江苏省梁丰初级中学2016届九年级下学期中考模拟(1)数学试题
2016届九年级中考一模数学试题(扫描版)

学校:班级:教师: 科目:得分:2015-2016年初三数学一模参考答案题号 1 2 3 4 5 6 7 8 9 10 答案B D C C D C A A B B题号11 12 13答案2)1(-ab 5 33712132=+++xxxx题号14 15 16答案所填写的理由需支持你填写的结论. 如:③,理由是:只有③的自变量取值范围不是全体实数预估理由需包含统计图提供的信息,且支撑预估的数据. 如:6.53 ,理由是:最近三年下降趋势平稳四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式316431=-⨯++-……………………4分43=-.………………………5分解不等式①,得10≤x.………………………2分解不等式②,得7>x.………………………3分∴原不等式组的解集为107≤<x.………………………4分∴原不等式组的所有整数解为8,9,10.………………………5分19.解:原式4312222-++-+-=xxxxx………………………3分32-+=xx.………………………4分∵250x x+-=,∴52=+xx.∴原式=532-=..………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒.∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分 ∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC .∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分A23. 解:(1)∵(6,)P m 在直线y x =-上,∴6m =-. ………………………1分∵(6,6)P -在双曲线k y x =上, ∴6(6)6k =⨯-=-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴(,0),(0,)A b B b . ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵2BQ AB =,∴3===ABAQ OA HA OB HQ . ∵OA OB b ==, ∴3HQ b =,2HO b =.∴Q 的坐标为(2,3)b b -.由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2,)b b -.由点Q 在双曲线6y x=-上,可得3b =综上所述,1b =或b = ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙O 的切线,∴90CBO ∠=︒.∵AO 平分BAD ∠,∴12∠=∠.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴BOC DOC ∠=∠.∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE DE =,∴AE DE =.∴34∠=∠. ………………………3分∵124∠=∠=∠,∴123∠=∠=∠.∵BE 为⊙O 的直径,∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分∴90AFE ∠=︒ .在Rt △AFE 中,∵3AE =,︒=∠303,∴AF = ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分m=-;………………………1分26. (2) ①60n=;………………………2分②11(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)224=-+-y mx mx m2(21)4=-+-m x x2=--.m x(1)4-.………………………2分∴点A的坐标为(1,4)(2)①由(1)得,抛物线的对称轴为x=1.∵抛物线与x轴交于B,C两点(点B在点C左侧),BC=4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=.∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分当直线过点A ,C 时,解得2k =. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .…………………3分∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) 10GE =.…………………5分思路如下: a . 由G 为CF 中点画出图形,如图2所示. b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F ,∴切点坐标为13()22,,13()22,-.……………3分 如图所示,不妨设点E 的坐标为13()2,,点F 的坐标为13()2,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()2E --,,13'()2F -,. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O的限距点存在,其横坐标x =1.综上所述,点P关于⊙O的限距点的横坐标x的范围为112x-≤≤-或x=1.……………………6分(2)问题1:9.………………8分问题2:0 < r < 16.………………7分节日热闹:盛况空前普天同庆欢聚一堂人声鼎沸人山人海欢呼雀跃欢声雷动熙熙攘攘载歌载舞成语中的反义词:藕断丝连转危为安左顾右盼阴差阳错争先恐后冬暖夏凉大同小异轻重缓急天南地北舍本逐末红旗招展火树银花灯火辉煌张灯结彩锣鼓喧天金鼓齐鸣看:盯瞧瞅瞟瞥望睹观赏窥顾盼端详注视鸟瞰浏览张望阅览欣赏观赏月光:皎洁的月光明亮的月光清冽的月光清幽的月光朦胧的月光柔和的月光惨淡的月光凄冷的月光月光如水月光如雪月光如银希望:期望盼望渴望奢望指望中国:中华华夏九州四海神州大地长城内外大江南北读书和学习:如饥似渴学而不厌学无止境学以致用博览群书博学多才学海无涯得表扬:得意扬扬洋洋得意神采飞扬心花怒放乐不可支喜上眉梢春风得意眉开眼笑受批评:心灰意冷垂头丧气郁郁寡欢心灰意懒一蹶不振建筑:金碧辉煌玲珑剔透古色古香庄严肃穆庭院幽深巍然耸立绿瓦红墙描龙绣凤气势磅礴栩俯瞰窥视探望远眺审视环顾扫视瞻仰左顾右盼瞻前顾后袖手旁观先睹为快望眼欲穿东张西望屏息凝视目不转睛比喻手法成语:星罗棋布鳞次栉比玉洁冰清蚕食鲸吞狐朋狗友狼吞虎咽锦衣玉食打比方成语:如醉如梦如泣如诉如火如荼如饥似渴如兄似弟如胶似漆如花似锦如狼似虎死:去世逝世长眠安息千古永别永诀与世长辞遇难牺牲捐躯殉职夭折圆寂羽化驾崩朋友:伙伴同伴旅伴伴侣战友密友故友好友挚友新朋好友良师益友梅花:腊梅墨梅素梅冰肌玉骨疏影横斜暗香浮动清香远溢幽香沁人小溪:波纹粼粼清澈见底终年潺潺柳树:垂柳青青婀娜多姿依依多情万千气象:晚霞朝晖红霞满天霞光万道闲云迷雾云雾缭绕星光灿烂晓风残月月凉如水月色朦胧花儿好看:绚丽烂漫妖艳素雅争奇斗艳鲜艳夺目花蕾满枝琼花玉叶色彩斑斓花团锦簇灿如云锦花儿好闻:芬芳幽香芳香浓郁清香四溢香气袭人沁人心脾清香袅袅香气扑鼻香飘十里日子:丰衣足食太平昌盛日出而作日入而息守望相助走兽:四肢轻快互相追逐连蹦带跳小巧玲珑乖巧驯良扬蹄飞奔腾空跃起庞然大物生龙活虎威风凛凛月淡风清月明星稀皓月当空栩如生造型逼真琼楼玉宇布局合理亭台楼阁历史悠久中西合璧龙腾虎跃。
江苏省苏州市张家港市2016届中考数学模拟试卷(1)含答案解析

2016年江苏省苏州市张家港市梁丰中学中考数学模拟试卷(1)一、选择题:本大题共10小题,每小题3分,共30分.1.的倒数是()A.B.C. D.2.函数y=的自变量x的取值范围是()A.x≠0 B.x≠1 C.x≥1 D.x≤13.下面的计算一定正确的是()A.b3+b3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3•3y5=15y8D.b9÷b3=b34.不等式组的最小整数解为()A.﹣1 B.0 C.1 D.25.雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A. B.C.D.6.如果单项式﹣x a+1y3与是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=27.下列四个说法中,正确的是()A.一元二次方程有实数根B.一元二次方程有实数根C.一元二次方程有实数根D.一元二次方程x2+4x+5=a(a≥1)有实数根8.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x9.如图,在菱形ABCD中,DE⊥AB,cosA=,BE=2,则tan∠DBE的值是()A.B.2 C.10D.10.如图,已知直线y=x﹣3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A.10+1 B.10C.10.5 D.11.5二、填空题:本大题共8小题,每小题3分,共24分11.分解因式:a2﹣9=.12.若代数式3x+7的值为﹣2,则x=.13.如图,直线a∥b,∠1=125°,则∠2的度数为.14.若关于x的方程x2﹣x+a=0有两个相等的实数根,则a的值为.15.已知扇形的圆心角为45°,半径为2cm,则该扇形的面积为cm2.16.如图,矩形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为.17.如图,Rt△OAB的顶点O与坐标原点重合,∠AOB=90°,AO=BO,当A点在反比例函数y=(x>0)的图象上移动时,B点坐标满足的函数解析式为.18.如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B 作直线AP的垂线,垂足为H,连结DH.若正方形的边长为4,则线段DH长度的最小值是.三、解答题:本大题共10小题,共76分19.计算:|﹣tan45°|+(﹣3)2+(6﹣π)0﹣()﹣1.20.解方程:=.21.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.22.先化简,再求值:(﹣)÷,其中x=.23.已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)直接写出一次函数的表达式;(2)直接写出直线AB与坐标轴围成的三角形的面积;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.24.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最省最少运费为多少元?25.如图,已知函数y=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x 轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.(1)若AC=2OD时,①直接写出点A坐标,四边形ADCB是形②求a、b的值;(2)若EC=3DB,求a的值.26.在一条笔直的公路上有A,B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,下图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)请直接写出A,B两地之间的距离是千米;甲骑自行车的速度是千米/时,乙骑摩托车的速度是千米/时.(2)求出乙离B地的距离y(km)与行驶时间x(h)之间的函数关系式.(3)若两人之间为了信息的及时交流,规定:当两人的距离达到3km时,就必须用无线对讲机联系一次,请求出甲、乙两人用无线对讲机联系时的x的值.27.如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(﹣2,﹣2),半径为.函数y=﹣x+2的图象与x轴交于点A,与y轴交于点B,(1)图1中,连接CO并延长和AB交于点G,求证:CG⊥AB;(2)图2中,当点P从B出发,以1个单位/秒的速度在线段AB上运动,连接PO,当直线PO与⊙C相切时,求点P运行的时间t是多少?(3)图3中,当直线PO与⊙C相交时,设交点为E、F,如果CM⊥EF于点M,令PO=x,MO=y,求y与x之间的函数关系式,写出x的取值范围.28.如图,直线y=x+1与抛物线y=x2﹣bx+l交于不同的两点M、N(点M在点N的左侧).(1)直接写出N的坐标(用b的代数式表示)(2)设抛物线的顶点为B,对称轴l与直线y=x+1的交点为C,连结BM、BN,若S△MBC=S△NBC,求抛物线的解析式;(3)在(2)的条件下,已知点P(t,0)为x轴上的一个动点,①若∠MPN=90°时,求点P的坐标.②若∠MPN>90°时,则t的取值范围是.(4)在(2)的条件下,已知点Q是直线MN下方的抛物线上的一点,问Q点是否存在在合适的位置,使得它到MN的距离最大?存在的话求出Q的坐标,不存在什么理由.2016年江苏省苏州市张家港市梁丰中学中考数学模拟试卷(1)参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.1.的倒数是()A.B.C. D.【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数可知.【解答】解:根据倒数的定义,可知的倒数是.故选B.【点评】本题主要考查了倒数的定义.2.函数y=的自变量x的取值范围是()A.x≠0 B.x≠1 C.x≥1 D.x≤1【考点】函数自变量的取值范围.【分析】根据分式有意义的条件是分母不为0,可得x﹣1≠0,解不等式即可.【解答】解:根据题意,有x﹣1≠0,解得x≠1.故选B.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.下面的计算一定正确的是()A.b3+b3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3•3y5=15y8D.b9÷b3=b3【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】根据合并同类项的法则判断A;根据积的乘方的性质判断B;根据单项式乘单项式的法则判断C;根据同底数幂的除法判断D.【解答】解:A、b3+b3=2b3,故本选项错误;B、(﹣3pq)2=9p2q2,故本选项错误;C、5y3•3y5=15y8,故本选项正确;D、b9÷b3=b6,故本选项错误.故选C.【点评】本题考查了合并同类项,积的乘方,单项式乘单项式,同底数幂的除法,熟练掌握运算性质与法则是解题的关键.4.不等式组的最小整数解为()A.﹣1 B.0 C.1 D.2【考点】一元一次不等式组的整数解.【分析】先求出不等式组的解集,再求其最小整数解即可.【解答】解:不等式组解集为﹣1<x≤2,其中整数解为0,1,2.故最小整数解是0.故选B.【点评】本题考查了一元一次不等式组的整数解,属于基础题,正确解出不等式的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y顶,那么下面列出的方程组中正确的是()A. B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】等量关系有:①甲种帐篷的顶数+乙种帐篷的顶数=1500顶;②甲种帐篷安置的总人数+乙种帐篷安置的总人数=8000人,进而得出答案.【解答】解:根据甲、乙两种型号的帐篷共1500顶,得方程x+y=1500;根据共安置8000人,得方程6x+4y=8000.列方程组为:.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,列方程组解应用题的关键是找准等量关系,此题中要能够分别根据帐篷数和人数列出方程.6.如果单项式﹣x a+1y3与是同类项,那么a、b的值分别为()A.a=2,b=3 B.a=1,b=2 C.a=1,b=3 D.a=2,b=2【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a,b的值.【解答】解:根据题意得:,则a=1,b=3.故选:C.【点评】考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点7.下列四个说法中,正确的是()A.一元二次方程有实数根B.一元二次方程有实数根C.一元二次方程有实数根D.一元二次方程x2+4x+5=a(a≥1)有实数根【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:A、△=b2﹣4ac=16﹣4×(5﹣)=2﹣4<0,方程无实数根,错误;B、△=b2﹣4ac=16﹣4×(5﹣)=2﹣4<0,方程无实数根,错误;C、△=b2﹣4ac=16﹣4×(5﹣)=﹣4<0,方程无实数根,错误;D、△=b2﹣4ac=16﹣4×(5﹣a)=4(a﹣1)≥0,方程有实数根,正确;故选D.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【考点】分式的加减法.【专题】计算题.【分析】将分母化为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣===x,故选:D.【点评】本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.9.如图,在菱形ABCD中,DE⊥AB,cosA=,BE=2,则tan∠DBE的值是()A.B.2 C.10D.【考点】菱形的性质;解直角三角形.【分析】首先设菱形ABCD边长为x,则AE=x﹣2,根据三角函数定义可得=,再解即可得到x的值,然后利用勾股定理计算出DE的长,然后在根据正切定义可得tan∠DBE的值.【解答】解:设菱形ABCD边长为x,∵BE=2,∴AE=x﹣2,∵cosA=,∴=,∴=,∴x=5,∴AE=5﹣2=3,∴DE==4,∴tan∠DBE===2.故选:B.【点评】本题考查了菱形的性质,以及三角函数的应用,要熟练掌握好边角之间的关系,菱形四边相等.10.如图,已知直线y=x﹣3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A.10+1 B.10C.10.5 D.11.5【考点】一次函数图象上点的坐标特征;切线的性质.【分析】求出A、B的坐标,根据勾股定理求出AB,求出点C到AB的距离,即可求出圆C上点到AB的最大距离,根据面积公式求出即可.【解答】解:∵直线y=x﹣3与x轴、y轴分别交于A、B两点,∴A点的坐标为(4,0),B点的坐标为(0,﹣3),3x﹣4y﹣12=0,即OA=4,OB=3,由勾股定理得:AB=5,过C作CM⊥AB于M,连接AC,则由三角形面积公式得:×AB×CM=×OA×OC+×OA×OB,∴5×CM=4×1+3×4,∴CM=,∴圆C上点到直线y=x﹣3的最大距离是1+=,∴△PAB面积的最大值是×5×=.故选:C.【点评】本题考查了三角形的面积,点到直线的距离公式的应用,解此题的关键是求出圆上的点到直线AB的最大距离,属于中档题目.二、填空题:本大题共8小题,每小题3分,共24分11.分解因式:a2﹣9=(a+3)(a﹣3).【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.12.若代数式3x+7的值为﹣2,则x=﹣3.【考点】解一元一次方程.【专题】计算题.【分析】先列出方程,再移项,再合并同类项,最后化系数为1,从而得到方程的解.【解答】解:∵代数式3x+7的值为﹣2,∴3x+7=﹣2,移项得:3x=﹣2﹣7,合并同类项得:3x=﹣9,化系数为1得:x=﹣3.故填:﹣3.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.13.如图,直线a∥b,∠1=125°,则∠2的度数为55°.【考点】平行线的性质.【分析】先根据对顶角相等,∠1=65°,求出∠3的度数,再由两直线平行,同旁内角互补得出∠2的度数.【解答】解:解:∵∠1=125°,∴∠3=∠1=125°,∵a∥b,∴∠2=180°﹣∠3=180°﹣125°=55°.故答案为:55°.【点评】本题考查了平行线的性质,对顶角的性质,熟记定理是解题的关键.14.若关于x的方程x2﹣x+a=0有两个相等的实数根,则a的值为.【考点】根的判别式.【分析】若一元二次方程有两个相等的实数根,则方程的根的判别式等于0,由此可列出关于a的等式,求出a的值.【解答】解:∵关于x的方程x2﹣x+a=0有两个相等的实数根,∴△=1﹣4a=0,解得a=.故答案为:.【点评】此题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.已知扇形的圆心角为45°,半径为2cm,则该扇形的面积为πcm2.【考点】扇形面积的计算.【分析】根据扇形的面积公式S=进行计算.【解答】解:依题意,得该扇形的面积为:=.故答案是.【点评】本题考查了扇形面积的计算.熟记公式是解题的关键.16.如图,矩形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,则DE的长为5.【考点】翻折变换(折叠问题).【分析】设DE=x,则AE=8﹣x.根据折叠的性质和平行线的性质,得∠EBD=∠CBD=∠EDB,则BE=DE=x,根据勾股定理即可求解.【解答】解:设DE=x,则AE=8﹣x.根据折叠的性质,得∠EBD=∠CBD.∵AD∥BC,∴∠CBD=∠ADB.∴∠EBD=∠EDB.∴BE=DE=x.在直角三角形ABE中,根据勾股定理,得x2=(8﹣x)2+16x=5.故答案为:5.【点评】此题主要是运用了折叠的性质、平行线的性质、等角对等边的性质和勾股定理.17.如图,Rt△OAB的顶点O与坐标原点重合,∠AOB=90°,AO=BO,当A点在反比例函数y=(x>0)的图象上移动时,B点坐标满足的函数解析式为.【考点】相似三角形的判定与性质;反比例函数图象上点的坐标特征.【分析】首先设B点坐标满足的函数解析式是y=,过点A作AC⊥x轴于点C,过点B作BD⊥x 轴于点D,易得△AOC∽△OBD,然后由相似三角形面积比等于相似比的平方,求得S△AOC:S△BOD=2:1,继而求得答案.【解答】解:设B点坐标满足的函数解析式是,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,∴∠ACO=∠BDO=90°,∴∠AOC+∠OAC=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠BOD=∠OAC,∴△AOC∽△OBD,∴S△AOC:S△BOD=()2,∵AO=BO,∴S△AOC:S△BOD=2,∵S△AOC=OC•AC=,S△BOD=∴设B点坐标满足的函数解析式是.故答案为.【点评】此题考查了相似三角形的判定与性质以及反比例函数的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.18.如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH.若正方形的边长为4,则线段DH长度的最小值是2﹣2.【考点】正方形的性质;点与圆的位置关系.【分析】根据直角三角形斜边上的中线等于斜边的一半,取AB的中点O,连接OH、OD,然后求出OH=AB=2,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【解答】解:如图,取AB的中点O,连接OH、OD,则OH=AO=AB=2,在Rt△AOD中,OD===2,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,DH的最小值=OD﹣OH=2﹣2.故答案为:2﹣2.【点评】本题考查了正方形的性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系,确定出DH最小时点H的位置是解题关键.三、解答题:本大题共10小题,共76分19.计算:|﹣tan45°|+(﹣3)2+(6﹣π)0﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别根据数的乘方法则、0指数幂及负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=1+9+1﹣2=9.【点评】本题考查的是实数的运算,熟知数的乘方法则、0指数幂及负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值是解答此题的关键.20.解方程:=.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣4=3x﹣3,解得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,熟练掌握运算法则是解本题的关键.21.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证:△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.【考点】全等三角形的判定与性质.【专题】几何综合题.【分析】(1)先利用角平分线性质、以及等量代换,可证出∠1=∠3,结合CD=CE,C是AB中点,即AC=BC,利用SAS可证全等;(2)利用角平分线性质,可知∠1=∠2,∠2=∠3,从而求出∠1=∠2=∠3,再利用全等三角形的性质可得出∠E=∠D,在△BCE中,利用三角形内角和是180°,可求出∠B.【解答】(1)证明:∵点C是线段AB的中点,∴AC=BC,又∵CD平分∠ACE,CE平分∠BCD,∴∠1=∠2,∠2=∠3,∴∠1=∠3,∵在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).(2)解:∵∠1+∠2+∠3=180°,∴∠1=∠2=∠3=60°,∵△ACD≌△BCE,∴∠E=∠D=50°,∴∠B=180°﹣∠E﹣∠3=70°【点评】本题利用了中点性质、角平分线性质、全等三角形的判定和性质、三角形内角和定理等知识.22.先化简,再求值:(﹣)÷,其中x=.【考点】分式的化简求值.【专题】计算题.【分析】先将括号内的部分通分,再将分式分子、分母因式分解,化简后将x=代入即可求解.【解答】解:原式=•=•=,当x=时,原式==.【点评】本题考查了分式的化简求值,熟悉通分、约分和分母有理化是解题的关键.23.已知一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3).求:(1)直接写出一次函数的表达式y=﹣x﹣2;(2)直接写出直线AB与坐标轴围成的三角形的面积2;(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征;轴对称-最短路线问题.【分析】(1)把A、B两点代入可求得k、b的值,可得到一次函数的表达式;(2)分别令y=0、x=0可求得直线与两坐标轴的两交点坐标,可求得所围成的三角形的面积;(3)根据轴对称的性质,找到点A关于x的对称点A′,连接BA′,则BA′与x轴的交点即为点P 的位置,求出直线BA′的解析式,可得出点P的坐标.【解答】解:(1)∵一次函数y=kx+b的图象经过点A(﹣1,﹣1)和点B(1,﹣3),∴,解得,∴一次函数为y=﹣x﹣2;(2)在y=﹣x﹣2中,分别令x=0、y=0,可求得一次函数与两坐标轴的交点坐标分别为(0,﹣2)、(﹣2,0),∴直线与两坐标轴围成的三角形的面积为:S=×2×2=2;(3)作点A关于x轴的对称点A′,连接BA′与x轴的交点即为点P.设直线BA′的解析式为y=mx+n,将点A′(﹣1,1)和点B(1,﹣3)代入可得:,解得:.故直线BA′的解析式为y=﹣2x﹣1,令y=0,可得﹣2x﹣1=0,解得:x=﹣,故点P的坐标为(﹣,0).故答案为y=﹣x﹣2;2.【点评】本题考查了待定系数法求函数解析式,一次函数图象上点的坐标特征,轴对称﹣最短路线问题,掌握待定系数法的应用是解题的关键.24.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式;(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?(3)在上述方案中,哪个方案运费最省最少运费为多少元?【考点】一次函数的应用;一元一次不等式组的应用.【专题】压轴题.【分析】(1)总费用=0.6×A型车厢节数+0.8×B型车厢节数.(2)应分别表示出两类车厢能装载的甲乙两种货物的质量.35×A型车厢节数+25×B型车厢节数≥1240;15×A型车厢节数+35×B型车厢节数≥880.(3)应结合(1)的函数,(2)的自变量的取值来解决.【解答】解:(1)6000元=0.6万元,8000元=0.8万元,设用A型车厢x节,则用B型车厢(40﹣x)节,总运费为y万元,依题意,得y=0.6x+0.8(40﹣x)=﹣0.2x+32;(2)依题意,得化简,得,即,∴24≤x≤26,∵x取整数,故A型车厢可用24节或25节或26节,相应有三种装车方案:①24节A型车厢和16节B型车厢;②25节A型车厢和15节B型车厢;③26节A型车厢和14节B型车厢.(3)由函数y=﹣0.2x+32知,x越大,y越少,故当x=26时,运费最省,这时y=﹣0.2×26+32=26.8(万元)答:安排A型车厢26节、B型车厢14节运费最省,最小运费为26.8万元.【点评】解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组.25.如图,已知函数y=(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x 轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.(1)若AC=2OD时,①直接写出点A坐标(1,4),四边形ADCB是菱形②求a、b的值;(2)若EC=3DB,求a的值.【考点】反比例函数综合题.【分析】(1)①由函数y=(x>0)的图象经过点A、B,点B的坐标为(2,2),可求得反比例函数的解析式,又由AC=2OD,可求得点A的纵坐标,则可求得点A坐标;由AF=CF=2,DF=BF=1,AC⊥BD,可证得四边形ADCB是菱形;②将A与D的坐标代入,利用待定系数法即可求得a、b的值;(2)首先由EC=3DB,求得点E的坐标,然后利用待定系数法即可求得一次函数的解析式.【解答】解:(1)∵函数y=(x>0)的图象经过点A、B,点B的坐标为(2,2),∴k=xy=2×2=4,OD=2,∴反比例函数的解析式为:y=,①∵BD⊥y轴,∴点D的坐标为:(0,2),即OD=2,∵AC=2OD=2×2=4,AC⊥x轴,∴点A的纵坐标为4,∴4=,解得:x=1,∴点A坐标为:(1,4);∴AF=CF=2,DF=BF=1,∴四边形ADCB是平行四边形,∵AC⊥BD,∴四边形ADCB是菱形;故答案为:(1,4),菱;②把点D与点A代入得:,解得:∴a=2,b=2;(2)∵EC=3DB,DB=2,∴EC=6,∵点C的坐标为(1,0),即OC=1,∴OE=5,∴点E的坐标为(﹣5,0),把D,E的坐标代入y=ax+b得:,解得:a=.【点评】此题属于反比例函数综合题.考查了待定系数求函数解析式以及菱形的判定的知识.注意求得各点的坐标是解此题的关键.26.在一条笔直的公路上有A,B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,下图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)请直接写出A,B两地之间的距离是30千米;甲骑自行车的速度是15千米/时,乙骑摩托车的速度是30千米/时.(2)求出乙离B地的距离y(km)与行驶时间x(h)之间的函数关系式.(3)若两人之间为了信息的及时交流,规定:当两人的距离达到3km时,就必须用无线对讲机联系一次,请求出甲、乙两人用无线对讲机联系时的x的值.【考点】一次函数的应用.【分析】(1)由函数图象可以得出A、B两地之间的距离为30km;根据函数图象反映的时间可以求出甲乙的速度;(2)设乙骑摩托车从B地到A地的解析式为y乙=k1x,到达A地后立即按原路返回的解析式为y乙=k2x+b,由待定系数法求出其解即可;(3)求得甲行的函数解析式,分情况讨论,当y甲﹣y乙≤3,y乙﹣y甲≤3,分别求出x的值就可以得出结论.【解答】解:(1)由函数图象,得A、B两地的距离为30千米.甲的速度为:30÷2=15千米/时,乙的速度为:30÷1=30千米/时;(2)如图,设OB的解析式为y1=k1x,BC的解析式为y2=k2x+b,由题意,得30=k1,,解得:k1=30,,则OB的解析式为y1=30x,BC的解析式为y2=﹣30x+60,(3)由题意得AC的解析式为y3=﹣15x+30,当y3﹣y1≤3或y1﹣y3≤3时,,解得:≤x≤.当y2﹣y3≤3时,,解得:1.8≤x≤3,则当≤x≤或1.8≤x≤3时,甲、乙两人能够用无线对讲机保持联系.【点评】本题考查了一次函数的解析式的运用,相遇问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一元一次不等式式组的运用,解答时认真分析函数图象,弄清函数图象的意义是关键.27.如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(﹣2,﹣2),半径为.函数y=﹣x+2的图象与x轴交于点A,与y轴交于点B,(1)图1中,连接CO并延长和AB交于点G,求证:CG⊥AB;(2)图2中,当点P从B出发,以1个单位/秒的速度在线段AB上运动,连接PO,当直线PO与⊙C相切时,求点P运行的时间t是多少?(3)图3中,当直线PO与⊙C相交时,设交点为E、F,如果CM⊥EF于点M,令PO=x,MO=y,求y与x之间的函数关系式,写出x的取值范围.【考点】圆的综合题.【分析】(1)先求得直线OC的解析式,依据一次项系数乘积为﹣1的两条直线相互垂直,可证明CG⊥AB;(2)由y=x与y=﹣x+2可求得点G的坐标,然后再求得点B的坐标为,接下来依据两点间的距离公式求得OC=2,OG=.BG=.接下来证明△OCE∽△OPG,由相似三角形的性质可求得PG=,从而可求得BP的长,故此可求得t的值(3)如图所示:先证明△MOC∽△GOP,由相似三角形的性质可得到y与x的函数关系式,当点P 与点G重合时,OP有最小值,当OP与圆C相切时OP有最大值,从而可确定出自变量x的取值范围.【解答】解:(1)∵设直线OC的解析式为y=kx,将点C的坐标代入得:﹣2k=﹣2,解得;k=1,∴直线OC的解析式为y=x.∵函数y=﹣x+2的一次项系数与函数y=x的一次项系数的乘积为﹣1×1=﹣1,∴直线y=x与直线y=﹣x+2相互垂直.∴CG⊥AB.(2)∵将y=x与y=﹣x+2联立解得:x=1,y=1,∴点G坐标为(1,1).∵将x=0代入y=﹣x+2得y=2,∴点B的坐标为(0,2).由两点间的距离公式可知OC==2,OG==.BG==.①如图1所示:∵直线PO与⊙C相切,∴CE⊥OE.在Rt△OCE中,由勾股定理可知:OE==∵在△OCE和△OGP中,∠CEO=∠PGO=90°,∠COE=∠POG,∴△OCE∽△OPG.∴,即,解得:PG=.∴PB=BG﹣PG=﹣.∴t=﹣.②如图2所示:∵直线PO与⊙C相切,∴CE⊥OE.在Rt△OCE中,由勾股定理可知:OE==∵在△OCE和△OGP中,∠CEO=∠PGO=90°,∠COE=∠POG,∴△OCE∽△OPG.∴,即,解得:PG=.∴PB=BG+PG=+.∴t=+.综上所述,当t=+或t=﹣时,直线PO与⊙C相切.(3)如图所示:∵CM⊥EF,∴∠CMO=90°.∴∠CMO=∠OGP.又∵∠MOC=∠GOP,∴△MOC∽△GOP.∴,即.∴xy=4.∴y与x的函数关系式为y=.∵当直线OP与圆C相切时,x有最大值,∴OP==.当点P与点G重合时,x有最小值,最小值=OG=.∴自变量x的取值范围是≤x≤.【点评】本题主要考查的是圆的综合应用,解答本题主要应用了切线的性质、相似三角形的性质和判定、勾股定理、待定系数法求一次函数的解析式,证得△OCE∽△OPG、△MOC∽△GOP是解题的关键.28.如图,直线y=x+1与抛物线y=x2﹣bx+l交于不同的两点M、N(点M在点N的左侧).(1)直接写出N的坐标(b+1,)(用b的代数式表示)(2)设抛物线的顶点为B,对称轴l与直线y=x+1的交点为C,连结BM、BN,若S△MBC=S△NBC,求抛物线的解析式;(3)在(2)的条件下,已知点P(t,0)为x轴上的一个动点,①若∠MPN=90°时,求点P的坐标.②若∠MPN>90°时,则t的取值范围是1<t<2.(4)在(2)的条件下,已知点Q是直线MN下方的抛物线上的一点,问Q点是否存在在合适的位置,使得它到MN的距离最大?存在的话求出Q的坐标,不存在什么理由.。
江苏省梁丰某知名学校中考模拟试题(6科6份)_3

江苏省梁丰初级中学2016届中考物理模拟试题(满分:100分 考试时间:100分钟) 班级 姓名一、选择题(本题共12小题,每小题2分,共24分.每小题给出的四个选项中只有一个选项符合题意)1.对下列物理量的认识中,最接近实际的是( ) A .托起两个鸡蛋的力约为10N B .初中物理课本的长度约为26cmC .初三学生百米成绩约为8sD .一个普通中学生的质量约为500kg2.关于声现象,下列说法正确的是( )A .一切声音都是由物体振动产生的B .频率高低决定声音的音色C .汽车禁止鸣笛,是为了在传播过程中减弱噪声D .“B 超”是利用了声音可以传递能量3.下列光现象中,由光的直线传播形成的是( )A .光的色散B .钢笔移位C .小孔成像D .水中倒影4.关于下列四幅图的说法正确的是( )A B C DA .声呐利用次声波探测鱼群B .汽车导航仪利用电磁波导航C .验钞机利用荧光物质在红外线照射下能够发光的原理工作D .夜视仪通过识别不同温度的物体辐射的紫外线进行侦察5.近年关于“吸物超人”的报道层出不穷,把手机、陶瓷盘、塑料遥控器等物体往2“超人”胖乎乎、汗涔涔的身上按一下,物体就被身体“吸”住而不掉下来,下列分析中合理的是 ( )A .“超人”身上有强磁性,所以能够吸物体B .“超人”身上有静电,所以能够吸物体C .“超人”身上有汗水,所以能够粘住物体D .“超人”身体吸物体是假,大气压物体是真6.为了判断一根铁棒是否具有磁性、小明进行了如下四个实验,根据实验现象不能确定该铁棒具有磁性的是 ( )7.下列四幅图中,用来研究磁场对通电导线有力的作用的是 ( )A .图甲中,风车转动时电流表指针偏转B .图乙中,闭合开关后线圈转动C .图丙中,旋转启动钥匙后用电器工作D .图丁中,闭合开关后铁钉吸引大头针8. 下图是电磁波家族,真空中各种电磁波的传播速度相同.某类恒星温度较低,呈暗红色;另一类恒星温度极高,呈蓝色.根据所给信息可推测( )A .红外线波长比蓝光波长短B .红光与X 射线都是电磁波C .恒星温度越高,发出的光频率越低D .真空中红光比无线电波传播速度大9.2014 年 8 月,我国自主研发的“华龙一号”核电站总体技术方案通过专家评审。
江苏省苏州市梁丰初级中学2025届九年级物理第一学期期中学业水平测试模拟试题含解析

江苏省苏州市梁丰初级中学2025届九年级物理第一学期期中学业水平测试模拟试题业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、单选题1.将如图所示的变阻器接入电路中,当滑片向左移动时,要使电阻减少,下列哪种接法正确()A.a和b B.a和c C.c和d D.b和d2.晓彤用注射器抽取半筒水,用手指封闭注射器筒口(如图所示),推压注射器的活塞,发现水很难被压缩.晓彤的实验说明()A.分子在不停地做无规则运动B.分子间存在斥力C.分子间存在引力D.分子间存在间隙3.如图所示的电路中,若开关S闭合,灯L1、L2均不亮,某同学用一根导线去查找电路故障,当他用导线连接L1两端时,两灯仍不亮;当导线连接L2两端时,L1亮、L2不亮.由此可以判断A.灯L1断路B.灯L2断路C.灯L1短路D.灯L2短路4.投影仪如图,它的光源是强光灯泡,发光时必须用风扇给它降温.设计投影仪电路的要求是:带动风扇的电动机先启动后灯泡才可以发光,电动机未启动,灯泡不可以发光.下图中符合设计要求的是A.B.C.D.5.关于电现象,下列说法中正确的是A.电路中只要有电源,就一定产生电流B.金属导体中电流方向与自由电子的定向移动方向相同C.摩擦起电的实质是电子的转移D.将一带电体靠近一轻小物体,二者相互吸引,则该轻小物体一定带异种电荷6.如图,小明利用标有“6V 6W”的灯泡L1和“6V 3W”的灯泡L2,进行实验。
两个灯泡的I-U图像如图,在保证电路安全的前提下,下列说法中正确的是()A.当L2正常发光时,通过L2的电流为1.0AB.L1的电阻恒为6ΩC.两灯串联时的最大总功率为4WD.当L1和L2串联且有一个灯正常工作时,另一个灯的功率为I.5W7.简单机械在我们的生活中应用很广泛,下图是使用简单机械匀速提升同一物体的四种方式(不计机械重和摩擦),其中不省力的是A.B.C.D.8.下列器材或装置中不是利用连通器原理工作的是A.水龙头B.锅炉水位计C.茶壶D.船闸二、多选题9.用相同的酒精灯分别对a、b两液体加热(如图甲),根据测得数据分别描绘出两液体的温度随时间变化的图象(如图乙).在相同的时间内两液体吸收的热量相等,不计液体热量散失,分别用m a、m b、c a、c b表示a、b两液体的质量和比热容,则结合图中信息作出的下列推断正确的是()A.若m a=m b,则c a>c bB.若m a=m b,则c a<c bC.若c a=c b,则m a<m bD.若c a=c b,则m a>m b10.如图所示是电阻甲和电阻乙的U-I图像,下列说法中正确的是A.电阻甲和乙都是阻值不变的电阻B.当电阻乙两端电压为2V时,R乙=10ΩC.将电阻甲和乙以串联方式接在电源电压为U的电路中,当电路电流为0.2A时,电源电压U为3VD.将电阻甲和乙以并联方式接在电源电压为U的电路中,当电源电压为2V时,干路中的总电流为0.6A三、填空题11.热机是动力机械的一类。
2016届江苏梁丰初级中学九年级下期中考模拟(1)英语试卷(带解析)

绝密★启用前2016届江苏梁丰初级中学九年级下期中考模拟(1)英语试卷(带解析)试卷副标题考试范围:xxx ;考试时间:80分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单项选择(题型注释)1、----Your father never watches the drama series on TV, __________? -----_____________________. He thinks these drama series are boring and dull. A .does he; Yes, he does. B .does he; No, he doesn’t C .doesn’t he ; Yes, he does. D .doesn’t he ; No, he doesn’t .2、- My friend has achieved his goal after years of hard work. - Great! ________.A .One tree can't make a forestB .Where there is a will, there is a wayC .Many hands make light workD .A friend in need is a friend indeed试卷第2页,共11页3、- Some children can't afford ________ necessary stationary. - Let's donate our pocket money to them.A .buyB .buyingC .to buyD .be bought4、- Where is Mr. Wang? - He together with his students ________ Zhuyuwan Park. A .has gone to B .have gone to C .has been to D .have been to5、- The air pollution is terrible.- It will be worse ________ we take action to protect the environment. A .if B .unless C .until D .when6、一I want to borrow the book ,but I don’t know how long it may . 一For two weeks.A .keepB .be borrowedC .borrowD .be kept7、---Judy is a thoughtful and organized girl. ---Yes. I think she is_______ plan everything well. A .talented enough to B .too talented to C .so talented that D .such a talented girl that8、 So far , _______ of the students in our class _______ seen the film. A .three quarters; has B .two fifths; have C .three quarter; has D .two fifth; have9、The wonderful video you look forward to_______ well these days. A .sell B .selling C .sells D .sold10、---Judy, do you know_______? ---Sure, two days. A .when did the sports meeting begin B .where the sports meeting was held C .how often the sports meeting is held D .how long the sports meeting will last11、---How much difficulty has the team had_______ this problem? ---_______.The members are all good problem solvers. A .to solve; Nothing B .solving; None C .to solve; None D .solving; Nothing12、It’s not the right time to argue about who should be blamed. We’d better and find a way out as soon as possible.A .stay upB .give upC .calm downD .look down13、A little wine will not be to your health. Just don’t drink too muc h. A .helpful B .helpless C .harmful D .harmless14、—Life gets easier with the Internet. —That’s true! Almost everything be done online. A .can B .need C .must D .should15、Now it is 7 o’clock in morning in Beijing and 11 o’clock at night in London. A .不填;the B .the ;the C .the ;不填 D .the ;a二、完形填空(题型注释)完形填空Recently, I felt like I reached a very low point in life. My relationships weren't good, I wasn't enjoying my classes, and I felt like I had nothing to_______.My life seemed to be full of endless homework, tests and loneliness. Nothing anyone said seemed_______to me. I wasn't sure what to do about myself. All I wanted was to be happy again, but I didn't know who or what would_______that.During these days, I had trouble sleeping. I had to take sleeping pills but still woke up in the midnight. I had no _______ but to tell my dad. He_______ the book The Secret. I immediately bought the e-book online and read the whole thing that night. I'm_______ quite a stubborn person, but the effect on my mood after finishing the book was_______. Suddenly, I felt like试卷第4页,共11页life was beautiful again. I had never felt such a deep and quick_______in my life before. In fact, the book's message was very simple —think positively(积极地).The book had many success stories about how people were able to _______ money, soul mates(心灵伙伴)and old friends back into their lives. I started learning to thank everything in my life like them. Little by little, I realized that The Secret could only work _______I believed these people's success stories.Now I'm sure I can bring myself happiness.16、A .take care of B .come up with C .look down on D .look forward to17、A .helpful B .colourful C .peaceful D .powerful 18、A .serve B .offer C .answer D .prevent 19、A .problem B .idea C .need D .doubt20、A .borrowed B .collected C .returned D .recommended 21、A .normally B .mainly C .finally D .probably 22、A .realistic B .common C .obvious D .serious 23、A .breath B .notice C .surprise D .change 24、A .attract B .control C .imagine D .mention 25、A .until B .When C .unless D .Before三、阅读理解(题型注释)Jack thought himself a basketball fan. He watched quite a lot of American NBA basketball games. Not only did he watch them, he spent much of his free time playing on the court too. Then came the final year of his middle school. All of his regular teammates stopped showing up on the court because they were simply too busy preparing for the high school entrance exam to play. He was, of course, under much stress himself, like everyone else. A good exam result meant a good high school; a mediocre(平庸的)score meant a mediocre school. Much was at stake. However, he loved basketball so much that he still found time to play, this time with a group of guys who were said to have skipped classes(逃课)before.Some of his teachers started worrying about him. They asked his mother to go to school to let her know that Jack was hanging out with problem kids. When his mother returned home thatday, she wanted to talk to Jack. Knowing the purpose of her visit to the school, Jack thought his mother would punish him for befriending those bad guys. To his surprise, his mother was not angry with him at all. She wanted to hear her son's side of the story. So Jack told his mother about what he knew of Simon and Peter. Simon's parents were badly ill; Peter's father had lost his job. They both seemed to Jack to be normal kids. Jack's mother thought for a moment, then went on to say that she was OK with her son playing with them and that she and her son should think of ways to help these kids. Soon Jack's mum introduced some part-time jobs to Simon and Peter, which they accepted. She believed in her son and cared about those who were less lucky. Jack's basketball friends and he have left for different places, but they still keep in touch. He knows Peter is now a manager of a local bank. Simon is currently a freshman at a university. Sadly, it is impossible to get together to play basketball again, but whenever they get on the phone, they talk about it all the time.26、After Jack's mother came home from school, she .A.was angry with himB.told him what his teachers had saidC.asked him to keep away from problem kidsD.was patient enough to listen to her son's words27、What does the underlined sentence "Much was at stake " probably mean in the passage? A.Jack must be punished by his mother.B.Jack might not enter a good high school.C.Jack might get hurt when playing basketball.D.Jack must be influenced badly by problem kids.28、Which of the following is NOT true according to the passage?A.Peter's family are living much better.B.Simon is now studying at a university.C.Jack's mum understood him instead of blaming him.D.Jack's teachers wanted his mother to help his friends.29、The main idea of the passage is to .A.make friends with problem kidsB.keep in touch with friends all the timeC.try to understand children and help problem kidsD.give up hobbies before the high school entrance exam试卷第6页,共11页Holmes said, “Somebody sent a letter with five pips (桔核) in it from India, and arrived seven weeks later to kill John’s uncle . Then they sent five pips from Scotland and arrived three days later to kill John’s father. Now they have sent five pips to John from London!”“The letters are all from sea ports (海港). The writer was on a ship when he wrote the letters,” I replied.“Very good, Watson! And John’s enemy is in London already!” “Well, I hope they won’t kill young John,” I said.But they did. The next morning, we read in the newspaper that a policeman found him die near Waterloo station. Holmes was very angry about it.“He came to me for help and those men murdered him! I’m going to find them, if it’s the last thing I do!” he said to me, and he hurried out of the house.At night, when he came back, he was tired, but pleased, he said, “I know the names of John’s enemies! And now I’m going to send them a surprise! This will frighten them!” He took five pips from an orange and put them in an envelope (信封). On it he wrote “S. H. for J. C.” “I’m sending the pips to captain James Calhoun. His ship is called the Star. He and his men are sailing back to Georgia, USA.”“How did you find him, Holmes?” I asked.“Ship’s papers,” he said, “I’ve looked at hundreds of them today. Only one ship, the Star, was in the three ports at the right times, this morning the Star left London to sail back to Georgia. I found out that the captain and two of his men, all Americans, weren’t on the ship last night, so I’m sure they killed John. When they arrive in America, they’ll get the pips and then the police will catch them!”30、Holmes was ________ about Joh n’s death.A .curiousB .worriedC .crazyD .angry 31、The Star left London for ________.A .CanadaB .AustraliaC .AmericaD .India 32、Who do you think the underlined letters “J. C.” stand for? A. James Calhoun B. James Columbus C. John Calhoun D. John Columbus33、Which order is correct according to the story?① John came to Holmes for help.② John received a letter with five pips.③ John was killed.④ Holmes sent five pips to J. C.A. ③①④②B. ③④①②C. ④①③②D. ②①③④More than anything else in the world, Lion liked being King of the jungle. He walked around, showing off his power and pride.Each day Lion took a long lazy sleep under the shade of his favourite tree. He always dreamed of weaker animals bowing(鞠躬) before him.One day Mouse ran through the jungle and tripped over Lion’s huge paws. Lion woke up with a start. “How dare you wake me up! ”he shouted angrily. Lion grabbed Mouse with one paw. “On the second thought, I’m in the mood for the snack, and you’ll make a delicious meal.”, he said.Mouse cried out, “King Lion, please spare(饶恕)me! If you let me live, I’ll always remember your kindness. And, some day, I might be able to help you.”“ How could such a powerless little mouse ever help me?” That thought made Lion laugh so much that he decided to let Mouse go. A week later, Lion was walking through the jungle on the way to his favourite tree when he stepped onto a hunter’s net. The net scooped him up. No matter how he twisted and turned, he couldn’t escape.When Mouse heard Lion’s frightened shouts, he raced to help. Mouse quickly chewed through the ropes to make a hole in the net. Soon, Lion moved out and was free. Lion looked down at the little mouse. “Thank you for saving my life,” said Lion, smiling his widest smile. “I was mistaken. You are not a powerless little mouse. You are a great friend!”34、What did Lion do each day?A.He showed kindness to animals in the jungle.B.He stepped onto a hunter’s net.C.He bowed before weaker animals.D.He had a good sleep under his favourite tree.35、How did Mouse wake up Lion?A.He prepared a delicious meal for Lion.B.He made a hole in the net.试卷第8页,共11页C .He shouted at Lion angrily.D .He tripped over Lion’s paws. 36、Why did Lion let Mouse go? A .Because he was trapped in the net. B .Because he took Mouse as his good friend. C .Because he doubted if Mouse could be of any help. D .Because he believed Mouse could save him. 37、What can we learn from the passage? A .Pride makes you lose what you have. B .Don’t put all your eggs in one basket. C .Even the small can show great strength. D .When the cat’s away, the mice will play.As an old Chinese saying goes, food is what matters most to people. A Bite of China Season Two, all about the history and culture of eating and cooking in China, broadcast on CCTV-1 from April 18 to June 6. Food plays an important role in our daily life. It is also one of the most important parts of Chinese culture. Besides the rich food culture in China, A Bite of China Season Two also wants to show the joys and sadnesses of ordinary Chinese in changing times through food.The documentary makes viewers long for home and the tastes of childhood. One Weibo user wrote, “A Bite of China Season Two makes me have so many words to say. It makes me think of my parents and grandmother. I remember my father taught me how to fish when I was a kid. I haven’t been home for a long time, so I’ve decided to go back in a few days.”The documentary uses food as a window to introduce China to the world. Viewers can see how Chinese people love life by loving food. The new season is not just an introduction to food. It also explores the relationship between Chinese people and their food. Anyone who wants to know more about Chinese food culture and Chinese society should have a bite of the programme.38、What type of TV programme is A Bite of China Season Two? A .A cartoon. B .A comedy. C .A documentary. D .A chat show 39、When did the programme begin on CCTV-1?A.April 6. B.June 6. C.April 18. D.July 18.40、What’s the main idea of the programme?A.The development of Chinese history.B.The history and culture of Chinese food.C.An introdution to Chinese culture.D.Feelings of ordinary Chinese.试卷第10页,共11页第II 卷(非选择题)四、单词拼写(题型注释)词汇41、Lucy is one of the _______________ (苗条)girls in our class.42、I'm strongly _______________ (反对)smoking because it may cause cancer. 43、Rome was not _______________ (建造)in a day, so you should work hard to make progress.44、Reading should be a life long (习惯)for every one of us.45、My grandmother is in her (九十多岁),but she can still take care of herself. 46、What he said finally proved that he was (不诚实的).47、There is no (怀疑)that Nantong will develop into a modern city in the near future. 48、She was fired out and rested at home instead of (出席)the meeting. 49、—What happened over there?—A car was out of and crashed into a big tree.50、—I've found a position in the department and worked as an accountant. —congratulations !You don’t need to on your parents any more.五、翻译(题型注释)句子翻译51、令我们惊讶的是,这位世界闻名的总统曾经做过演员。
【苏科版】九年级数学下期中第一次模拟试题及答案

一、选择题1.如图,在平行四边形ABCD 中,点E ,F 分别为,AB BC 的中点,则三角形BEF 与多边形EFCDA 的面积之比为( )A .1∶4B .1∶5C .1∶7D .1∶82.若234a b c ==,则a b b c+-的值为( ) A .5B .15C .-5D .-153.如图,在Rt ABC 中,90,ACB AC BC ∠==,点D 、E 在AB 边上,45DCE ∠=,若3,4AD BE ==,则ABC ∣的面积为( )A .20B .24C .32D .364.如图,已知△ABC 和△EDC 是以点C 为位似中心的位似图形,且△ABC 和△EDC 的周长之比为1:2,点C 的坐标为(﹣2,0),若点A 的坐标为(﹣4,3),则点E 的坐标为( )A .(52,﹣6) B .(4,﹣6) C .(2,﹣6)D .3(,6)2-5.如图,正方形ABCD 中,ABC 绕点A 逆时针旋转到AB C ''△,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =,则EF ED ⋅的值为( )A .4B .6C .8D .166.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,延长至点G ,连接BG ,过点A 作AF ⊥BG ,垂足为F ,AF 交CD 于点E ,则下列错误的是( )A .AD ACAC AB= B .AD CDCD BD= C .DE CDCD DG= D .EG BDEF BG= 7.反比例函数(0)ky k x=≠图象在二、四象限,则二次函数22y kx x =-的大致图象是( )A .B .C .D .8.已知:点A(1,y 1)、B (2,y 2)、C(-3,y 3)都在反比例函数ky x=图象上(k>0),则y 1、y 2、y 3的关系是( ) A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 3<y 2<y 19.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y =kx的图象上,OA =1,OC =6,则正方形ADEF 的边长为( )A .1.5B .1.8C .2D .无法求10.如图,曲线表示温度T (℃)与时间t (h )之间的函数关系,它是一个反比例函数的图像的一支.当温度T ≤2℃时,时间t 应( )A .不小于23h B .不大于23h C .不小于32h D .不大于32h 11.若函数2m y x+=的图象在其每一个分支中y 的值随x 值的增大而增大,则m 的取值范围是( ) A .2m ≥B .2m <C .2m ≤-D .2m -<12.函数y =x +m 与my x=(m ≠0)在同一坐标系内的图象可以是( ) A . B .C .D .二、填空题13.如图,身高1.6m 的小华站在距路灯5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AE 为________.14.如图,在△ABO 的顶点A 在函数ky x=(x >0)的图像上∠ABO=90°,过AO 边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP 的面积为3,则k 的值为________.15.如图,ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的______.16.如图,在四边形ABCD 中,点E 在AD 上,EC//AB ,EB//DC ,若△ABE 面积为5 , △ECD 的面积为1,则△BCE 的面积是________.17.如图,菱形ABCD 的两个顶点A 、B 在函数ky x(x>0)的图像上,对角线AC//x 轴.若AC=4,点A 的坐标为(2,2),则菱形ABCD 的周长为_____.18.如图所示,正比例函数y 1=k 1x (k 1≠0)的图像与反比例函数y 2=2k x(k 2≠0)的图像相交于A 、B 两点,其中A 的横坐标为2,当y 1<y 2<0时,则x 的取值范围是______.19.如图,在平面直角坐标系中,反比例函数y=kx(k≠0),经过▱ABCD 的顶点B .D ,点A 的坐标为(0,-1),AB ∥x 轴,CD 经过点(0,2),▱ABCD 的面积是18,则点C 的坐标是______.20.已知矩形ABCD 的顶点A ,B 在反比例函数y =2x的图象上,顶点C ,D 在反比例函数y =6x的图象上,且点A 的横坐标为2,则矩形ABCD 的面积为__________. 三、解答题21.如图,已知AD 与BC 相交于点O ,AB //CD ,23OB OC =,5AB =,6OA =,求AD 和CD 的长.22.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABC 的三个顶点坐标分别为()3,1A -,()1,1B -,()0,3C .(1)画出ABC 关于y 轴对称的111A B C △;(2)画出ABC 以点O 为位似中心的位似图形222A B C △,ABC 与222A B C △的位似比为1:2(画一个即可) .23.()1如图1,四边形ABCD 和BEFG 都是正方形,将正方形BEFG 绕点B 按顺时针方向旋转,记旋转角为,a 则图中AG 与CE 的数量关系是__ ,AG 与CE 的位置关系是_ _ ;()2如图2,四边形ABCD 和BEFG 都是矩形,且2,2BC AB BE BG ==,将矩形BEFG绕点B 按顺时针方向旋转,记旋转角为,a 图中AG 与CE 的数量和位置关系分别是什么?请仅就图2的情况给出证明;参考答案24.如图(1),点A 是反比例函数4y x=的图象在第一象限内一动点,过A 作AC x ⊥轴于点C ,连接OA 并延长到点B ,过点B 作BD x ⊥轴于点D ,交双曲线于点E ,连结OE .(1)若6OBE S =△,求经过点B 的反比例函数解析式. (2)如图(2),过点B 作BF y ⊥轴于点F ,交双曲线于点G .①延长OA 到点B ,当AB OA =时,请判断FG 与BG 之间的数量关系,并说明理由. ②当AB nOA =时,请直接写出FG 与BG 之间的数量关系. 25.如图,一次函数y kx b =+的图象交反比例函数()0ay x x=>的图象于()()2,4,,1A B m --两点,交x 轴于点C .(1)求反比例函数与一次函数的关系式. (2)求ABO ∆的面积.(3)根据图象回答:当x 为何值时,一次函数的值大于反比例函数的值? 26.如图,直线y=k 1x+b 与双曲线y=2k x相交于A (1,2)、B (m ,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式; (3)观察图象,请直接写出不等式k 1x+b >2k x的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】连接AC ,根据中位线定理得//EF AC ,12EF AC =,即可由BEF BAC ,根据相似比求出面积比,设BEFS k =,则4BACSk =,再用k 表示出多边形EFCDA 的面积,即可求出结果. 【详解】解:如图,连接AC ,∵E 、F 分别是AB 和BC 的中点, ∴//EF AC ,12EF AC =, ∴BEFBAC ,∴221124BEF BAC S EF SAC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,设BEFSk =,则4BACSk =, ∴3AEFC BACBEFS S Sk =-=,∵四边形ABCD 是平行四边形,∴4ACDBACSSk ==,∴7EFCDA AEFC ACDS S S k =+=,∴::71:7BEFEFCDA SS k k ==.故选:C . 【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形面积比等于相似比的平方的性质.2.C解析:C 【分析】设234a b ck ===,则2a k =,3b k =,4c k =,然后代入求值即可. 【详解】解:设234a b ck ===,则2a k =,3b k =,4c k =, ∴a b b c +-=2334k k k k +-=5-kk =﹣5, 故选:C . 【点睛】本题考查了比例的性质、分式的求值,设参数求解是解答的关键.3.D解析:D 【分析】设DE x =,则7AB x =+,然后根据相似三角形的判定及性质以及勾股定理求出x 的值,最后利用直角三角形面积公式求解即可. 【详解】设DE x =,则7AB x =+,45DCE CAE DBC ∠=∠=∠=︒, ACE CDE BDC ∴△△△. 设,CD a CE b ==,则有以下等式:()::3x b b x =+,()::4x a a x =+,::x a b AC =, 整理得()()223,4,b x x a x x x AC ab =+=+⋅=,()()()22222227342x x x x x a b x AC +++===, 解得5x =, 12AB ∴=,AC BC ∴==1362ABC S ∴=⨯=△,故选:D . 【点睛】本题主要考查相似三角形的判定及性质,勾股定理,利用方程的思想是解题的关键.4.C解析:C 【分析】先利用位似的性质得到△ABC 和△EDC 的位似比为1:2,然后利用平移的方法把位似中心平移到原点解决问题. 【详解】∵△ABC 和△EDC 是以点C 为位似中心的位似图形, 而△ABC 和△EDC 的周长之比为1:2, ∴△ABC 和△EDC 的位似比为1:2,把C 点向右平移2个单位到原点,则A 点向右平移2个单位的对应点的坐标为(-2,3), 点(-2,3)以原点为位似中心的对应点的坐标为(4,-6), 把点(4,-6)向左平移2个单位得到(2,-6), ∴E 点坐标为(2,-6). 故选:C . 【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .也考查了转化的思想.5.D解析:D 【分析】先根据正方形的性质、旋转的性质可得45EAF EDA ∠=∠=︒,再根据相似三角形的判定与性质即可得. 【详解】四边形ABCD 是正方形,45BAC EDA ∴∠=∠=︒,由旋转的性质得:B AC BAC ''∠=∠,B AC EDA ''∴∠=∠,即EAF EDA ∠=∠,在AEF 和DEA △中,EAF EDAAEF DEA∠=∠⎧⎨∠=∠⎩,AEF DEA ∴~, EF AE AE DE ∴=,即44EF DE=, 16EF DE ∴⋅=, 故选:D . 【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.6.D解析:D 【分析】通过证明△ACD ∽△ABC ,可得AD AC AC AB =,通过证明△ACD ∽△CBD ,可得AD CDCD BD=,通过△ADE ∽△GDB ,△ACD ∽△CBD ,可得DE CDCD DG=,通过证明△GEF ∽△GBD ,可得=EG BGEF BD ,即可求解. 【详解】解:∵CD ⊥AB ,∴∠ADC =∠CDB =90°, ∴∠BCD +∠ABC =90°, ∵∠ACB =90°,∴∠ACD +∠BCD =90°, ∴∠ACD =∠ABC ,又∵∠ACB =∠ADC =90°, ∴△ACD ∽△ABC , ∴AD ACAC AB=,故A 选项不合题意;∵∠ACD =∠ABC ,∠ADC =∠BDC ,∴△ACD ∽△CBD , ∴AD CD CD BD= 故B 选项不合题意;∵AF ⊥BG ,∴∠AFB =90°,∴∠FAB +∠GBA =90°,∵∠GDB =90°,∴∠G +∠GBA =90°,∴∠G =∠FAB ,又∵∠ADE =∠GDB =90°,∴△ADE ∽△GDB , ∴=AD DE GD BD, ∴AD •BD =DE •DG ,∵△ACD ∽△CBD , ∴=AD CD CD BD, ∴CD 2=AD •BD ,∴CD 2=DE •DG , ∴DE CD CD DG=, 故C 选项不合题意;∵∠G =∠G ,∠EFG =∠GDB =90°,∴△GEF ∽△GBD , ∴=EG BG EF BD故D 选项符合题意,故选:D .【点睛】本题主要考查相似三角形的判定及其性质,解题的关键是熟练掌握相似三角形的判定方法及其性质.7.A解析:A【分析】首先根据反比例函数所在象限确定k <0,再根据k <0确定抛物线的开口方向和对称轴,即可选出答案.【详解】解:∵反比例函数(0)k y k x=≠图象在二、四象限, ∴k <0,∴二次函数y=kx 2-2x 的图象开口向下, 对称轴=-212k k-=, ∵k <0, ∴1k<0, ∴对称轴在x 轴的负半轴,故选:A .【点睛】本题考查了反比例函数的性质,以及二次函数图象,解题的关键是根据反比例函数的性质确定k 的正负.8.D解析:D【分析】先根据反比例函数中k <0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】∵反比例函数k y x=(k>0), ∴函数图象的两个分式分别位于一、三象限,且在每一象限内y 随x 的增大而减小, ∵-3<0,∴点C (-3,y 3)位于第三象限,∴y 3<0;∵2>1>0,∴A (1,y 2)、B (2,y 3)在第一象限,∵2>1,∴0<y 2<y 1,∴y 3<y 2<y 1.故选D【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.9.C解析:C【分析】根据OA 、OC 的长度,可得反比例函数的比例系数k=6,设正方形ADEF 的边长为x ,则OD DE=(1x)x=6⋅+⋅,解得x 即为正方形的边长.【详解】解:根据OA=1,OC=6,可得反比例函数的比例系数k=OA OC=6⋅,设正方形ADEF 的边长为x ,则OD=OA+AD=1+x ,DE=x ,则OD DE=(1x)x=6⋅+⋅,解得:x=2或-3(舍),故选:C .【点睛】本题主要考察了反比例函数与几何图形的综合、解一元二次函数,解题的关键在于根据图形求出反比例函数的比例系数k .10.C解析:C【分析】本题首先利用待定系数法确定反比例函数解析式,继而根据题目已知列不等式关系,最后求解不等式解答本题.【详解】 假设反比例函数关系式为:=k T t(其中k 为常数且不为零,t 为正数), 由图可知点(1,3)在反比例函数上,故将点代入函数可得:3k =,故3T t =. ∵2T ≤, ∴32t≤, 解上述不等式得:32t ≥,即时间t 不小于32h . 故选:C .【点睛】本题考查反比例函数的性质,待定系数法求比例系数k 是解题第一步,后续不等式求解,需要注意如果涉及负数需要变号.11.D解析:D【分析】根据k <0,反比例函数的函数值y 在每一个分支中随x 值的增大而增大列出不等式计算即可得解.【详解】解:∵2m y x+=在其每一个分支中y 的值随x 值的增大而增大, 20m ∴+<,2 m∴<-.故选:D.【点睛】此题考查反比例函数的性质.解题关键在于掌握反比例函数y=kx,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.12.B解析:B【分析】先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.【详解】A.由函数y=x+m的图象可知m<0,由函数ymx=的图象可知m>0,相矛盾,故错误;B.由函数y=x+m的图象可知m>0,由函数ymx=的图象可知m>0,正确;C.由函数y=x+m的图象可知m>0,由函数ymx=的图象可知m<0,相矛盾,故错误;D.由函数y=x+m的图象可知m=0,由函数ymx=的图象可知m<0,相矛盾,故错误.故选:B.【点睛】此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于掌握它们的性质才能灵活解题.二、填空题13.【分析】由于人和地面是垂直的即和路灯平行构成相似三角形根据对应边成比例列方程解答即可【详解】即解得:即路灯的高度为48米【点睛】本题考查了相似三角形的应用把实际问题抽象到相似三角形中利用相似三角形的解析:4.8m【分析】由于人和地面是垂直的,即和路灯平行,构成相似三角形.根据对应边成比例,列方程解答即可.【详解】//CE AB,ADB EDC∴∽,::AB CE BD CD∴=,即:1.67.5:2.5AB=,解得: 4.8m AB =.即路灯的高度为4.8米.【点睛】本题考查了相似三角形的应用.把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出路灯的高度,体现了转化的思想.14.【分析】易证△ANQ ∽△AMP ∽△AOB 由相似三角形的性质:面积比等于相似比的平方可求出△ANQ 的面积进而可求出△AOB 的面积则k 的值也可求出【详解】∵NQ ∥MP ∥OB ∴△ANQ ∽△AMP ∽△AOB解析:18【分析】易证△ANQ ∽△AMP ∽△AOB ,由相似三角形的性质:面积比等于相似比的平方可求出△ANQ 的面积,进而可求出△AOB 的面积,则k 的值也可求出.【详解】∵NQ ∥MP ∥OB ,∴△ANQ ∽△AMP ∽△AOB ,∵M 、N 是OA 的三等分点, ∴11,23AN AN AM AO ==, ∴14ANQ AMP SS =, ∵四边形MNQP 的面积为3, ∴314ANQ ANQ S S =+, ∴S △ANQ =1,∵2119AOB AN S AO ⎛⎫== ⎪⎝⎭, ∴S △AOB =9,∴k =2S △AOB =18,故答案为:18.【点睛】本题考查了相似三角形的判定和性质以及反比例函数k 的几何意义,正确的求出S △ANQ =1是解题的关键.15.【分析】根据题意易证△AEH ∽△AFG ∽△ABC 利用相似三角形的性质解决问题即可【详解】解:∵AB 被截成三等分∴△AEH ∽△AFG ∽△ABC ∴∴S △AFG :S △ABC=4:9S △AEH :S △ABC=解析:13【分析】根据题意,易证△AEH ∽△AFG ∽△ABC ,利用相似三角形的性质解决问题即可.【详解】解:∵AB 被截成三等分,∴△AEH ∽△AFG ∽△ABC , ∴11,,23AE AE AF AB ==, ∴S △AFG :S △ABC =4:9,S △AEH :S △ABC =1:9, ∴S 阴影部分的面积=49S △ABC -19S △ABC =13S △ABC , ∴图中阴影部分的面积是ABC 的面积的13. 故答案为:13. 【点睛】 本题主要考查了利用三等分点求得各相似三角形的相似比,从而求出面积比计算阴影部分的面积,难度适中.16.【分析】由EC ∥ABEB ∥DC 可得∠A=∠CED ∠AEB=∠D 证得△ABE 与△ECD 相似由△ABE 的面积为5△CDE 的面积为1可得AB :CE=:1又由EC ∥AB 可得△ABE 与△BCE 等高然后由等高三【分析】由EC ∥AB ,EB ∥DC ,可得∠A=∠CED ,∠AEB=∠D ,证得△ABE 与△ECD 相似,由△ABE 的面积为5,△CDE 的面积为1,可得AB :1又由EC ∥AB ,可得△ABE 与△BCE 等高,然后由等高三角形的面积比等于对应底的比,求得△BCE 的面积.【详解】∵EC ∥AB ,∴∠A=∠CED ,∵EB ∥DC∴∠AEB=∠D ,∴△ABE ∽△ECD , ∴22ABE ECD 551S BE AB CD CES ⎛⎫⎛⎫==== ⎪⎪⎝⎭⎝⎭, ∴AB CE=AB =, ∵△ABE 以AB 为底边的高与△BCE 以CE 为底的高相等,∴ABE BCE 5S AB S CE==, 55BCE S ∴== 故答案为:5.【点睛】本题考查了相似三角形的判定与性质.注意相似三角形的面积比等于相似比的平方、等高三角形面积的比等于其对应底的比.17.【分析】连接BD 与AC 交于点O 根据AC=4得出AO=OC=2再根据A 的坐标为(22)求出反比例解析式从而计算出B 点的坐标再根据距离公式算出AB 的长度从而求算周长【详解】如图连接BD 与AC 交于点O ∵A 解析:45【分析】连接BD 与AC 交于点O ,根据AC=4,得出AO=OC=2,再根据A 的坐标为(2,2)求出反比例解析式,从而计算出B 点的坐标,再根据距离公式算出AB 的长度,从而求算周长.【详解】如图,连接BD 与AC 交于点O∵A 的坐标为(2,2)∴反比例函数的解析式为4y x=又∵四边形ABCD 是菱形且AC=4∴AO=OC=2 ∴B 点坐标为()4,1∴()()2242125-+-= ∴菱形ABCD 的周长为:5故答案为:5【点睛】本题考查反比例函数与菱形性质相结合,掌握菱形的对角线平分以及反比例图象上的点的特点是解题关键.18.x<-2【分析】由正反比例的对称性结合点A 的横坐标即可得出点B 的横坐标根据函数图象的上下位置关系结合交点的横坐标即可得出不等式y1<y2<0时的解集【详解】解:∵正比例函数与反比例函数的图象均关于原解析:x<-2【分析】由正、反比例的对称性结合点A 的横坐标即可得出点B 的横坐标,根据函数图象的上下位置关系结合交点的横坐标,即可得出不等式y 1<y 2<0时的解集.【详解】解:∵正比例函数与反比例函数的图象均关于原点对称,且点A 的横坐标为2, ∴点B 的横坐标为-2,观察函数图象,发现:当x<-2时,反比例函数的图像在正比例函数图像的上方,且正比例函数和反比例函数的图像均在x 轴下方,则y 1<y 2<0,故答案为:x<-2.【点睛】本题考查了反比例函数与一次函数的交点问题,解题的关键是找出点B 的横坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数的对称性找出两函数交点的横坐标,再根据函数图象的上下位置关系结合交点的横坐标解决不等式是关键.19.(32)【分析】如图先求出AE 的长再根据平行四边形的面积可求出ABCD 的长从而可知点B 坐标然后利用待定系数法可求出反比例函数的解析式最后利用函数解析式可求出点D 坐标从而根据CD 的长可求出点C 的横坐标 解析:(3,2)【分析】如图,先求出AE 的长,再根据平行四边形的面积可求出AB 、CD 的长,从而可知点B 坐标,然后利用待定系数法可求出反比例函数的解析式,最后利用函数解析式可求出点D 坐标,从而根据CD 的长可求出点C 的横坐标,即可得出答案.【详解】如图,由题意得,2(1)3,,AE AE AB AB CD =--=⊥=,点C 、D 纵坐标均为2 ABCD S AE AB AE CD ∴=⋅=⋅,即3318AB CD ==解得6AB CD ==∴点B 坐标为(6,1)B -将点(6,1)B -代入反比例函数的解析式得16k =- 解得6k =- 则反比例函数的解析式为6y x =-令2y =得62x-=,解得3x =- (3,2)D ∴-设点C 坐标为(,2)C a(3)6CD a ∴=--=,解得3a =(3,2)C ∴故答案为:(3,2).【点睛】本题考查了平行四边形的面积、利用待定系数法求反比例函数的解析式等知识点,根据平行四边形的面积求出AB 的长,从而得出点B 坐标是解题关键.20.2或8【分析】根据矩形ABCD 的顶点AB 在反比例函数y=的图象上顶点CD 在反比例函y =图象上且点A 的横坐标为2得点A 的纵坐标为1进而可得点CD 的坐标即可求解【详解】解:根据题意得A (21)所以B (1解析:2或8【分析】根据矩形ABCD 的顶点A ,B 在反比例函数y=2x的图象上,顶点C ,D 在反比例函y =6x 图象上,且点A 的横坐标为2,得点A 的纵坐标为1,进而可得点C 、D 的坐标,即可求解.【详解】解:根据题意,得A (2,1),所以B (1,2)当矩形在第一象限时,C (2,3),D (3,2)所以矩形ABCD 的面积为2;当点C 、D 在第三象限时,C (-2,-3)、D (-3,-2)所以矩形ABCD 的面积为8.故答案为2或8.【点睛】本题考查了反比例函数系数k 的几何意义,解决本题的关键是分两种情况求矩形面积.三、解答题21.15,7.5AD CD ==【分析】证明OAB ∆∽ODC ∆,再根据相似三角形的性质列式计算即可.【详解】解:∵AB //CD , ∴23OA OB OD OC == 又∵6OA =, ∴623OD =,解得9OD = ∴6915AD OA OD =+=+=∵AB //CD ,∴OAB ∆∽ODC ∆, ∴23AB OB CD OC == 又∵5AB =, ∴523CD =,解得7.5CD = 【点睛】 本题考查的是平行线分线段成比例定理以及相似三角形的判定与性质,灵活运用定理、找准线段的对应关系是解题的关键.22.(1)图见解析;(2)图见解析.【分析】(1)先画出点,,A B C 关于y 轴的对称点111,,A B C ,再顺次连接即可得;(2)先根据位似中心、位似比得出点222,,A B C 的坐标,再画出点222,,A B C ,然后顺次连接即可得.【详解】(1)先画出点,,A B C 关于y 轴的对称点111,,A B C ,再顺次连接即可得111A B C △,如图所示:(2)()3,1A -,()1,1B -,()0,3C ,且位似比为1:2,()()()22232,12,12,12,20,3A B C ∴⨯-⨯⨯--⨯⨯,即()()()2226,2,2,0,62,C A B ---,先画出点222,,A B C ,再顺次连接即可得222A B C △,如图所示:【点睛】本题考查了画轴对称图形和位似图形,熟练掌握轴对称图形和位似图形的画法是解题关键.23.(1)AG=CE,AG⊥CE;(2)CE=2AG,理由见详解.【分析】(1)根据题意易得AB=CB,BG=BE,∠ABC=∠GBE=90°,则有∠ABG=∠CBE,进而可证△ABG≌△CBE,然后问题可证,延长AG交BC、CE与点H、M,然后根据三角形全等的性质及直角三角形的性质可求解;(2)由题意易得∠ABG=∠CBE,则可证△ABG∽△CBE,进而问题可得证.【详解】解:(1)∵四边形ABCD和BEFG都是正方形,∴AB=CB,BG=BE,∠ABC=∠GBE=90°,∴∠ABG+∠GBC=90°,∠CBE+∠GBC=90°,∴∠ABG=∠CBE,∴△ABG≌△CBE(SAS),∴AG=CE,延长AG交BC、CE与点H、M,如图所示:∴∠GAB=∠ECB,∵∠GAB+∠AHB=90°,∠AHB=∠CHM,∴∠ECB+∠CHM=90°,∴AM ⊥CE ,即AG ⊥CE ,故答案为AG=CE ,AG ⊥CE ;(2)CE=2AG ,理由如下:∵四边形ABCD 和BEFG 都是矩形,∴∠ABC=∠GBE=90°,∴∠ABG+∠GBC=90°,∠GBC+∠CBE=90°,∴∠ABG=∠CBE ,∵2,2BC AB BE BG ==,∴△ABG ∽△CBE , ∴2BC CE AB AG==, ∴CE=2AG .【点睛】 本题主要考查矩形与正方形的性质及相似三角形的性质与判定,熟练掌握矩形与正方形的性质及相似三角形的性质与判定是解题的关键.24.(1)16y x =;(2)①13FG BG =,理由见解析;②(21)FG n BG =+ 【分析】(1)根据题意求出OBD S △,根据反比例函数k 的几何意义求出过点B 的反比例函数解析式;(2)①设OC a =,用a 表示出点A 的坐标,根据相似三角形的性质表示出点B 的坐标,求出FG 和BG ,计算即可;②用与①相似的方法分别求出FG 和BG ,计算即可.【详解】解:(1)设点E 的坐标为(,)x y ,∵点E 在反比例函数4y x =的图象上, ∴4xy =, 则122xy =, ∴2ODE S =△,又6OBE S =△,∴8OBD S =△,∴过点B 的反比例函数解析式为:16y x=; (2)①设OC a =,则点A 的坐标为4,a a ⎛⎫ ⎪⎝⎭, ∵AB OA =,∴点B 的坐标为82,a a ⎛⎫ ⎪⎝⎭, ∵84a x =,2a x =, ∴2a FG =,又2FB a =, ∴32BG a =, ∴13FG BG =; ②设OC b =,则点A 的坐标为4,b b ⎛⎫ ⎪⎝⎭,∵AB nOA =, ∴11OA OB n =+, ∴点B 的坐标为4(1)(1),n n b b +⎛⎫+ ⎪⎝⎭, ∵4(1)4n b x +=,1b x n =+, ∴1b FG n =+,又2FB b =, ∴211n BG b n +=+, ∴(21)FG n BG =+.【点睛】本题考查的是反比例函数知识的综合运用,掌握待定系数法求反比例函数解析式、反比例函数k 的几何意义是解题的关键.25.(1)81;52y y x x =-=-;(2)15;(3)02x <<或8x > 【分析】(1)根据点A 坐标求出反比例函数的系数,再利用反比例函数解析式求出点B 坐标,再用待定系数法求出一次函数解析式;(2)分别过A 点,B 点作x 轴的垂线,垂足为,E F ,可知三角形ABO 的面积等于梯形ABFE 的面积,就可以算出结果;(3)根据图象找出一次函数在反比例函数上面时x 的取值范围,就可以得到结果.【详解】(1)∵()2,4A -在反比例函数()0a y x x=>上,∴代入得24k -=,∴8k =-, ∴反比例函数的关系数8y x =-, ∵(),1B m 在8y m =-上, ∴代入得81m -=-, ∴8m =,∴()8,1B -,又∵()()2,4,8,1A B --在一次函数y kx b =+上,∴代入得4218k b k b -=+⎧⎨-=+⎩,解得125k b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为152y x =-; (2)如图,分别过A 点,B 点作x 轴的垂线,垂足为,E F ,∵()()2,4,8,1A B --,∴ABO EABF S S ∆=梯 ()()141822=⨯+⨯- 1562=⨯⨯ 15=,∴ABO S ∆的面积是15;(3)一次函数的值大于反比例函数的值,即一次函数的图象在上方,∴由图知02x <<或8x >.【点睛】本题考查反比例函数和一次函数综合,解题的关键是掌握反比例函数的图象和性质,特殊三角形的面积求法,利用函数图象解不等式的方法.26.(1)双曲线的解析式为:y=2x 直线的解析式为:y=x+1(2)y 2<y 1<y 3(3),x >1或﹣2<x <0【分析】(1)将点A (1,2)代入双曲线y=2k x,求出k 2的值,将B (m ,﹣1)代入所得解析式求出m 的值,再用待定系数法求出k 1x 和b 的值,可得两函数解析式.(2)根据反比例函数的增减性在不同分支上进行研究.(3)根据A 、B 点的横坐标结合图象找出直线在双曲线上方时x 的取值即可.【详解】解:(1)∵双曲线y=2k x 经过点A (1,2),∴k 2=2,∴双曲线的解析式为:y=2x. ∵点B (m ,﹣1)在双曲线y=2x上,∴m=﹣2,则B (﹣2,﹣1). 由点A (1,2),B (﹣2,﹣1)在直线y=k 1x+b 上,得 11k +b=2{2k +b=1--,解得1k =1{b=1. ∴直线的解析式为:y=x+1.(2)∵双曲线y=2x在第三象限内y 随x 的增大而减小,且x 1<x 2<0,∴y 2<y 1<0, 又∵x 3>0,∴y 3>0.∴y 2<y 1<y 3.(3)由图可知,x >1或﹣2<x <0.。
江苏省苏州市梁丰初级中学2024届中考数学全真模拟试卷含解析

江苏省苏州市梁丰初级中学2024年中考数学全真模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB 与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.32OBCD=B.32αβ=C.1232SS=D.1232CC=2.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是()A.120°B.135°C.150°D.165°3.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12CF B.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠24.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查5.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是A.5个B.4个C.3个D.2个6.如图,在平面直角坐标系xOy中,△A B C'''由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,-1)C.(0,-1)D.(1,0)7.如图,将矩形ABCD 绕点 A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A.68°B.20°C.28°D.22°8.下面调查中,适合采用全面调查的是()A.对南宁市市民进行“南宁地铁1号线线路”B.对你安宁市食品安全合格情况的调查C.对南宁市电视台《新闻在线》收视率的调查D.对你所在的班级同学的身高情况的调查9.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.13πB.23πC.49πD.59π10.2017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为()A.305.5×104B.3.055×102C.3.055×1010D.3.055×1011二、填空题(共7小题,每小题3分,满分21分)11.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°12.如图,△ABC中,AB=AC,以AC为斜边作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分别是BC、AC的中点,则∠EDF等于__________°.13.若a,b互为相反数,则a2﹣b2=_____.14.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:∠ACB是△ABC的一个内角.求作:∠APB=∠ACB.小明的做法如下:如图①作线段AB的垂直平分线m;②作线段BC的垂直平分线n,与直线m交于点O;③以点O为圆心,OA为半径作△ABC的外接圆;④在弧ACB上取一点P,连结AP,BP.所以∠APB=∠ACB.老师说:“小明的作法正确.”请回答:(1)点O为△ABC外接圆圆心(即OA=OB=OC)的依据是_____;(2)∠APB=∠ACB的依据是_____.15.如图,正△的边长为,点、在半径为的圆上,点在圆内,将正绕点逆时针针旋转,当点第一次落在圆上时,旋转角的正切值为_______________16.如图,在平面直角坐标系中,正方形ABOC和正方形DOFE的顶点B,F在x轴上,顶点C,D在y轴上,且S△ADC=4,反比例函数y=kx(x>0)的图像经过点E,则k=_______ 。
最新江苏省苏州市梁丰2019年最新中考数学模拟试卷(一)及答案(已审阅)

苏州市梁丰初级中学2018届年九年级数学模拟试卷(一)2018.5本试卷由选择题、填空题和解答题三大题组成.共29小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效. 一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相应位置上. 1.﹣ 的相反数是 A .3B .﹣3 C.D.﹣2.下列运算正确的是( )A .a 2•a 3=a 6B .(a 3)4=a 12C .5a ﹣2a =3a 2D .(x +y )2=x 2+y 23.如左图是由4个大小相同的正方体组合而成的几何体,其主视图是A.B.C.D.4.函数y=3x 中自变量x 的取值范围是A .x ≥3B .x ≥﹣3C .x ≠3D .x >0且x ≠35.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=110°,则∠2等于A .70°B .75°C .80°D .85°12ba c)5(题第6.下列一元二次方程中,有两个相等实数根的是A .x 2﹣8=0B .2x 2﹣4x +3=0C .5x +2=3x 2D .9x 2+6x +1=07.抛物线223y x x =++的对称轴是A .直线x =1B .直线x = -1C .直线x =-2D .直线x =2 8.若x 2﹣3y ﹣5=0,则6y ﹣2x 2﹣6的值为 A .4 B .﹣4 C .16D .﹣169.如图△ABC 中,∠C=90°,AC=4,BC=3,将△ABC 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为( )A .2B .C .3D .210.如图点A 、B 在反比例函数y =(k >0,x >0)图象上,BC ∥x 轴,交y 轴于点C ,动点P 从坐标原点O 出发,沿O →A →B →C (图中“→”所示路线)匀速运动,终点为C ,过P 作PM ⊥x 轴,垂足为M .设三角形OMP 的面积为S ,P 点运动时间为t ,则S 关于x 的函数图象大致为A .B .C .D .二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上. 11.分解因式:29a -= ▲ .12.2017年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 ▲ .13.如图,等腰三角形ABC 的顶角为1200,底边BC 上的高AD= 4,则腰长为 ▲ .第13题 第14题 第15题14.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是 ▲ .15.如图,四边形ABCD 内接于O ,若四边形ABCO 是平行四边形,则ADC ∠的大小为 ▲ . 16.已知扇形的半径为6cm ,面积为10πcm 2,则该扇形的弧长等于▲ .17.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD 为 ▲ 米(结果保留根号).第17题 第18题18.如图,正五边形的边长为2,连接对角线AD ,BE ,CE ,线段AD 分别与BE 和CE 相交于点M ,N ,给出下列结论:①∠AME =108°;②2AN AMAD =⋅;③MN=3;④1BE =-.其中正确结论的序号是 ▲ .三、解答题:本大题共11小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔. 19.(本题满分5分)计算:22(π--+.20.(本题满分5分)解不等式组:()12221x x x ->⎧⎪⎨+≥-⎪⎩21.(本题满分6分)21111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x1.OBCDA22.(本题满分6分)某校学生利用双休时间去距学校10 km 的天平山社会实践活动,一部分学生骑电瓶车先走,过了20 min 后,其余学生乘公交车沿相同路线出发,结果他们同时到达.已知公交车的速度是电瓶车学生速度的2倍,求骑电瓶车学生的速度和公交车的速度?23.(本题满分8分)如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E . (1)求证:BE =CD ;(2)连接BF ,若BF ⊥AE ,∠BEA =60°,AB =4,求平行四边形ABCD 的面积.24.(本题满分8分)为庆祝建军90周年,某校计划在五月份举行“唱响军歌”歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A ,B ,C ,D 四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息, 解答下列问题:(1)本次抽样调查中,选择曲目代号为A 的学生占抽样总数的百分比为 ▲ ; (2)请将图②补充完整;(3)若该校共有1260名学生,根据抽样调查的结果估计全校共有多少学生选择喜欢人数最多的歌曲?(要有解答过程)25.(本题满分8分)如图,在平面直角坐标系中,O 为坐标原点,△ABO 的边AB 垂直于x 轴,垂足为点B ,反比例函数y=(x >0)的图象经过AO 的中点C ,且与AB 相交于点D ,OB =4,AD =3, (1)求反比例函数y=的解析式; (2)求cos ∠OAB 的值;(3)求经过C 、D 两点的一次函数解析式.26(本题满分10分)如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线;(2)若PD =316cm ,AC =8cm ,求图中阴影部分的面积;(3)在(2)的条件下,若点E 是AB ︵的中点,连接CE ,求CE 的长. 27.(本题满分10分)在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC上一第26题图BAE PO DC动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,①BC与CF的位置关系为:▲.②BC,CD,CF之间的数量关系为:▲;(将结论直接写在横线上)(2)如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论,再给予证明.(3)如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.28.(本题满分10分)如图平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过△ABC的三个顶点,与y轴相交于(0,),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x 轴的正半轴上.(1)求该抛物线的函数关系表达式.(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t 的值;若不存在请说明理由.数学参考答案及评分标准一、选择题(每小题3分,共30分)二、选择题(每小题3分,共24分) 11.(a + 3)(a - 3) 12.4.51×107 13.8 14.2915.60016.103∏ 17.418.①、②、③三、解答题(共11大题,共76分) 19.(本题共5分)解:原式= 3-2 + 1 ·············································································· 3分=2 ························································································· 5分20.(本题共5分)解:由①式得:x>3. ············································································ 2分由②式得:x 4≤. ·········································································· 4分 ∴不等式组的解集为: 34x <≤. ····················································· 5分21.(本题共6分) 解:原式=211x x x x ÷-- ··········································································· 1分 =1(1)(1)x x x x x-⋅+- ····································································· 2分=11x + ···················································································· 4分当x 1时,原式··································································· 5分. ·················································································· 6分22.(本题满分6分)解:设骑电瓶车学生的速度为x km /h ,汽车的速度为2x km /h ,可得:··········1分 10x =102x +2060, ···············································································3分解得x =15,······················································································4分 经检验,x =15是原方程的解,······························································5分 2x =2×15=30.答:骑车学生的速度和汽车的速度分别是15 km /h ,30 km /h .·························6分 23.(本题共8分)(1)证明:∵四边形ABCD 为平行四边形∴AD∥BC,AB ∥C D ,AB=CD ,·····································································1分 ∴∠B+ ∠C=180°,∠AEB =∠DAE ,······························································2分 ∴AE 是∠BAD 的角平分线∴∠BAE =∠DAE , ∴∠BAE =∠DAE ,··················3分 ∴AB=BE,∴BE=CD ················································································4分 (2)解:∵AB=BE,∠BEA=60°, ∴△ABE 是等边三角形,∴AE=AB=4, ····························································································5分∵BF⊥AE, ∴AF=EF=2, ∴BF=········ ··················································6分 ∵AD∥BC, ∴∠D=∠ECF,∠DAF=∠E, 在△ADF 和△ECF 中,, ∴△ADF≌△ECF(AAS ), ········· ····································7分∴△ADF 的面积=△ECF 的面积, 12AEBF ······8分 24.(本题共8分)1)由题意可得,本次抽样调查中,选择曲目代号为A 的学生占抽样总数的百分比为:×100%=20%.··················································2分(2)由题意可得,选择C 的人数有:30÷﹣36﹣30﹣44=70(人)补全的图②柱状图正确·········································5分(3)由题意可得,全校选择此必唱歌曲共有:1260×=490(人),答:全校共有490名学生选择此必唱歌曲.········································8分25.(本题共8分)解:(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),∵点C为线段AO的中点,∴点C的坐标为(2,).∵点C、点D均在反比例函数y=的函数图象上,∴,···························1分解得:.·········2分∴反比例函数的解析式为y=.········································3分(2)∵m=1,∴点A的坐标为(4,4),········································4分∴OB=4,AB=4.在Rt△ABO中,OB=4,AB=4,∠ABO=90°,∴OA==4,cos∠OAB===.········································5分(3))∵m=1,∴点C的坐标为(2,2),点D的坐标为(4,1).设经过点C、D的一次函数的解析式为y=ax+b,则有,解得:.·····7分∴经过C、D两点的一次函数解析式为y=﹣x+3.········································8分26.(本题共10分)证明:⑴如图,连接OC,∵P A切⊙O于A.∴∠P AO=90º. ····································································································· 1分∵OP∥BC,∴∠AOP=∠OBC,∠COP=∠OCB.∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP. ······························································································· 2分又∵OA=OC,OP=OP,∴△P AO≌△PCO (SAS).∴∠P AO=∠PCO=90 º,又∵OC是⊙O的半径,∴PC是⊙O的切线. ······························································································3分⑵解法不唯一. 解:由(1)得P A,PC都为圆的切线,∴P A=PC,OP平分∠APC,∠ADO=∠P AO=90 º,∴∠P AD+∠DAO=∠DAO+∠AOD,∴∠P AD =∠AOD,∴△ADO∽△PDA. ······························································································ 4分∴AD DOPD AD=,∴2AD PD DO=⋅,∵AC=8,PD=163,∴AD =12AC =4,OD =3,AO =5, 5分 由题意知OD 为△ABC 的中位线,∴BC =2OD =6,AB =10.∴S 阴=S 半⊙O -S △ACB =()221101254868=cm 2222ππ-⎛⎫-⨯⨯ ⎪⎝⎭. 答:阴影部分的面积为22548cm 2π-. ······································································· 6分 (3)如图,连接AE ,BE ,过点B 作BM ⊥CE 于点M . ················································· 7分 ∴∠CMB =∠EMB =∠AEB =90º,又∵点E 是AB ︵的中点,∴∠ECB =∠CBM =∠ABE =45º,CM =MB =,BE =AB cos450 = ···························· 8分∴ EM ,∴CE =CM +EM =()cm .·······················9分答:CE 的长为. ······················································································· 10分27.(本题共10分)解:(1)①垂直; ································································································ 1分 ②BC =CF +CD ; ···························2分 (2)成立,∵正方形ADEF 中,AD =AF ,∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF ,在△DAB 与△F AC 中,,∴△DAB ≌△F AC ,···························4分 ∴∠B =∠ACF ,CF =BD ∴∠ACB +∠ACF =90°,即CF ⊥BD ;∵BC =BD +CD , ∴BC =CF +CD ;···························6分 (3)解:过A 作AH ⊥BC 于H ,过E 作EM ⊥BD 于M ,EN ⊥CF 于N ,∵∠BAC =90°,AB =AC ,∴BC =AB =4,AH =BC =2,∴CD =BC =1,CH =BC =2,∴DH =3,···························7分 由(2)证得BC ⊥CF ,CF =BD =5,∵四边形ADEF 是正方形,∴AD =DE ,∠ADE =90°, ∵BC ⊥CF ,EM ⊥BD ,EN ⊥CF ,∴四边形CMEN 是矩形,···························8分 ∴NE =CM ,EM =CN ,∵∠AHD =∠ADC =∠EMD =90°,∴∠ADH +∠EDM =∠EDM +∠DEM =90°, ∴∠ADH =∠DEM ,在△ADH 与△DEM 中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,···························9分∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.··························10分28.(本题共10分)解:(1)∵点B是点A关于y轴的对称点,∴抛物线的对称轴为y轴,∴抛物线的顶点为(0,),故抛物线的解析式可设为y=ax2+.∵A(﹣1,2)在抛物线y=ax2+上,∴a+=2,解得a=﹣,∴抛物线的函数关系表达式为y=﹣x2+;··························2分(2)①当点F在第一象限时,如图1,令y=0得,﹣x2+=0,解得:x1=3,x2=﹣3,∴点C的坐标为(3,0).设直线AC的解析式为y=mx+n,则有,解得,∴直线AC的解析式为y=﹣x+.·········3分设正方形OEFG边长为p,则F(p,p).∵点F(p,p)在直线y=﹣x+上,∴﹣p+=p,解得p=1,∴点F的坐标为(1,1).·························4分②当点F在第二象限时,同理可得:点F的坐标为(﹣3,3),此时点F不在线段AC上,故舍去.··························5分综上所述:点F的坐标为(1,1);··························6分(3)过点M作MH⊥DN于H,如图2,则OD=t,OE=t+1.∵点E和点C重合时停止运动,∴0≤t≤2.当x=t时,y=﹣t+,则N(t,﹣t+),DN=﹣t+.当x=t+1时,y=﹣(t+1)+=﹣t+1,则M(t+1,﹣t+1),ME=﹣t+1.在Rt△DEM中,DM2=12+(﹣t+1)2=t2﹣t+2.在Rt△NHM中,MH=1,NH=(﹣t+)﹣(﹣t+1)=,∴MN2=12+()2=.··························7分①当DN=DM时,(﹣t+)2=t2﹣t+2,//// 解得t=;··························8分 ②当ND =NM 时,﹣t+==,解得t =3﹣;··························9分 ③当MN =MD 时,=t 2﹣t +2,解得t 1=1,t 2=3.∵0≤t ≤2,∴t =1.··························10分 综上所述:当△DMN 是等腰三角形时,t 的值为,3﹣或1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年张家港市梁丰初级中学初三中考模拟试卷(1)
数 学 试 卷
一、选择题:本大题共10小题,每小题3分,共30分。
1.
32
的倒数是 ------------------------------------------------------------------------( ▲ ) A .32 B .23 C .32- D .23
- 2.函数11y x =-的自变量x 的取值范围是--------- --------------------------------( ▲ ) A .x ≠0 B .x ≠1 C .x ≥1 D .x ≤1
3.下面的计算一定正确的是 -------- ------------------------------------------------( ▲ )
A .b 3+b 3=2b 6
B .(-3pq)2=-9p 2q 2
C .5y 3·3y 5=15y 8
D .b 9÷b 3=b 3
4、不等式组221x x ≤⎧⎨+>⎩
的最小整数解为 ---------- -----------------------------------( ▲ ) A .-1 B .0 C .1 D .2
5、雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.若设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,则下面列出的方程组正确的是( ▲)
A .4150048000x y x y +=⎧⎨+=⎩
B .4150068000x y x y +=⎧⎨+=⎩
C .1500468000x y x y +=⎧⎨+=⎩
D .1500648000x y x y +=⎧⎨+=⎩ 6、如果单项式-x a +1y 3与12
y b x 2是同类项,那么a ,b 的值分别为- ---------------( ▲ ) A .a =2,b =3 B .a =1,b =2 C .a =1,b =3 D .a =2,b =2
7.下列四个说法中,正确的是-- --------------------------------------------------------( ▲ )
A .方程2452x x ++=有实根;
B .方程2452
x x ++=有实根;
C .方程2
45x x ++=有实数根; D .方程x 2+4x+5=a(a ≥1)有实根. 8、化简211x x x x +--的结果是 - --------------------------------------------------------( ▲ )
A .x +1
B .x -1
C .-x
D .x
9.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5
A =,BE=2,则tan
∠DBE 的值是-( ▲ )
A .12
B .2
C . D
10.如图,已知直线334
y x =-与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、PB .则△PAB 面积的最大值是
----------------------------------------------( ▲ )
A
. B
. C .10.5 D .11 .5
二、填空题:本大题共8小题,每小题3分,共24分
11.分解因式:29a -= ▲
12.若代数式3x+7的值为-2,则x= ▲
13.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲
14. 若关于x 的方程2x x a -+=0有两个相等的实数根,则a 的值为
▲ .
15. 已知扇形的圆心角为45o ,半径为2cm ,则该扇形的面积为 ▲ cm 2.
16. 如图,矩形ABCD 沿着直线BD 折叠,使点C 落在C 1处,BC 1交AD 于点E ,AD =8,AB =4,则DE
的长为 ▲ .
17. 如图,Rt △OAB 的顶点O 与坐标原点重合,∠AOB =90°,AO ,当A 点在反比例函数1y x =
(x
>0)的图象上移动时,B 点坐标满足的函数解析式为 ▲ .
18.如图,点P 是正方形ABCD 的对角线BD 上的一个动点(不与B 、D 重合),连结AP ,过点B 作直
线AP 的垂线,垂足为H ,连结DH ,若正方形的边长为4,则线段DH 长度的最小值是 ▲ .
三、解答题:本大题共11小题,共76分
19.(本小题满分5分) 20.(本小题满分5分) 解方程
计算: 1
0201|tan 45|(3)(6)2π-⎛⎫-+-+-- ⎪⎝⎭; 2312x x =--
21. (本题满分6分)如图,C 是线段AB 的中点, CD 平分∠ACE ,CE 平分∠
BCD ,CD=CE .
(1)求证:△ACD ≌△BCE ;
(2)若∠D=50°,求∠B 的度数.
22.(本题5分)先化简,再求值:221112x x x x x ⎛⎫--÷ ⎪++⎝⎭
,其中x = C 1
E D C B A x (第16题)
(第17题) 18题
23.(本题满分6分)已知一次函数y=kx+b的图象经过点A(-1,-1)和点B(1,-3).求:
(1)直接写出一次函数的表达式;
(2)直接写出直线AB与坐标轴围成的三角形的面积.
(3)请在x轴上找到一点P,使得PA+PB最小,并求出P的坐标;
24.(本题满分8分)现计划把甲种货物1240t和乙种货物880t用一列货车运往某地,已知这列货车挂有A、B两种不同类型的货车厢共有40节,使用A型车厢每节费用0.6万元,使用B型车厢每节费用为0.8万元
(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试直接写出y与x之间的函数表
达式;
(2)如果每节A型车厢最多可装甲种货物35t和乙种货物15 t,每节B型车厢最多可装甲种货物25t
和乙种货物35t,装货时按此要求安排A、B两种车厢的节数,那么共有几种安排车厢的方案?
(3)在上述方案中,哪个方案运费最少?最少运费为多少元?
25.(本题满分8分)如图,已知函数
k
y
x
(x>0)的图像经过点
A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,
过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数
y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.
(1)若AC=2OD时,①直接写出点A坐标,四
边形ADCB是形
②求a、b的值;
(2)若EC=3DB,求a的值.
26.(本题满分10分)在一条笔直的公路上有A,B两地,甲骑自
行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,下图是甲、乙两人离B 地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:
(1)请直接写出A,B两地之间的距离是千米;甲骑自行车的速度是千米/时,乙骑摩托车的速度是千米/时。
(2)求出乙离B地的距离y(km)与行驶时间x(h)之间的函数关系式。
(3)若两人之间为了信息的及时交流,规定:当两人的距离达到3km时,就必须用无线对讲机联系一次,请求出甲、乙两人用无线对讲机联系时的x的值.
27.(本题满分10分)如图,在平面直角坐标系中,O为坐标原点,⊙C的圆心坐标为(-2,-2),半径为2.函数y=-x+2的图象与x轴交于点A,与y轴交于点B,
(1)图1中,连接CO并延长和AB交于点G,求证:CG⊥AB;
(2)图2中,当点P从B出发,以1个单位/秒的速度在线段AB上运动,连接PO,当直线PO与⊙C 相切时,求点P运行的时间t是多少?
(3) 图3中,当直线PO与⊙C相交时,设交点为E、F,如果C M⊥EF于点M,令PO=x,MO=y,求y 与x之间的函数关系式,写出x的取值范围。
28.(本题满分10分)如图,直线y=1
2
x+1与抛物线y=
1
2
x2-bx+l交于不同的两点M、N(点M在点
N的左侧).
(1)直接写出N的坐标(用b的代数式表示)
(2)设抛物线的顶点为B,对称轴l与直线y=1
2
x+1的交点为C,连结BM、BN,若S△MBC=
2
3
S△
NBC,求抛物线的解析式;
(3)在(2)的条件下,已知点P(t,0)为x轴上的一个动点,
①若∠MPN=90°时,求点P的坐标.
②若∠MPN>90°时,则t的取值范围是.
(4)在(2)的条件下,已知点Q是直线MN下方的抛物线上的一点,问Q点是否存在在合适的位置,使得它到MN的距离最大,存在的话求出Q的坐标,不存在什么理由。