数列》教材分析.doc

《数列》教材分析.doc

北师大版必修五第一章《数列》教材分析数列作为一种特殊的函数,是反映自然规律的基本数学模型。

通过对日常生活中大量实际问题的分析,建立等差数列和等比数列这两种数列模型,探索并掌握它们的一些基本数量关系,感受这两种数列模型的广泛应用,并利用它们解决一些实际问题。

一、本章教学目标通过本章的学习,学生将掌握等差数列和等比数列两种数列模型,形成从实际问题中抽象出数列模型的能力,并学会利用数列模型去解决一些实际问题。

(1)通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图像、通项、公式),了解数列是一种特殊函数。

(2)通过实例,理解等差数列、等比数列的概念。

(3)探索并掌握等差数列、等比数列的通项公式与前n项和的公式。

(4)能在具体的问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题。

(5)体会等差数列、等比数列与一次函数、指数函数的关系。

二、本章设计意图1、数列是刻画离散过程的重要数学模型,数列的知识也是高等数学的基础,它可以看成是定义在正整数集或其有限子集的函数,因此,从函数的角度来研究数列,即是对函数学习的延伸,也是一种特殊的函数模型。

2、本章力求通过具体的问题情景展现,帮助学生了解数列的概念,通过对具体问题的探究,理解与掌握两类特殊的数列,并应用它们解决实际生活中相关的一些问题。

编写中体现了数学来源于生活,又服务于生活的这种基础学科的特点,使学生感觉到又亲切又好奇,充满魅力。

3、教材在例题、习题的编排上,注重让学生重点掌握数列的概念、特殊数列的通项公式、求和公式等,并应用这些知识解决实际生活中的问题,渗透函数思想解决问题。

4、教材在内容设计上突出了一些重要的数学思想方法。

如类比思想、归纳思想、数形结合思想、算法思想、方程思想、特殊到一般等思想贯穿于全章内容的始终。

5、教材在知识内容设计上,注意了数列与函数、算法、方程等的联系,适度应用现代信息计术,帮助学生理解数学,提高数学学习的兴趣。

2023年数学高考复习真题演练(2021-2022年高考真题)23 数列的基本知识与概念 (含详解)

2023年数学高考复习真题演练(2021-2022年高考真题)23 数列的基本知识与概念 (含详解)

专题23 数列的基本知识与概念【考点预测】1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. (2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集{}12n ⋯,,,)为定义域的函数()n a f n =当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法. 2.数列的分类(1)按照项数有限和无限分:(2)按单调性来分:111()n n n nn n a a a a a a C +++≥⎧⎪≥⎪⎨==⎪⎪⎩递增数列:递减数列: ,常数列:常数摆动数列 3.数列的两种常用的表示方法(1)通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{}n a 的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 【方法技巧与总结】(1)若数列{}n a 的前n 项和为n S ,通项公式为n a ,则1112n n n S n a S S n n N *-=⎧⎪=⎨-≥∈⎪⎩ , , ,注意:根据n S 求n a 时,不要忽视对1n =的验证.(2)在数列{}n a 中,若n a 最大,则11n n n n a a a a -+≥⎧⎨≥⎩ , 若n a 最小,则11.n n nn a a a a -+≤⎧⎨≤⎩【题型归纳目录】 题型一:数列的周期性 题型二:数列的单调性 题型三:数列的最大(小)项 题型四:数列中的规律问题 题型五:数列的最值问题【典例例题】题型一:数列的周期性例1.已知无穷数列{}n a 满足()21N n n n a a a x *++=-∈,且11a =,2a x =()x ∈Z ,若数列{}n a 的前2020项中有100项是0,则下列哪个不能是x 的取值( )A .1147B .1148C .1142-D .1143-例2.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =( )A .2B .5C .7D .8例3.数列{}n a 满足12a =,111nn na a a ++=-,其前n 项积为n T ,则10T 等于( ) A .16B .16-C .6D .6-例4.若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为( ) A .67B .68C .134D .167例5.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若125a =,则2021a 等于( )A .15B .25C .35D .45例6.已知数列{}n a 满足,()()111122,32n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩*(,1)n N n ∈>,若1(2,3)a ∈且记数列{}n a 的前n 项和为n S ,若2019=m S ,则2019S 的值为( ) A .60572B .3028C .60552D .3029例7.(2022·广东汕头·三模)已知数列{}n a 中,114a =-,当1n >时,111n n a a -=-,则2022a =( ) A .14-B .45C .5D .45-例8.(2022·河北·沧县中学高三阶段练习)已知数列{}n a 中,()1112n n n a a a n --=⋅+≥,12a =,则10a 等于( )A .12-B .12C .-1D .2题型二:数列的单调性例9.(2022·四川达州·二模(理))已知单调递增数列{}n a 满足9,102121,109n n m n a m n n -⎧≥⎪=⎨⎛⎫+-< ⎪⎪⎝⎭⎩,则实数m 的取值范围是( ) A .[)12,+∞B .()1,12C .()1,9D .[)9,+∞例10.(2022·河南·温县第一高级中学高三阶段练习(文))已知函数()()633,7,7x a x x f x a x -⎧--≤=⎨>⎩,若数列{}n a 满足()()*n a f n n N =∈且{}n a 是递增数列,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()2,3D .[)2,3例11.(2022·浙江·高三专题练习)已知数列{}n a 的首项为11a =,2a a =,且121(2,)n n a a n n n N *++=+≥∈,若数列{}n a 单调递增,则a 的取值范围为( ) A .12a <<B .23a <<C .3522a <<D .1322a <<例12.(2022·全国·高三专题练习)已知等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),数列{}n b 是递增的,且2n b An Bn =+,则实数B 的取值范围为( )A .2,3⎡⎫-+∞⎪⎢⎣⎭B .[)1,-+∞C .()1,-+∞D .1,3⎛⎫-+∞ ⎪⎝⎭例13.(2022·全国·高三专题练习(理))已知数列{}n a 满足()712,83,8n n a n n a n a n *-⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N ,若对于任意n *∈N 都有1n n a a +>,则实数a 的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭例14.(2022·全国·高三专题练习)设数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列, 则实数b 的取值范围为( ) A .(2,)-+∞B .[2,)-+∞C .(3,)-+∞D .(,3)-∞-【方法技巧与总结】解决数列的单调性问题的3种方法题型三:数列的最大(小)项例15.已知数列{}n a 的首项为1,且()()*111n n n a a n n ++=∈+N ,则na的最小值是( )A .12 B .1 C .2D .3例16.已知数列{}n a 满足110a = ,12n na a n+-=,则n a n 的最小值为( )A .-1B .11 2C .163D .27 4例17.已知数列{}n a 的前n 项和n S ,且2(1)n n S a n -=-,22na n nb S =,则数列{}n b 的最小项为( )A .第3项B .第4项C .第5项D .第6项例18.已知数列{}n a 的前n 项和2212,n S n n =-数列{||}n a 的前n 项和,n T 则nT n的最小值____ 例19.数列,1n =,2,,中的最小项的值为__________.【方法技巧与总结】求数列的最大项与最小项的常用方法(1)将数列视为函数()f x 当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出()f x 的最值,进而求出数列的最大(小)项.(2)通过通项公式n a 研究数列的单调性,利用11()2n n n n a a a n a -+≥⎧⎨≥⎩≥,确定最大项,利用11()2n n nn a a a n a -+≤⎧⎨≤⎩≥,确定最小项.(3)比较法:若有1()()10n n a a f n f n -=+->+或0n a >时11n na a +>,则1n n a a +>,则数列{}n a 是递增数列,所以数列{}n a 的最小项为1(1)a f =;若有1()()10n n a a f n f n =-+-<+或0n a >时11n na a +<,则1n n a a <+,则数列{}n a 是递减数列,所以数列{}n a 的最大项为1(1)a f =. 题型四:数列中的规律问题例20.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 幅图的蜂巢总数,则(4)f =( );()f n =( ). A .35 2331n n +- B .36 2331n n -+ C .37 2331n n -+ D .38 2331n n +-例21.由正整数组成的数对按规律排列如下:()1,1,1,2,()2,1,()1,3,()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,()1,5,()2,4,⋅⋅⋅.若数对(),m n 满足()22222021m n -⋅-=,,m n N *∈,则数对(),m n 排在( )A .第386位B .第193位C .第348位D .第174位例22.已知“整数对”按如下规律排列:()()()()()1,11,22,11,32,2,,,,,()()()3,11,42,3,,()3,2,,()4,1,…,则第68个“整数对”为( ) A .()1,12B .()3,10C .()2,11D .()3,9例23.将正整数排列如下: 1 2 34 5 67 8 9 10 11 12 13 14 15 ……则图中数2020出现在 A .第64行3列B .第64行4列C .第65行3列D .第65行4列题型五:数列的最值问题例24.(2022·北京市第十二中学高三期中)已知数列{}n a 满足32n a n n=+,则数列{}n a 的最小值为( )A.343B .575C .D .12例25.(2022·全国·高三专题练习)已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a例26.(2022·河南·高三阶段练习(理))在数列{}n a 中,11a =,1n n a a n --=(N n +∈,2n ≥),则11n a n ++的最小值是( ) A .12B .34C .1D .32例27.(2022·辽宁·高三阶段练习)若数列{}n a 满足24122,n nn n n a T a a a -==⋅⋅⋅,则n T 的最小值为( )A .92-B .102-C .112-D .122-例28.(2022·全国·高三专题练习)若数列{}n a 满足113a =,1n n n a a +-=,则na n的最小值为( ) A .235B .143C 12D .13例29.(2022·全国·高三专题练习)设221316n a n n =-+-,则数列{}n a 中最大项的值为( ) A .134B .5C .6D .132例30.(2022·浙江·高三专题练习)已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[]40,25-- B .[]40,0- C .[]25,25- D .[]25,0-【过关测试】一、单选题 1.(2022·陕西·交大附中模拟预测(理))函数()f x 定义如下表,数列{}()N n x n ∈满足02x =,且对任意的自然数n 均有()1n n x f x +=,则2022x =( )2.(2022·内蒙古赤峰·模拟预测(理))大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中曾经经历过的两仪数量总和,其中一列数如下:0,2,4,8,12,18,24,32,40,50,…….按此规律得到的数列记为{}n a ,其前n 项和为n S ,给出以下结论:①22122n a n n -=-;②182是数列{}n a 中的项;③21210a =;④当n 为偶数时,()2122n n n S S S n n *++-+=+∈N .其中正确的序号是( )A .①②B .②③C .①④D .③④3.(2022·河南·模拟预测(理))观察数组()2,2,()3,4,()4,8,()5,16,()6,32,…,根据规律,可得第8个数组为( ) A .()9,128 B .()10,128 C .()9,256D .()10,2564.(2022·吉林长春·模拟预测(理))已知数列{}n a 满足()()11120n n a a +-++=,112a =,则数列{}n a 的前2022项积为( ) A .16-B .23C .6-D .325.(2022·江西·临川一中模拟预测(理))已知数列{}n a 满足()1112,21*+-==∈-n n n a a a n N a ,则2022=a ( )A .13B .1C .2D .526.(2022·全国·高三专题练习)已知数列{}n a 的通项公式为n a a n n=+,则“21a a >”是“数列{}n a 单调递增”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.(2022·全国·高三专题练习)已知数列{}n a 满足()2**2,5,,1,5,.n n tn n n a t n n n ⎧-+≤∈⎪=⎨->∈⎪⎩N N 且数列{}n a 是单调递增数列,则t 的取值范围是( ) A .919,24⎛⎫⎪⎝⎭B .9,2⎛⎫+∞ ⎪⎝⎭C .()5,+∞D .(]1,48.(2022·全国·高三专题练习)若数列{an }的前n 项和Sn =n 2-10n (n ∈N *),则数列{nan }中数值最小的项是( ) A .第2项 B .第3项 C .第4项D .第5项9.(2022·上海普陀·二模)数列{}n a 的前n 项的和n S 满足*1(N )n n S S n n ++=∈,则下列选项中正确的是( )A .数列{}1n n a a ++是常数列B .若113a <,则{}n a 是递增数列C .若11a =-,则20221013S =D .若11a =,则{}n a 的最小项的值为1-10.(2022·北京四中三模)已知数列{n a }的通项为22n a n n λ=-,则“0λ<”是“*n ∀∈N ,1n n a a +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、多选题11.(2022·河北·衡水第一中学高三阶段练习)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是( ) A .此数列的第20项是200B .此数列的第19项是180C .此数列偶数项的通项公式为222n a n =D .此数列的前n 项和为(1)n S n n =⋅-12.(2022·全国·高三专题练习)若数列{}n a 满足1112,012,1321,12n n n n n a a a a a a +⎧⎪⎪==⎨⎪-<<⎪⎩,则数列{}n a 中的项的值可能为( ) A .13B .2C .23D .4513.(2022·全国·高三专题练习)下列四个选项中,不正确的是( )A .数列2345,,,3456,⋯的一个通项公式是1n n a n =+ B .数列的图象是一群孤立的点C .数列1,1-,1,1-,⋯与数列1-,1,1-,1,⋯是同一数列D .数列11,24,⋯,12n是递增数列14.(2022·全国·高三专题练习)已知n S 是{}n a 的前n 项和,12a =,()1112n n a n a -=-≥,则下列选项错误的是( ) A .20212a = B .20211012S =C .331321n n n a a a ++⋅⋅=D .{}n a 是以3为周期的周期数列15.(2022·全国·高三专题练习)若数列{an }满足112,2712,62n n n n n a a a a a +⎧≤⎪⎪=⎨⎪->⎪⎩,123a =,则数列{an }中的项的值可能为( ) A .19B .16C .13D .4316.(2022·全国·高三专题练习)已知数列{}n a 满足112a =-,111n n a a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .317.(2022·全国·高三专题练习(文))南宋杨辉在他1261年所著的《详解九章算术》一书中记录了一种三角形数表,称之为“开方作法本源”图,即现在著名的“杨辉三角”.如图是一种变异的杨辉三角,它是将数列{}n a 各项按照上小下大,左小右大的原则写成的,其中{}n a 是集合{}220,,s ts t s t Z +≤<∈且中所有的数从小到大排列的数列,即13a =,25a =,36a =,49a =,510a =,…,则下列结论正确的是( )A .第四行的数是17,18,20,24B .()11232-+=⋅n n n aC .()11221n n a n ++=+ D .10016640a =18.(2022·全国·高三专题练习)如图所示的数表中,第1行是从1开始的正奇数,从第2行开始每个数是它肩上两个数之和.则下列说法正确的是( )A .第6行第1个数为192B .第10行的数从左到右构成公差为102的等差数列C .第10行前10个数的和为9952⨯D .数表中第2021行第2021个数为202060612⨯19.(2022·河北·石家庄实验中学高三开学考试)大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,…,则下列说法正确的是( ) A .此数列的第20项是200B .此数列的第19项是182C .此数列偶数项的通项公式为222n a n =D .此数列的前n 项和为(1)n S n n =⋅-20.(2022·福建漳州·三模)已知数列{n a }的前n 项和为211n S n n =-,则下列说法正确的是( ).A .{}n a 是递增数列B .{}n a 是递减数列C .122n a nD .数列{}n S 的最大项为5S 和6S21.(2022·湖南·长沙一中高三阶段练习)对于正整数n ,()n ϕ是小于或等于n 的正整数中与n 互质的数的数目.函数()n ϕ以其首名研究者欧拉命名,称为欧拉函数,例如()96ϕ=(1,2,4,5,7,8与9互质),则( )A .若n 为质数,则()1n n ϕ=-B .数列(){}n ϕ单调递增C .数列()2nn ϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前5项和等于72 D .数列(){}3nϕ为等比数列三、填空题22.(2022·北京·人大附中模拟预测)能说明命题“若无穷数列{}n a 满足()111,2,3,n na n a +>=,则{}n a 为递增数列”为假命题的数列{}n a 的通项公式可以为n a =__________.23.(2022·陕西·宝鸡中学模拟预测)写出一个符合下列要求的数列{}n a 的通项公式:①{}n a 是无穷数列;②{}n a 是单调递减数列;③20n a -<<.这个数列的通项可以是__________.24.(2022·海南·模拟预测)写出一个同时具有下列性质①②③的数列{}n a 的通项公式:n a =__________.①10n n a a +<;②数列{}n a 是单调递减数列;③数列{}2nn a 是一个等比数列.25.(2022·江西·临川一中模拟预测(文))已知23n a n n =+,若2nn a λ≤对于任意*n ∈N 恒成立,则实数λ的取值范围是_______.26.(2022·天津市新华中学高三期末)在数列{}n a 中,()71()8nn a n =+,则数列{}n a 中的最大项的n =________ .27.(2022·山西·模拟预测(理))数列{}n a 中,已知11a =,20a >,()*21n n n a a a n ++=-∈N ,则2022a 的取值范围是___________.28.(2022·四川成都·三模(理))已知数列{}n a 满足13a =,122n n n a a a ++=,则2022a 的值为______.29.(2022·全国·模拟预测)在数列{}n a 中,11a =,1,231,nnn n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,则1232021a a a a ++++=___.专题23 数列的基本知识与概念【考点预测】1.数列的概念(1)数列的定义:按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. (2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N *(或它的有限子集{}12n ⋯,,,)为定义域的函数()n a f n =当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是列表法、图象法和通项公式法. 2.数列的分类(1)按照项数有限和无限分:(2)按单调性来分:111()n n n nn n a a a a a a C +++≥⎧⎪≥⎪⎨==⎪⎪⎩递增数列:递减数列: ,常数列:常数摆动数列 3.数列的两种常用的表示方法(1)通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{}n a 的第1项(或前几项),且从第二项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 【方法技巧与总结】(1)若数列{}n a 的前n 项和为n S ,通项公式为n a ,则1112n n n S n a S S n n N *-=⎧⎪=⎨-≥∈⎪⎩ , , ,注意:根据n S 求n a 时,不要忽视对1n =的验证.(2)在数列{}n a 中,若n a 最大,则11n n n n a a a a -+≥⎧⎨≥⎩ , 若n a 最小,则11.n n nn a a a a -+≤⎧⎨≤⎩【题型归纳目录】 题型一:数列的周期性 题型二:数列的单调性 题型三:数列的最大(小)项 题型四:数列中的规律问题 题型五:数列的最值问题【典例例题】题型一:数列的周期性例1.已知无穷数列{}n a 满足()21N n n n a a a x *++=-∈,且11a =,2a x =()x ∈Z ,若数列{}n a 的前2020项中有100项是0,则下列哪个不能是x 的取值( )A .1147B .1148C .1142-D .1143-【答案】B 【分析】当0x ≥时,分别令1,2,3,x =,可求出数列{}n a 的前2020项中0的个数,进而得出规律,可求出满足题意的x 的取值;当0x <时,分别令1,2,3,x =---,可求出数列{}n a 的前2020项中0的个数,进而得出规律,可求出满足题意的x 的取值. 【详解】 ①当0x ≥时,若0x =,则数列{}n a 的各项为1,0,1,1,0,1,1,0,1,,此时数列{}n a 为周期数列,周期为3,由202036731=⨯+, 可知数列{}n a 的前2020项中有673项为0; 若1x =,则数列{}n a 的各项为1,1,0,1,1,0,1,1,0,,此时数列{}n a 为周期数列,周期为3,由202036731=⨯+, 可知数列{}n a 的前2020项中有673项为0; 若2x =,则数列{}n a 的各项为1,2,1,1,0,1,1,0,1,1,0,,此时数列{}n a 从第3项开始为周期数列,周期为3,由202022018236722=+=+⨯+,可知数列{}n a 的前2020项中有672项为0; 若3x =,则数列{}n a 的各项为1,3,2,1,1,0,1,1,0,1,1,0,,此时数列{}n a 从第4项开始为周期数列,周期为3,由202032017336721=+=+⨯+,可知数列{}n a 的前2020项中有672项为0; 若4x =,则数列{}n a 的各项为1,4,3,1,2,1,1,0,1,1,0,1,1,0,, 此时数列{}n a 从第6项开始为周期数列,周期为3,由202052015536712=+=+⨯+,可知数列{}n a 的前2020项中有671项为0; 依次类推,可知当()26731001146x =-=,或1147x =时, 数列{}n a 的前2020项中有100项是0;②当0x <时,若1x =-,则数列{}n a 的各项为1,1,2,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第7项开始为周期数列,周期为3,由202062014636711=+=+⨯+,可知数列{}n a 的前2020项中有671项为0; 若2x =-,则数列{}n a 的各项为1,2,3,5,2,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第9项开始为周期数列,周期为3,由202082012836702=+=+⨯+,可知数列{}n a 的前2020项中有670项为0; 若3x =-,则数列{}n a 的各项为1,3,4,7,3,4,1,3,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第10项开始为周期数列,周期为3,由202092011936701=+=+⨯+,可知数列{}n a 的前2020项中有670项为0; 若4x =-,则数列{}n a 的各项为1,4,5,9,4,5,1,4,3,1,2,1,1,0,1,1,0,1,1,0,-,此时数列{}n a 从第12项开始为周期数列,周期为3,由20201120091136692=+=+⨯+,可知数列{}n a 的前2020项中有669项为0; 依次类推,可知当()26711001142x =--=-,或1143x =-时, 数列{}n a 的前2020项中有100项是0.综上所述,若数列{}n a 的前2020项中有100项是0, 则x 可取的值有1146,1147,1142,1143--. 故选:B . 【点睛】本题考查无穷数列,解题的关键是通过条件()21N n n n a a a x *++=-∈探究数列{}n a 的性质,利用赋值法分别令1,2,3,x =和1,2,3,x =---,可分别求出数列{}n a 的前2020项中0的个数,进而得出规律.考查学生的推理能力与计算求解能力,属于难题.例2.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =( )A .2B .5C .7D .8【答案】B 【分析】求出1b ,2b ,3b ,4b ,5b ,6b ,判断出{}n b 是一个以周期为6的周期数列,求出即可.【详解】解:2107n n a ⎡⎤=⨯⎢⎥⎣⎦.*111(102)n n n b a b a a n n --∈≥N =,=,,∴112027[]a b ===,2200[287]a ==, 2281028b -⨯==,同理可得:332855a b =,=;4428577a b =,=;55285711a b =,=.662857144a b =,=;72857142a =,72b =,……. ∴6n n b b +=.故{}n b 是一个以周期为6的周期数列, 则20196336335b b b ⨯+===.故选:B . 【点睛】本题考查周期数列的判断和取整函数的应用. 例3.数列{}n a 满足12a =,111nn na a a ++=-,其前n 项积为n T ,则10T 等于( ) A .16B .16-C .6D .6-【答案】D 【分析】依次代入1,2,3,4n =可得{}n a 是以4为周期的周期数列,由1231n n n n a a a a +++=可推导得到结果. 【详解】 当1n =时,121131a a a +==--;当2n =时,2321112a a a +==--;当3n =时,3431113a a a +==-;当4n =时,454121a a a +==-;…,∴数列{}n a 是以4为周期的周期数列, ()()1231123123n n n n a a a a n N *+++⎛⎫∴=⨯-⨯-⨯=∈ ⎪⎝⎭,()10891012236T T a a a a ∴=⋅==⨯-=-. 故选:D .例4.若数列{}n a 满足1222a a ==,且21n n n a a a ++=-,则{}n a 的前100项和为( ) A .67 B .68 C .134 D .167【答案】B 【分析】由题意得122,1a a ==,根据21n n n a a a ++=-,列举数列的项,得到数列从第2项起,3项一个循环求解. 【详解】因为1222a a ==, 所以122,1a a ==, 因为21n n n a a a ++=-,所以数列的项依次为2,1,1,0,1,1,0,…, 所以从第2项起,3项一个循环,所以{}n a 的前100项的和为233(110)68+⨯++=, 故选:B .例5.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若125a =,则2021a 等于( )A .15B .25C .35D .45【答案】B 【分析】根据数列定义求出数列的前几项后得出数列是周期数列,从而求值. 【详解】 因为12152a =<,所以23454312,,,5555a a a a ====,所以数列具有周期性,周期为4,所以2021125a a ==.故选:B . 【点睛】本题考查数列的周期性,此类问题的解法是由定义求出数列的前几项,然后归纳出周期性.例6.已知数列{}n a 满足,()()111122,32n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩*(,1)n N n ∈>,若1(2,3)a ∈且记数列{}n a 的前n 项和为n S ,若2019=m S ,则2019S 的值为( ) A .60572B .3028C .60552D .3029【答案】C 【分析】根据递推公式可逐个代入计算,得出数列{}n a 的周期为4,再根据2019=m S 与前两项的范围可求得52a =,再分组求和求解2019S 即可. 【详解】设1(23)a a a =<<,由()()11112232n n n n n a a a a a ----⎧-+>⎪=⎨-⎪⎩,*(,1)n N n ∈>,得22(0,1)a a =-∈,3235(2,3)a a a =-=-∈,435423(0,1),3(2,3)a a a a a a =-=-∈=-=∈.故数列{}n a 的周期为4,即可得41234,6n n a a a a a a +=+++=. 12336632019m m S a a a =+++=⨯+=,又1(23)a a a =<<,22(0,1)a a =-∈.(2)3a a ∴+-=,即52a =. 12311201950443,32a a a a =⨯+++=+=, 2019116059504622S ∴=⨯+=. 故选:C . 【点睛】本题考查数列分组求和、分类讨论方法,考查推理能力与计算能力,考查逻辑推理与数学运算核心素养.属于中档题.例7.(2022·广东汕头·三模)已知数列{}n a 中,114a =-,当1n >时,111n n a a -=-,则2022a =( ) A .14-B .45C .5D .45-【答案】B【解析】由题意得:2341231141115,1,154a a a a a a =-==-==-=-,则数列{}n a 的周期为3,则20226743345a a a ⨯===. 故选:B .例8.(2022·河北·沧县中学高三阶段练习)已知数列{}n a 中,()1112n n n a a a n --=⋅+≥,12a =,则10a 等于( )A .12-B .12C .-1D .2【答案】D【解析】解:∵12a =,()1112n n n a a a n --=⋅+≥, ∴()1112n n a n a -=-≥, ∴211122a =-=,3121a =-=-,()4112a =--=,511122a =-=,…, ∴数列{}n a 是以3为周期的周期数列,10331=⨯+,∴101a a =, 故选:D .题型二:数列的单调性例9.(2022·四川达州·二模(理))已知单调递增数列{}n a 满足9,102121,109n n m n a m n n -⎧≥⎪=⎨⎛⎫+-< ⎪⎪⎝⎭⎩,则实数m 的取值范围是( )A .[)12,+∞B .()1,12C .()1,9D .[)9,+∞【答案】B【解析】{}n a 为单调递增数列,10912109m ma a >⎧⎪⎪∴+>⎨⎪>⎪⎩,即12109219219m m m m ⎧⎪>⎪⎪+>⎨⎪⎪⎛⎫>+⨯-⎪⎪⎝⎭⎩,解得:112m <<, 即实数m 的取值范围为()1,12.故选:B .例10.(2022·河南·温县第一高级中学高三阶段练习(文))已知函数()()633,7,7x a x x f x a x -⎧--≤=⎨>⎩,若数列{}n a 满足()()*n a f n n N =∈且{}n a 是递增数列,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()2,3D .[)2,3【答案】C【解析】因为数列{}n a 是单调递增数列,则函数()6x f x a -=在()7,+∞上为增函数,可得1a >,函数()()33f x a x =--在[)1,7上为增函数,可得30a ->,可得3a <,且有78a a <,即()86733187a a a ---=-<,即27180a a +->,解得9a <-或2a >.综上所述,23a <<. 故选:C .例11.(2022·浙江·高三专题练习)已知数列{}n a 的首项为11a =,2a a =,且121(2,)n n a a n n n N *++=+≥∈,若数列{}n a 单调递增,则a 的取值范围为( ) A .12a <<B .23a <<C .3522a <<D .1322a <<【答案】C【解析】当2,n n N *≥∈时,121(1)n n a a n ++=+,因此有2123(2)n n a a n +++=+,(2)(1)-得:22n n a a +-=,说明该数列从第2项起,偶数项和奇数项都成等差数列,且它们的公差都是2,由121n n a a n ++=+可得:345,2a a a a =-=+,因为数列{}n a 单调递增,所以有1234a a a a <<<,即152a a a <<-<+,解得:3522a <<,故选:C例12.(2022·全国·高三专题练习)已知等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),数列{}n b 是递增的,且2n b An Bn =+,则实数B 的取值范围为( )A .2,3⎡⎫-+∞⎪⎢⎣⎭B .[)1,-+∞C .()1,-+∞D .1,3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】解:因为等比数列{}n a 前n 项和n S 满足113n n S A +=-⋅(A R ∈),所以1119a S A ==-,221(127)(19)18a S S A A A =-=---=-, 332(181)(127)54a S S A A A =-=---=-,因为等比数列{}n a 中2213a a a ,所以2(18)(19)(54)A A A -=--,解得13A =或0A =(舍去), 所以213n b n Bn =+,因为数列{}n b 是递增的,所以22111(1)(1)033n n b b n B n n Bn +-=+++-->,所以2133B n >--,因为*n N ∈,所以1B >-, 故选:C例13.(2022·全国·高三专题练习(理))已知数列{}n a 满足()712,83,8n n a n n a n a n *-⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N ,若对于任意n *∈N 都有1n n a a +>,则实数a 的取值范围是( ) A .10,3⎛⎫ ⎪⎝⎭B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .11,32⎛⎫ ⎪⎝⎭【答案】C【解析】由条件可得011031923a a a a ⎧⎪<<⎪⎪-<⎨⎪⎪⎛⎫>-⨯+⎪ ⎪⎝⎭⎩,解出即可.【详解】因为对于任意n *∈N 都有1n n a a +>, 所以011031923a a a a ⎧⎪<<⎪⎪-<⎨⎪⎪⎛⎫>-⨯+⎪ ⎪⎝⎭⎩,解得112a <<故选:C例14.(2022·全国·高三专题练习)设数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列, 则实数b 的取值范围为( ) A .(2,)-+∞ B .[2,)-+∞C .(3,)-+∞D .(,3)-∞-【答案】C由数列{}n a 是单调递增数列,可得10n n a a +->,从而有21b n >--恒成立,由n ∈+N ,可求得b 的取值范围. 【详解】由数列{}n a 是单调递增数列,所以10n n a a +->,即22(1)(1)210n b n n bn n b +++--=++>,即21b n >--(n ∈+N )恒成立,又数列{}(21)n -+是单调递减数列,所以当1n =时,(21)n -+取得最大值3-,所以3b >-. 故选:C .【方法技巧与总结】解决数列的单调性问题的3种方法例15.已知数列{}n a 的首项为1,且()()*111n n n a a n n ++=∈+N ,则na的最小值是( )A .12 B .1 C .2 D .3【答案】B 【分析】 根据()111n n n a a n ++=+得出()11n n n a n a n ++-=,然后通过累加法求出1122n n a n =+-,根据均值不等式及n N +∈,即可求出结果. 【详解】 由()111n n n a a n ++=+得()11n n n a n a n ++-=所以()()()1122111122n n n n n n a n a n a a a na n a a ---=--+---++-+则()()()()()111112111122n n n n n n na n +---=-+-+++=+=+所以()111112222n n n na n-=+=+-≥ 当且仅当n =n N +∈,故取1a 或2a 最小,又121a a ==,所以n a 的最小值为1【点睛】思路点睛:本题通过累加法求数列通项公式,根据均值不等式及n N +∈,求得最值. 例16.已知数列{}n a 满足110a = ,12n na a n+-=,则n a n 的最小值为( )A .-1B .11 2C .163D .27 4【答案】C 【分析】先根据累加法得210n a n n =-+,进而得101n a n n n =+-,再结合函数()101f x x x=+-的单调性即可得当3n =时,na n 的最小值为163. 【详解】 解:由12n na a n+-=得12n n a a n +-=, 所以()121n n a a n --=-,()1222n n a a n ---=-,()2323n n a a n ---=-, ,3222a a -=⨯,2121a a -=⨯,累加上述式子得:()()()()12123211n a a n n n n n -=-+-+-+++=-⎡⎤⎣⎦,所以210n a n n =-+,()2n ≥,检验已知1n =时,210n a n n =-+满足.故210n a n n =-+,101n a n n n=+-,由于函数()101f x x x=+-在区间(上单调递减,在)+∞上单调递增,又因为*x ∈N ,当3n =时,10163133n a n =+-=,当4n =时,10114142n a n =+-=, 所以na n 的最小值为163. 故选:C .例17.已知数列{}n a 的前n 项和n S ,且2(1)n n S a n -=-,22na nn b S =,则数列{}n b 的最小项为( )A .第3项B .第4项C .第5项D .第6项【答案】A 【分析】由n S 与n a 的关系1(1)n n n a S S n -=->化简即可求出n S 及n a ,可得n b ,分析单调性即可求解. 【详解】∵1(1)n n n a S S n -=->,∴1n n n S a S --=,则21(1)n S n -=-,即2*(N )n S n n =∈,∴22(1)21n a n n n =--=-.易知0n b >,∵212+1+14422+1n n n n b b n n -==,(),244142(1)n n b n b n +∴==+当11n >+时,1n >, ∴当13n ≤<时, 1n n b b +>, 当3n ≥时,1n n b b +<, 又23132,281b b ==,∴当3n =时, n b 有最小值.故选:A 例18.已知数列{}n a 的前n 项和2212,n S n n =-数列{||}n a 的前n 项和,n T 则nT n的最小值____ 【答案】5 【分析】由n S 和1n S -的关系求出数列{}n a 的通项公式,再根据正负表示出数列{||}n a 的通项公式为144,13414,4n n n a n n -≤≤⎧=⎨-≥⎩,求出n T ,并表示出n T n ,再分别求出13n ≤≤和4n ≥时的最小值,即可判断n T n 的最小值. 【详解】由题意,数列{}n a 的前n 项和2212n S n n =-()n N *∈,所以1121210a S ==-=-,当2n ≥时,()()12221221121414n n n n n n n S n a S -⎡⎤-----=-⎣⎦=-=, 当1n =时,1411410a ⨯-=-=, 所以414n a n =-,当13n ≤≤时,0n a <,当4n ≥时,0n a >,所以144,13414,4n n n a n n -≤≤⎧=⎨-≥⎩,数列{||}n a 的前n 项和n T ,所以22212,1321236,4n n n n T n n n ⎧-+≤≤=⎨-+≥⎩,当13n ≤≤时,212n T n n=-+,当3n =时,n Tn 的最小值为6;当4n ≥时,36212n n T n n=+-, 由对勾函数的性质,当4n =时,nT n有最小值5; 综上所述,nT n的最小值为5 故答案为:5 【点睛】本题主要考查由n S 求数列通项公式的求法、等差数列前n 项和公式、对勾函数的应用,是一道综合性很强的题目,考查学生分析转化能力和计算能力,属于难题. 例19.数列,1n =,2,,中的最小项的值为__________.【分析】构造函数()ln xf x x=,利用函数单调性分析最大值,得出数列的最大项,即可得解. 【详解】 考虑函数()ln x f x x=,()21ln xf x x -'=,当0x e <<时,()21ln 0x f x x -'=>,当x e >时,()21ln 0x f x x -'=<, 所以()ln xf x x=在()0,e 单调递增,在(),e +∞单调递减, 即()1ln x f x x ==()0,e 单调递增,在(),e +∞单调递减,所以y e ==()0,e 单调递增,在(),e +∞单调递减,116689,89<<.【点睛】此题考查求数列中的最小项,利用函数单调性讨论数列的最大项和最小项,涉及导函数处理单调性问题. 【方法技巧与总结】求数列的最大项与最小项的常用方法(1)将数列视为函数()f x 当x ∈N *时所对应的一列函数值,根据f (x )的类型作出相应的函数图象,或利用求函数最值的方法,求出()f x 的最值,进而求出数列的最大(小)项.(2)通过通项公式n a 研究数列的单调性,利用11()2n n n n a a a n a -+≥⎧⎨≥⎩≥,确定最大项,利用11()2n n nn a a a n a -+≤⎧⎨≤⎩≥,确定最小项.(3)比较法:若有1()()10n n a a f n f n -=+->+或0n a >时11n na a +>,则1n n a a +>,则数列{}n a 是递增数列,所以数列{}n a 的最小项为1(1)a f =;若有1()()10n n a a f n f n =-+-<+或0n a >时11n na a +<,则1n n a a <+,则数列{}n a 是递减数列,所以数列{}n a 的最大项为1(1)a f =. 题型四:数列中的规律问题例20.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以()f n 表示第n 幅图的蜂巢总数,则(4)f =( );()f n =( ).A .35 2331n n +-B .36 2331n n -+C .37 2331n n -+D .38 2331n n +- 【答案】C 【分析】结合图形中的规律直接求出(4)f 和(5)f ,进而总结出递推公式2n ≥时,()()(1)61f n f n n --=-,利用累加法即可求出结果. 【详解】由图中规律可知:(4)37f =, 所以(2)(1)716f f -=-=,(3)(2)19726f f -=-=⨯,(4)(3)371936f f -=-=⨯, (5)(4)613746f f -=-=⨯,因此当2n ≥时,()()(1)61f n f n n --=-, 所以[][][]()()(1)(1)(2)(2)(1)(1)f n f n f n f n f n f f f =--+---++-+()()612211n n ⎡⎤=⨯-+-++++⎣⎦()1612n n -=⨯+2331n n =-+,经检验当1n =时,符合()2331f n n n =-+,所以()2331f n n n =-+,故选:C .例21.由正整数组成的数对按规律排列如下:()1,1,1,2,()2,1,()1,3,()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,()1,5,()2,4,⋅⋅⋅.若数对(),m n 满足()22222021m n -⋅-=,,m n N *∈,则数对(),m n 排在( )A .第386位B .第193位C .第348位D .第174位【答案】D 【分析】 先求出,m n 的值,再根据数对的特点推出数对(),m n 的位置 【详解】解:按规律把正整数组成的数对分组:第1组为(1,1),数对中两数的和为2,共1个数对;第2组为(1,2),(2,1),数对中两数和为3,共2个数对;第3组为(1,3),(2,2),(3,1),数对中两数的和为4,共3个数;……,第n 组为(1,),(2,1),,(,1)n n n -⋅⋅⋅,数对中两数的和为1n +,共n 个数,由()22222021m n -⋅-=,得()2222023m n -⋅=,因为20237289=⨯,所以2227289m n ⎧-=⎪⎨=⎪⎩,解得317m n =⎧⎨=⎩,所以20m n +=,在所有数对中,两数之和不超过19的有1918123181712⨯+++⋅⋅⋅+==个, 所以在两数和为20的第1个数(1,19),第2个为(2,18),第3个为(3,17), 所以数对(3,17)排在第174位, 故选:D 【点睛】关键点点睛:此题考查简单的合情推理,考查等差数求和,解题的关键是由()22222021m n -⋅-=,得()2222023mn -⋅=,解出,m n 的值,考查计算能力,属于中档题例22.已知“整数对”按如下规律排列:()()()()()1,11,22,11,32,2,,,,,()()()3,11,42,3,,()3,2,,()4,1,…,则第68个“整数对”为( ) A .()1,12 B .()3,10C .()2,11D .()3,9【答案】C 【分析】设“整数对”为()()*m n m n N ∈,,,由已知可知点列的排列规律是m n +的和从2开始,依次是3,4,…,其中m 依次增大,可依次求得总对数,从而可得选项. 【详解】设“整数对”为()()*m n m n N ∈,,,由已知可知点列的排列规律是m n +的和从2开始,依次是3,4,…,其中m 依次增大.当2m n +=时只有1个()11,;当3m n +=时有2个()()1221,,,; 当4m n +=时有3个()()()132231,,,,,; …;当12m n +=时有11个()()()111210111⋯,,,,,,;其上面共有11(111)12311662⨯+++++==个数对. 所以第67个“整数对”为()112,,第68个“整数对”为()211,, 故选:C . 【点睛】本题考查知识迁移运用:点列整数对,关键在于理解和探索其规律,属于中档题. 例23.将正整数排列如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ……则图中数2020出现在 A .第64行3列 B .第64行4列 C .第65行3列 D .第65行4列【答案】B 【分析】计算每行首个数字的通项公式,再判断2020出现在第几列,得到答案. 【详解】每行的首个数字为:1,2,4,7,11… 111,1n n a a a n -=-=-利用累加法:112211(1)()()...()121112n n n n n n n a a a a a a a a n n ----=-+-++-+=-+-++=+计算知:642017a = 数2020出现在第64行4列 故答案选B 【点睛】本题考查了数列的应用,计算首数字的通项公式是解题的关键. 题型五:数列的最值问题例24.(2022·北京市第十二中学高三期中)已知数列{}n a 满足32n a n n=+,则数列{}n a 的最小值为( )A.343B .575 C .D .12【答案】A【解析】()32f x x x=+在(0,上单调递减,在()+∞上单调递增, ∴当()x n n N *=∈时,()()(){}min min 5,6f n f f =,又()32575555f =+=,()32346663f =+=,()min 343f n ∴=,即32n a n n =+的最小值为343. 故选:A .例25.(2022·全国·高三专题练习)已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a【答案】B【解析】令10t n =-≥,则1n t =+,22,641411tty tt t t 当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B .例26.(2022·河南·高三阶段练习(理))在数列{}n a 中,11a =,1n n a a n --=(N n +∈,2n ≥),则11n a n ++的最小值是( ) A .12B .34C .1D .32【答案】C【解析】由题意可得()()()()()211221121122n n n n n n n n na a a a a a a a ---+-+=-+-+⋅⋅⋅+-+=+=,当1n =时,11a =满足上式,则()()212121112121n a n n n n n n +++⎡⎤==++-⎢⎥+++⎣⎦. 因为n ∈+N , 所以12n +≥, 所以()2131n n ++≥+,则()21121n n ++-≥+,故112112n a n +≥⨯=+,当且仅当1n =时,等号成立. 故选:C例27.(2022·辽宁·高三阶段练习)若数列{}n a 满足24122,n nn n n a T a a a -==⋅⋅⋅,则n T 的最小值为( )A .92-B .102-C .112-D .122-【答案】B【解析】因为2420,nnn a -=>所以221222log log log log n n T a a a =++⋯+.设22log 4n n b a n n ==-.若n T 有最小值,则2log n T 有最小值, 令0n b ≤,则04,n ≤≤所以当3n =或4n =时﹐n T 的最小值为102-. 故选:B例28.(2022·全国·高三专题练习)若数列{}n a 满足113a =,1n n n a a +-=,则na n的最小值为( ) A .235B .143C 12D .13【答案】A【解析】由题意可知,()()121111312(1)13(1)2n n n a a a a a a n n n -=+-++-=++++-=+-,则113122n a n n n =+-,又113122y x x =+-在( 上递减,在)+∞上递增,且56<<,5n =时,11311131235222525n n +-=⨯+-=;6n =时,11311131142362226235n n +-=⨯+-=>,故选:A .例29.(2022·全国·高三专题练习)设221316n a n n =-+-,则数列{}n a 中最大项的值为( )A .134B .5C .6D .132。

数列极限

数列极限

2、数列的极限 、
( −1)n−1 } 当 n → ∞ 时的变化趋势 . 观察数列 {1 + n
2、数列的极限 、
( −1)n−1 } 当 n → ∞ 时的变化趋势 . 观察数列 {1 + n
2、数列的极限 、
( −1)n−1 } 当 n → ∞ 时的变化趋势 . 观察数列 {1 + n
2、数列的极限 、
二、概念的引入
1、割圆术: 割圆术: “割之弥细,所 割之弥细, 割之弥细 失弥少, 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” 体而无所失矣” ——刘徽 刘徽
二、概念的引入
1、割圆术: 割圆术: “割之弥细,所 割之弥细, 割之弥细 失弥少, 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” 体而无所失矣” ——刘徽 刘徽
二、概念的引入
1、割圆术: 割圆术: “割之弥细,所 割之弥细, 割之弥细 失弥少, 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” 体而无所失矣” ——刘徽 刘徽
二、概念的引入
1、割圆术: 割圆术: “割之弥细,所 割之弥细, 割之弥细 失弥少, 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” 体而无所失矣” ——刘徽 刘徽
二、概念的引入
1、割圆术: 割圆术: “割之弥细,所 割之弥细, 割之弥细 失弥少, 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” 体而无所失矣” ——刘徽 刘徽
二、概念的引入
1、割圆术: 割圆术: “割之弥细,所 割之弥细, 割之弥细 失弥少, 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” 体而无所失矣” ——刘徽 刘徽

1 第1讲 数列的概念与简单表示法

1 第1讲 数列的概念与简单表示法

上一页
返回导航
下一页
第六章 数列与数学归纳法
11
2.在数列{an}中,an=-n2+6n+7,当其前 n 项和 Sn 取最大值时,n=________. 解析:由题可知 n∈N*,令 an=-n2+6n+7≥0,得 1≤n≤7(n∈N*),所以该数列的第 7 项为零,且从第 8 项开始 an<0,则 S6=S7 且最大. 答案:6 或 7
第六章 数列与数学归纳法
第1讲 数列的概念与简单表示法
数学
第六章 数列与数学归纳法
1
01
基础知识 自主回顾
02
核心考点 深度剖析
03
高效演练 分层突破
上一页
返回导航
下一页
第六章 数列与数学归纳法
2
知识点 数列的概念和
简单表示法
等差数列
最新考纲
了解数列的概念和表示方法(列表、图象、公式).
理解等差数列的概念. 掌握等差数列的通项公式与前 n 项和公式及其应用. 了解等差数列与一次函数的关系. 会用数列的等差关系解决实际问题.
上一页
返回导航
下一页
第六章 数列与数学归纳法
25
由数列递推式求通项公式的常用方法
上一页
返回导航
下一页
第六章 数列与数学归纳法
26
1.在数列{an}中,a1=2,an+1=an+n(n1+1),则 an=________. 解析:an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n-1 1-n1+n-1 2-n-1 1+…+ 12-13+1-12+2=3-n1. 答案:3-n1
上一页
返回导航
下一页
第六章 数列与数学归纳法

人教版高中数学选修二4.1数列的概念(一)课件

人教版高中数学选修二4.1数列的概念(一)课件
人教2019 A版 选择性必修二
第四章 数 列
4.1 数列的概念(1)
学习目标
1.理解数列的有关概念与数列的表示方法.
2.掌握数列的分类.
3.理解数列的函数特征,掌握判断数列增减性的方法
4.掌握数列通项公式的概念及其应用,能够根据数列的前几项
写出数列的一个通项公式.
情景导学
古语云:“勤学如春
起之苗,不见其增,日有所
− 4 ,当
n=2,3 时,an 取得最小值,最小值为-12.
10 +1
10
10
-(n+1) 11 = 11
11
∴当n<9时,an+1-an>0,即an+1>an;
当n=9时,an+1-an=0,即an+1=an;
当n>9时,an+1-an<0,即an+1<an.
故a1<a2<a3<…<a9=a10>a11>a12>…,
a10=
,224是该数列的第
项.
解析:a10=102-1=99.令an=n2-1=224,解得n=15,
即224是该数列的第15项.
答案:99 15
典例解析
例1. 根据下列数列{an}的通项公式,写出数列的前5项,并画出它们的图像.
(1) =
2 +
2
;
(2) =
(−1)
(2)1,-3,5,-7,9,…;
(3)9,99,999,9 999,…;
22 -1 32 -2 42 -3 52 -4
(4) 1 , 3 , 5 , 7 ,…;
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课 题:数列(第1课时)
教学目标:1、理解数列概念,了解数列和函数之间的关系;
2、了解数列的通项公式,并会用通项公式写出数列的任意一项;
3、对于比较简单的数列,会根据其前几项写出它的通项公式。

教学重点:理解数列公式;用通项公式写出数列的通项公式。

教学难点:根据一些数列的前几项抽象、归纳数列的通项公式。

教学过程:(Ⅰ)新课引入:
(1)1,2,3,4,… n …
(2)a ,2a ,3a ,4a … na …
(3)a 101,a 103,a 103,a 10
4… (Ⅱ)讲授新课
1、数列定义:按一定次序排列的一列数称为数列,数列中的每一个数都叫做这个数列的项。

记作:a 1 , a 2 , … a n , … 或{n a };各项依次叫做这个数列的第一项(首项),第二项,… ,第n 项 … ;
(若为有限数列,最后一项也叫末项)
说明:①“一定次序”:数列有序;②区分数列{n a }与集合{n a }及项n a ;③相同数列满足的
条件。

观察数列: 1 21 3
1 41 … n 1 … 项数 1
2
3
4 … n …
项 1
21 3
1 41 … n 1 … 通过观察,可得出数列中的项数与项间有什么关系?
2、数列的通项公式:如果数列{n a }的第n 项n a 与n 之间的函数关系可以用一个式子表示成a n = f (n) ( n ∈N ﹡) ,则a n = f (n) ( n ∈N ﹡)称为数列的通项。

▲理解:(1)数列不一定都有通项,有通项也不一定唯一;
(2)项与项的序号的关系:a n 表示数列第n 项——项,n 表示项的位置序号——项数;
(3)数列与函数的关系:数列是一个定义域为正整数或其子集的函数。

3、数列的表示法:(1)a 1 , a 2 , … a n , … 或简记为 {a n }
(2)图象表示法:数列{a n }是一列函数值,其图象是一些孤立的点(n , a n )。

▲ 理解:{a n } 与a n 的区别、联系。

4、数列的分类:有穷数列,无穷数列;
例1、下列各式哪些是数列?若是数列,哪些是有穷数列、哪些是无穷数列?
(1){0,1,2,3,4};(2)0,1,2,3,4;
(3)所有的无理数;(4)1,-1,1,-1,…;(5)6,6,6,6…
例2、根据下面数列{a n }的通项公式,写出它的前5项: (1)a n = 2+n n (2)a n = ()4cos 11πn n +- (3)a n =⎪
⎩⎪⎨⎧--为偶数为奇数n )
2n (n n 11n 例3、通过观察写出下列数列的一个通项公式:
(1)3 ,5 ,7 ,9…; (2)1 ,2 ,4, 8… ;
(3)1,3,7,15,31…;(4)1,3
1 ,359 ,6317, 9933…; 变式: 3
13⨯ ,535⨯ ,759⨯,… (5)1,11 ,111 ,1111… ;(6)-73 ,52 ,-135, 83… 课堂练习:1、以下公式中:①])1(1[22n n a --=;②n n a )1(1--=;③⎪⎩⎪⎨⎧=为偶数,为奇数n
0,2n a n ,其中能作为数列 2,0,2,0,2,0,…的通项公式的有 。

2、写出下列各数列的一个通项公式: (1)
41,83,165,327…;(2)0 ,1 ,0 ,1,…; (3)1,0,31,0,51,0,…; (4)5 ,55 ,555 ,5555 ,… ; (5)0.9 , 0.99 , 0.999 , 0.9999 , … 例4、已知数列{a n }的通项公式a n = n 2 – 4n –12 ,
(1)这个数列的第4项是 ; (2)65是这个数列的第 项;
(3)这数列从第 项起各项都是正数; (4)数列中数值最小的是第 2 项;
(5)81是否为数列{a n }中的项,若是,是第几项,不是,说明理由。

【作业】课本 P 110 1 ,2 ,课本 P 135 4 (做课本上)
另:1、写出数列:0.7 , 0.77 , 0.777 , 0.7777 , … 的通项公式。

2、已知数列{a n }中,a n =9
542n 368n 22-+-(n ∈N ﹡),求此数列中数值最大的项。

相关文档
最新文档