2011二粒小麦抗旱蛋白2.78
小麦肥料高效利用品种筛选试验

安徽农学通报2024年01期粮食作物作者简介高业根(1977—),男,安徽肥东人,农业技术员,从事农业技术推广和新品种试验示范工作。
收稿日期2023-09-27小麦肥料高效利用品种筛选试验高业根(肥东县古城农业技术推广区域中心站,安徽肥东231622)摘要为筛选小麦肥料高效利用品种,发展小麦生产中化肥减量增效技术,本研究选择5个小麦品种,设计施用100%氮磷钾处理(T 1)、90%氮磷钾处理(T 2)和80%氮磷钾处理(T 3)3个不同施肥水平处理,调查各品种小麦产量、肥料利用率等指标。
结果表明,小麦平均生育期为191d ,不同品种各生育期的茎蘖总数差异较大,同一品种在不同处理中的茎蘖总数也有差异;品种科麦1007在全量施肥水平和90%施肥水平下的产量均最高;宁麦17对氮肥的利用率最高,镇麦15对磷肥的利用率最高,凯麦1778对钾肥的利用率最高。
综合产量和肥料利用情况,在肥料不减量或减量少的情况下,建议推广种植科麦1007。
关键词小麦品种;肥料利用率;小麦产量中图分类号S512.1;S143文献标识码A文章编号1007-7731(2024)01-0005-04安徽肥东地处江淮分水岭,气候温和,雨量充沛,光照资源丰富,是小麦适宜种植区。
该县小麦种植面积约24667hm 2,以春性品种为主,半冬性品种为辅。
近年来,小麦市场上出现了众多新品种[1],要求提高栽培技术和植保分类指导[2]。
为筛选出适宜该地区种植的优质小麦新品种,扩大新品种的推广应用[3],提高化肥利用率,降低氮肥损耗,发展小麦生产中的化肥减量增效技术[4-6]。
根据小麦生产实际,科学制定试验方案。
本研究通过开展不同小麦品种的肥料试验,筛选出肥料利用效率高,产量和品质好,适应性强等综合性状优良的小麦品种[7-9],为小麦生产中的化肥减量增效技术提供参考。
1材料与方法1.1试验点试验点位于安徽肥东石塘镇浮槎社区—家庭农场承包田,试验田交通便利、排灌方便、地力肥沃且农田基础设备配套。
影响小麦面团强度的贮藏蛋白基因表达研究

麦类作物学报 2023,43(7):857-864J o u r n a l o fT r i t i c e a eC r o ps d o i :10.7606/j.i s s n .1009-1041.2023.07.07网络出版时间:2023-06-15网络出版地址:h t t ps ://k n s .c n k i .n e t /k c m s 2/d e t a i l /61.1359.S .20230614.1650.002.h t m l 影响小麦面团强度的贮藏蛋白基因表达研究收稿日期:2022-08-02 修回日期:2022-11-06基金项目:河南省农业科学院自主创新基金项目(2023Z C 004);河南省科技攻关项目(232102110254)第一作者E -m a i l :n k y c h a o yu e e n @163.c o m 通讯作者:曹廷杰(E -m a i l :c a o t i n g ji e 893@163.c o m )晁岳恩,王沙沙,杨剑,杨攀,黄超,汪庆昌,曹廷杰(河南省农业科学院小麦研究所,河南郑州450002)摘 要:小麦品质主要由籽粒贮藏蛋白的含量和类型决定,高分子量麦谷蛋白亚基(HMW -G S s)组合是决定加工品质的主要因素㊂为了解HMW -G S s 组合完全一致㊁蛋白含量相似的两个品种面团稳定时间相差近一倍的原因(郑麦158:高面团强度;郑麦369:低面团强度),通过转录组测序比较了籽粒发育中期3个时间点(花后14㊁21和28d )的贮藏蛋白基因表达差异,分析了差异表达基因编码蛋白对面粉质量的贡献以及面粉的巯基含量差异等㊂结果表明,在3个时间点,两个品种间的HMW -G S s 基因表达均无显著差异;郑麦158较郑麦369共有24个贮藏蛋白编码基因有显著表达差异,其中上调表达基因12个(23次),下调表达基因12个(23次)㊂12个显著上调表达基因中,包括9个燕麦类似蛋白基因(18次)㊁2个γ-醇溶蛋白基因(4次)和1个α-醇溶蛋白基因;在12个下调表达基因中,包括11个α-或α/β-醇溶蛋白基因(21次)和1个燕麦类似蛋白基因(2次)㊂两品种比较,郑麦158面粉的硫元素含量较低,但自由巯基和二硫键含量较高㊂基于蛋白二硫键预测和面粉蛋白质量评价模型分析结果,差异表达基因编码的燕麦类似蛋白和γ-醇溶蛋白对面团强度的贡献不低于优质HMW -G S s ㊂推测燕麦类似蛋白与个别γ-醇溶蛋白可能是影响面团强度的重要蛋白;蛋白的高自由巯基含量是高面筋强度的分子基础㊂关键词:小麦;转录组分析;贮藏蛋白;燕麦类似蛋白;面团强度;自由巯基中图分类号:S 512.1;S 330 文献标识码:A 文章编号:1009-1041(2023)07-0857-08A n a l y s i s o f t h eE x p r e s s e dG e n e sE n c o d i n g W h e a t S t o r a g e P r o t e i n sA s s o c i a t e dw i t hD o u g hS t r e n gt hT r a i t s C H A OY u e e n ,W A N G S h a s h a ,Y A N GJ i a n ,Y A N GP a n ,H U A N GC h a o ,W A N G Q i n g c h a n g ,C A OT i n g ji e (I n s t i t u t e o fW h e a tR e s e a r c h ,H e n a nA c a d e m y o fA gr i c u l t u r a l S c i e n c e s ,Z h e n z h o u ,H e n a n450002,C h i n a )A b s t r a c t :C o m b i n a t i o n s o f h i g h -m o l e c u l a r -w e i g h t g l u t e n i n s u b u n i t s (HMW -G S s )a r e t h o u gh t t o b e t h e m a j o r d e t e r m i n a n t s o f t h e v i s c o -e l a s t i c p r o p e r t i e so f g l u t e n i nw h e a t .W e c o m p a r e d t h ed i f f e r e n t i a l l ye x p r e s s e d g e n e s e n c o d i n g w h e a t g r a i ns t o r a ge p r o t e i n s (G S P s )b e t w e e nt w oc u l t i v a r sw i t ht h es a m e c o m b i n a t i o n s o fHMW -G S s a n ds i m i l a r p r o t e i nc o n t e n t s ,b u tw i t hc o n t r a s t i n g d o u g hs t a b i l i t y ti m e .W e p e r f o r m e d c o m p a r a t i v e t r a n s c r i p t o m i c a n a l y s e s b e t w e e n t w ow h e a t c u l t i v a r s ,Z M 158(g r e a t d o u gh s t r e n g t h )a n dZ M 369(w e a kd o u g h s t r e n g t h ),a t t h r e e g r a i n -f i l l i n g s t a g e s (14,21a n d 28d a y s -po s t -a n -t h e s i s )a n d c o m p a r e d t h e s u l f h y d r y l g r o u p c o n t e n t o f t h e f l o u r f r o mt h e t w o c u l t i v a r s .W e a l s o d e t e r -m i n e dt h ec o n t r i b u t i o no f t h ed i f f e r e n t i a l l y e x p r e s s e dw h e a tG S P g e n e s t o t h ed o u g hs t r e n gt ht r a i t s b a s e do n a n e v a l u a t i o nm o d e l a n d p r e d i c t i o n o f d i s u l f i d e b o n d s .T h e r e s u l t s s h o w e d t h a t 24G S P g e n e sw e r e s i g n i f i c a n t l y d i f f e r e n t i a l l y e x p r e s s e d (46t i m e s )b e t w e e n t h e t w o c u l t i v a r s a t t h e t h r e e g r a i n -f i l l -i n g s t a g e s ;12o f t h e m w e r e u p -r e g u l a t e d (23t i m e s )a n d 12w e r e d o w n -r e gu l a t e d (23t i m e s ),b u t t h e r e w a sn o g e n ee n c o d i n g HMW -G S s .T h eu p -r e g u l a t e dG S P g e n e sc o n t a i n e d n i n ea v e n i n -l i k e g e n e s (18t i m e s ),t w o γ-g l i a d i n g e n e s (4t i m e s ),a n d o n e α-g l i a d i n g e n e .T h e d o w n -r e gu l a t e d g e n e s c o n t a i n e d 11Copyright ©博看网. All Rights Reserved.α-o rα/β-g l i a d i n g e n e s(21t i m e s)a n d o n e a v e n i n-l i k e g e n e(2t i m e s).T h e p r e d i c t i o n o f p r o t e i nd i s u l f i d e b o n d s a n d t h e e v a l u a t i o nm o d e l o f f l o u r q u a l i t y c o n t r i b u t i o n i n d i c a t e d t h a t t h e a v e n i n-l i k e p r o t e i n s a n d γ-g l i a d i nm a y c o n t r i b u t em o r e t od o u g hs t r e n g t h t h a n t h e e l i t eHMW-G S s.W e a l s o f o u n d t h e r ew a s l o w e r s u l f u r c o n t e n t b u t h i g h e r f r e e s u l f h y d r y l g r o u p c o n t e n t i n t h e f l o u r f r o mZ M158c o m p a r e dw i t h t h e i rc o n t e n t i nt h e f l o u r f r o m Z M369.C o n s e q u e n t l y,c o m b i n a t i o n so fHMW-G S s m a y n o tb et h e m a i n c o n t r i b u t o r s t o f l o u r s t r e n g t h p r o p e r t i e s,w h e r e a s a v e n i n-l i k e p r o t e i n s a n dγ-g l i a d i n s a r e a l s o i m-p o r t a n t s t o r a g e p r o t e i n s r e l a t e d t od o u g hs t r e n g t h.F u r t h e r m o r e,t h eh i g h f r e e s u l f h y d r y l c o n t e n t o f f l o u r p r o t e i n i s t h e c h e m i c a l b a s i s o f g r e a t d o u g hs t r e n g t h.K e y w o r d s:W h e a t;R N A-s e q u e n c i n g;S t o r a g e p r o t e i n;A v e n i n-l i k e p r o t e i n s;D o u g hs t r e n g t h;S u l f-h y d r y l g r o u p s小麦是我国主要农作物之一,是多种面食的原料㊂小麦面粉的独特性在于其蛋白与水相互作用能交联形成疏松多孔的面筋㊂小麦的加工品质与其蛋白含量密切相关,小麦粉含有8%~20%的蛋白质,其中面筋蛋白约占小麦总蛋白质含量的80%~85%,面筋蛋白的类型和含量影响面团的强度㊁粘弹性㊁延展性等指标,决定着面粉的加工适用性[1-5]㊂在实际面制品加工中发现,部分小麦品种蛋白含量较低,但面筋强度较高,说明面粉质量不仅受籽粒蛋白含量影响,蛋白成份也是重要的影响因素[6]㊂面筋蛋白的主要成份是麦谷蛋白和醇溶蛋白,麦谷蛋白按分子量大小可分为高分子量麦谷蛋白(HMW-G S)和低分子量麦谷蛋白(L MW-G S);HMW-G S通过分子间或分子内二硫键作用形成面筋骨架,决定着面团的强度和弹性[5-10]㊂HMW-G S仅占总面筋蛋白的10%,其亚基的组合方式被认为决定着70%的面粉质量特性[11-12];除遗传因素外,栽培措施对面粉质量也有影响[13]㊂在育种过程中却发现,即使HMW-G S组合完全一致㊁蛋白含量相同的小麦品种的面粉质量存在较大差异,面团强度参数存在显著差异,暗示除HMW-G S s外,可能还存在其它影响面团强度性状的蛋白类型㊂本研究以具有一定亲缘关系且HMW-G S组合完全一致㊁蛋白含量基本相同㊁面粉质量有较大差异的两个品种为材料,在籽粒面筋蛋白积累速度较为稳定的灌浆中期[14-16],通过转录组测序分析两个品种面筋蛋白相关基因的表达差异,探讨其面粉质量差异的可能原因,为小麦品质育种提供参考㊂1材料与方法1.1试验材料供试品种为郑麦369和郑麦158,前期研究发现,二者间HMW-G S组含完全相同,蛋白含量相同,面团强度差异显著㊂于2019 2020年度种植在河南省农业科学院试验基地,小区长6m,宽2m,行距0.2m,相邻种植,无重复,常规管理㊂郑麦369亲本组合为郑麦366ˑ良星99,郑麦158亲本组合为(B i g e a z-250/96)ˑ周麦16)ˑ郑麦366㊂转录组测序分析样品分别取自花后14㊁21㊁28d的穗中部两侧籽粒,液氮速冻后带回试验室保存于-80ħ冰箱㊂收取成熟籽粒,磨粉并测定面粉质量参数㊂1.2面粉品质参数检测制粉:参照A A C C26-20方法,用B UH L E R 实验磨磨粉㊂粗蛋白含量:用丹麦F O S S公司凯氏定氮仪K j e l t e c测定㊂面团流变学参数:用德国B r a b e n d e r公司的810104型粉质仪(F a r i n o-g r a p h),按G B/T14614-93测定吸水率㊁面团形成时间㊁稳定时间㊁弱化度㊂面筋参数:用瑞典P e r-t e n公司的2200型面筋仪(G l u t o m a t i c),按G B/ T14608-93测定小麦粉湿面筋含量及湿面筋指数㊂1.3面粉蛋白提取醇溶蛋白和麦谷蛋白提取按照文献优化的方法[17],其中,S D S-P A G E分离胶浓度12%,浓缩胶浓度4%,考马斯亮蓝(R-250)染色㊂1.4转录组测序及生物信息学分析R N A提取㊁转录组测序及生物学信息分析由杭州联川生物技术有限公司(中国,杭州)完成,所有技术操作㊁基因组比对㊁转录本组装㊁F P KM定量及G O和K E G G富集分析工作均由该公司完㊃858㊃麦类作物学报第43卷Copyright©博看网. All Rights Reserved.成㊂每个样品三次生物学重复㊂使用S t r i n g T i e 软件(h t t p s://c c b.j h u.e d u/s o f t w a r e/h i s a t2)对基因或转录本进行组装并用F P KM[每百万测序片段中来自某一基因每千碱基长度的数目:F P-KM=t o t a l_e x o n_f r a g m e n t s/m a p p e d_r e a d s (m i l l i o n s)的e x o n_l e n g t h(k B)]定量,使用R包e d g e R(h t t p s://b i o c o n d u c t o r.o r g/p a c k a g e s/r e-l e a s e/b i o c/h t m l/e d g e R.h t m l)对样本之间的差异基因进行分析,差异倍数>2倍或<0.5倍,且P<0.05定义为差异表达基因㊂1.5面粉硫及巯基含量测定硫含量检测:浓硝酸消化后用液相离子色谱测定硫元素含量(I C-2001;T O S O H,J a p a n),阴离子标准液使用W a k oP u r eC h e m i c a l s(J a p a n),详细操作采用M a r u y a m a优化的方法[18]㊂总巯基和自由巯基含量测定及二硫键含量计算参考W a n g等[19]的方法㊂1.6蛋白质量评价从N C B I数据库下载不同类型的HMW-G S s氨基酸序列信息,利用巯基和二硫键含量预测在线程序(S C R A T C H P r o t e i n P r e d i c t o r:h t t p:// s c r a t c h.p r o t e o m i c s.i c s.u c i.e d u),对部分差异表达基因编码蛋白和HMW-G S s的自由巯基㊁二硫键含量进行预测,并利用蛋白质量评价模型进行评分比较[20]㊂1.7数据处理采用E x c e l2007进行数据分析和显著性检验㊂2结果与分析2.1面粉质量参数分析从表1可知,两个品种的粗蛋白含量无显著差异,郑麦158的湿面筋含量和吸水率显著低于郑麦369,但面筋指数㊁形成时间和稳定时间显著高于后者,郑麦158稳定时间约为郑麦369的两倍,推测郑麦158含有较多对面团强度贡献较大的面筋蛋白㊂2.2面筋蛋白亚基分析从图1可以看出,两个品种的HMW-G S组表1两品种的面粉品质特性T a b l e1P r o c e s s i n gq u a l i t y o f t h e t w ow h e a t c u l t i v a r s品种C u l t i v a r粗蛋白含量C r u d e p r o t e i nc o n t e n t/%湿面筋含量W e t g l u t e nc o n t e n t/%面筋指数G l u t e n i n d e x/%吸水率W a t e ra b s o r p t i o n/%形成时间D o u g hd e v e l o p m e n tt i m e/m i n稳定时间S t a b i l i t y t i m e/m i nZ M15813.5ʃ0.627.3ʃ0.588.6ʃ1.9﹡60.0ʃ0.48.0ʃ0.5﹡16.5ʃ1.0﹡﹡Z M36913.9ʃ0.332.5ʃ1.8﹡﹡70.1ʃ4.668.5ʃ1.1﹡6.2ʃ0.38.4ʃ0.4Z M158:郑麦158;Z M369:郑麦369;*和**分别表示品种间差异在0.05和0.01水平显著㊂下同㊂Z M158:Z h e n g m a i158;Z M369:Z h e n g m a i369;*a n d**i n d i c a t e s i g n i f i c a n t d i f f e r e n c eb e t w e e n t w o c u l t i v a r s s a t0.05a n d0.01 l e v e l s,r e s p e c t i v e l y.T h e s a m e i n t a b l e3.合完全一致(1㊁5+10㊁7+8),说明HMW-G S组合可能不是两个品种之间面粉质量差异的主要原因;L MW-G S s和醇溶蛋白的电泳图谱稍有差异,推测这些蛋白的组成和含量差异可能是导致两个品种之间品质差异的原因㊂2.3面筋蛋白的基因表达差异根据测序结果,发现在小麦花后14㊁21㊁28d 时,两个品种间籽粒中HMW-G S基因表达均无显著性差异,这与其蛋白检测结果相同,说明HMW-G S s不是两个品种间面团强度性状差异的主要原因㊂由表2可知,与郑麦369比较,郑麦158在3个时间点共有24个(46次)基因表达有显著差异,其中显著上调表达基因12个(23次),显著下调表达基因12个(23次)㊂上调表达基因包括9个燕麦类似蛋白基因(18次)㊁2个γ-醇溶图1两个品种的麦谷蛋白和醇溶蛋白电泳图F i g.1S D S-P AG Eo f g l u t e n i n s a n d g l i a d i n sf r o mt h e t w ow h e a t c u l t i v a r s蛋白基因(4次)和1个α-醇溶蛋白基因;下调表达基因包括11个α-或α/β-醇溶蛋白基因(21次)㊃958㊃第7期晁岳恩等:影响小麦面团强度的贮藏蛋白基因表达研究Copyright©博看网. All Rights Reserved.和1个燕麦类似蛋白基因(2次)㊂其中,燕麦类似蛋白基因占郑麦158显著上调表达基因总量的75%,暗示燕麦类似蛋白可能对面团强度性状有重要作用㊂郑麦158显著上调表达基因的染色体组定位分析显示,上调表达的基因全部位于A㊁D染色体组,其中A染色体组基因出现15次,占总数的65%㊂另外,从燕麦类似蛋白的染色体定位看,这些基因分别定位在7A㊁7D和4A染色体,7B染色体未发现差异表达的燕麦类似蛋白基因㊂所以,从本研究两个材料来说,A组染色体编码的面筋蛋白与面粉强度性状的相关性最高,D组次之㊂表2不同发育时期籽粒中表达显著差异的贮藏蛋白基因T a b l e2D i f f e r e n t i a l l y e x p r e s s e d g e n e s o fw h e a t g r a i n s t o r a g e p r o t e i n s a t d i f f e r e n t d e v e l o p m e n t a l s t a g e sG e n e_I D P r o t e i nd a s s i f i c a t i o n R e l a t i v e e x p r e s s i o nZ M158Z M369S i g n i f i c a n t r e g u l a t i o n 花后14d14d a y s-p o s t-a n t h e s i sT r a e s C S1D02G001100G a mm a-g l i a d i n117686.573630.57u pT r a e s C S4A02G451811A v e n i n-l i k e b1523.1720.17u pT r a e s C S7A02G035300A v e n i n-l i k e b61105.4515.82u pT r a e s C S6A02G048900A l p h a/b e t a-g l i a d i n12.59786.81d o w nT r a e s C S6B02G066001A l p h a/b e t a-g l i a d i n114.34244.29d o w nT r a e s C S7A02G036800A v e n i n-l i k e b188.83350.55d o w nT r a e s C S U02G153800A l p h a/b e t a-g l i a d i n8.201429.98d o w nT r a e s C S U02G188800A l p h a-g l i a d i n501.142538.28d o w n花后21d21d a y s-p o s t-a n t h e s i sT r a e s C S1D02G001100G a mm a-g l i a d i n116756.402711.65u pT r a e s C S4A02G451811A v e n i n-l i k e b1896.4150.22u pT r a e s C S4A02G453400A v e n i n-l i k e a47395.601227.59u pT r a e s C S4A02G453800A v e n i n-l i k eb6601.462708.11u pT r a e s C S7A02G035300A v e n i n-l i k e b62487.5130.83u pT r a e s C S7A02G035500A v e n i n-l i k e a39305.121481.27u pT r a e s C S7A02G035600A v e n i n-l i k e a41878.31692.09u pT r a e s C S7D02G032000A v e n i n-l i k e a1268.520.05u pT r a e s C S7D02G032100A v e n i n-l i k e a412941.552214.42u pT r a e s C S7D02G031700A v e n i n-l i k e b614215.003924.58u pT r a e s C S6A02G048900A l p h a/b e t a-g l i a d i n11.741945.21d o w nT r a e s C S6A02G049700A l p h a/b e t a-g l i a d i n1588.093344.69d o w nT r a e s C S6B02G066000A l p h a/b e t a-g l i a d i n1251.343190.28d o w nT r a e s C S6B02G066001A l p h a/b e t a-g l i a d i n147.79518.72d o w nT r a e s C S7A02G036800A v e n i n-l i k e b1119.70369.01d o w nT r a e s C S U02G108205A l p h a-g l i a d i n539.191111.61d o w nT r a e s C S U02G108300A l p h a-g l i a d i n1522.773245.03d o w nT r a e s C S U02G108700A l p h a-g l i a d i n3757.639834.43d o w nT r a e s C S U02G149946A l p h a/b e t a-g l i a d i n2368.445228.34d o w nT r a e s C S U02G149951A l p h a/b e t a-g l i a d i n2269.585484.85d o w nT r a e s C S U02G153800A l p h a/b e t a-g l i a d i n9.423897.28d o w nT r a e s C S U02G188800A l p h a-g l i a d i n530.164160.66d o w nT r a e s C S U02G220200A l p h a-g l i a d i n3035.236229.49d o w nT r a e s C S U02G265913A l p h a-g l i a d i n90.66482.20d o w n花后28d28d a y s-p o s t-a n t h e s i sT r a e s C S1D02G001100G a mm a-g l i a d i n114243.871953.81u pT r a e s C S1A02G007700G a mm a-g l i a d i nA4283.76877.03u pT r a e s C S4A02G451811A v e n i n-l i k e b1124.4410.62u pT r a e s C S4A02G453800A v e n i n-l i k eb1050.63362.81u pT r a e s C S6A02G049800A l p h a-g l i a d i n7343.883259.18u pT r a e s C S7A02G035300A v e n i n-l i k e b6540.9819.17u pT r a e s C S7A02G035500A v e n i n-l i k e a31072.94346.61u pT r a e s C S7A02G035600A v e n i n-l i k e a4225.5480.00u pT r a e s C S7D02G031700A v e n i n-l i k e b62216.16552.01u pT r a e s C S7D02G032100A v e n i n-l i k e a41908.71617.00u pT r a e s C S6A02G048900A l p h a/b e t a-g l i a d i n20.394983.39d o w nT r a e s C S6B02G066001A l p h a/b e t a-g l i a d i n310.64910.51d o w nT r a e s C S U02G153800A l p h a/b e t a-g l i a d i n15.778122.15d o w nT r a e s C S U02G188800A l p h a-g l i a d i n153.013271.17d o w n㊃068㊃麦类作物学报第43卷Copyright©博看网. All Rights Reserved.2.4 面粉硫及巯基集团含量分析为分析两个品种的巯基集团含量与面粉品质的相关性,对面粉中的硫和巯基(自由巯基㊁总巯基)及分子内二硫键含量进行了分析,结果(表3)发现,二者间总巯基含量无显著差异,郑麦158的总硫含量明显较低,其自由巯基含量显著高于郑麦369㊂面粉中面筋蛋白占总蛋白含量的80%以上,可以用面粉中的硫及巯基含量衡量其在面筋蛋白中的含量㊂暗示在含硫氨基酸的组成上,郑麦158面筋蛋白中的半胱氨酸残基含量比例较高,且分子内二硫键比例较低,而郑麦369面筋蛋白中的甲硫氨酸残基含量比例较高㊂表3 两个品种面粉中的巯基含量T a b l e 3 S u l f u r a n d s u l f h y d r y l g r o u p co n t e n t s f r o mf l o u r o f t h e t w o c u l t i v a r s 品种C u l t i v a r 硫含量S c o n t e n t /(m g㊃g -1)自由巯基含量F r e e -S Hc o n t e n t /(μm o l ㊃g -1)总巯基含量T o t a l -S Hc o n t e n t /(μm o l ㊃g -1)二硫键含量S -Sb o n d c o n t e n t /(μm o l ㊃g -1)Z M 1581.34ʃ0.0614.00ʃ0.16﹡16.33ʃ0.291.165Z M 3691.42ʃ0.06﹡13.56ʃ0.1715.55ʃ1.360.9952.5 差异表达蛋白的质量评价根据在线软件(S C R A T C H P r o t e i nP r e d i c -t o r)的分析原理,蛋白分子内二硫键的有无和自由巯基数量分属两个独立的预测,即:当一个蛋白被预测为无分子内二硫键时,也会预测潜在的二硫键含量㊂因此,在对蛋白的面粉质量贡献进行评价时,首先考虑二硫键的有,然后再考虑二硫键的数量㊂当一个蛋白预测为无分子内二硫键时,其半胱氨酸数量全部视为自由巯基数量;有分子内二硫键时,总半胱氨酸数量减去形成二硫键的半胱氨酸数量后剩余的半胱氨酸数量即为自由巯基数量㊂具体评分方法按照分值=0.9x +0.3y 计算,其中x 为某个蛋白质的自由巯基数量,y 为这个蛋白质的分子内二硫键数量[20]㊂从数据库下载的部分H MW -G S s 和差异表达基因编码蛋白的评估分值见表4和表5,按照H MW -G S 对面团强度贡献评分不低于3.6作为优质蛋白评价标准,11个上调的差异表达基因编码蛋白中,有9个达到优质蛋白标准,其中γ-醇溶蛋白(T r a e s C S 1D 02G 001100)在3个时间点都显著上调表达,且分值超过了全部HMW -G S 的评分;仅有有两个基因(T r a e s C S 4A 02G 451811:A v e n i n -l i k e b 1;T r a e s C S 1A 02G 007700:G a mm a -g l i a d i n A )没有达到优质亚基标准,但其评分(3.0分)也与中等类型的HMW -G S 相同㊂在分析的3个下调基因中(在3个时间点出现8次),也有1个编码蛋白达到了优质HMW -G S 的分值,表明可能也有对面团强度有贡献的蛋白在郑麦158中呈下调表达趋势㊂表4 基于巯基预测结果的HMW -G S 质量评价T a b l e 4 P r e d i c t e dn u m b e r o f d i s u l f i d e b o n d s i nHMW -G S a n d e v a l u a t i o n s c o r e sP r o t e i n c l a s s i f i c a t i o nN a m e G e n e B a n ka c c e s s i o nN u m b e ro fC y s P r e s e n c e o fd i s u l f i de b o n dN u m b e r o fd i s u l f i de b o n d sS c o r e v a l u eHMW -G S1D y 10.1A A U 04841.17N o 36.31D x 5D A A 06555.15N o 24.51D y3A I E 47879.15N o 34.51A x 1A H Z 62762.14N o 23.6B x 7O EA E P 33190.14N o23.61D y 12**A YM 46701.18Y e s 32.71A y AWM 72944.16Y e s 22.41A yA V K 88282.16Y e s 22.41D y 12.6A K P 95632.17Y e s 31.81B y9C A A 43361.17Y e s 31.8㊃168㊃第7期晁岳恩等:影响小麦面团强度的贮藏蛋白基因表达研究Copyright ©博看网. All Rights Reserved.表5基于巯基预测结果的差异表达基因编码蛋白的质量评价T a b l e5P r e d i c t e dn u m b e r o f d i s u l f i d e b o n d sw h e a t s t o r a g e p r o t e i n s e n c o d e d b y d i f f e r e n t i a l l y e x p r e s s e d g e n e s a n d e v a l u a t i o n s c o r e s P r o t e i n c l a s s i f i c a t i o n S i g n i f i c a n tr e g u l a t i o n G e n e_I D N u m b e ro fC y s P r e s e n c e o fd i s u l f i de b o n d N u m b e r o fd i s u l f i de b o n d s S c o r e v a l u e G a mm a-g l i a d i n11U p.14,21,28T r a e s C S1D02G0011008N o37.2A v e n i n-l i k e U p.21,28T r a e s C S7D02G03170018Y e s75.7A v e n i n-l i k e b6U p.14,21,28T r a e s C S7A02G03530019Y e s85.1A v e n i n-l i k e b U p.21,28T r a e s C S4A02G45380019Y e s85.1A v e n i n-l i k e a3U p.21,28T r a e s C S7A02G03550014Y e s63.6A v e n i n-l i k e a4U p.21,28T r a e s C S7D02G03210014Y e s63.6A v e n i n-l i k e a1U p.21T r a e s C S7D02G03200014Y e s63.6A v e n i n-l i k e a4U p.28T r a e s C S7A02G03560014Y e s63.6A v e n i n-l i k e a4U p.21T r a e s C S4A02G45340014Y e s63.6A v e n i n-l i k e b1U p.14,21,28T r a e s C S4A02G45181110Y e s43.0G a mm a-g l i a d i nA U p.28T r a e s C S1A02G0077008Y e s33.0A l p h a/b e t a-g l i a d i n D o w n.14,21,28T r a e s C S U02G1538006N o25.4A l p h a-g l i a d i n D o w n.14,21,28T r a e s C S U02G1888006Y e s22.4A v e n i n-l i k e b1D o w n.14,21T r a e s C S7A02G03680012Y e s53.33讨论面团强度参数是衡量面粉品质的重要指标,与面包烘焙体积呈正相关[5]㊂HMW-G S及其组合方式是影响面团强度的主要遗传因素[5-12]㊂本研究结果却表明,燕麦类似蛋白和部分醇溶蛋白对面团强度性状也有较大影响㊂燕麦类似蛋白为近年来发现的一类富含半胱氨酸的小麦面筋蛋白,被视为非典型面筋蛋白质成分(a t y p i c a l g l u t e nc o m p o n e n t s),包括a㊁b两个大类,又可分为若干小类[21-22]㊂目前,燕麦类似蛋白与面粉品质的相关研究还不多,已有的研究与本研究结果相似,如W a n g等[23]曾将中国春中的一个b类燕麦类似蛋白基因在郑麦9023中表达,转基因材料的面团强度明显提高,但在这个蛋白中额外引入1个半胱氨酸突变后,面团强度和弹性下降;二硫键预测结果表明,新增加的巯基与分子内的其他自由巯基形成了分子内二硫键,表明与总巯基含量相比,面筋蛋白的高自由巯基含量才是其影响面团强度的根本原因㊂M a等[24-25]研究也发现,类燕麦b贮藏蛋白具有改善面团强度的潜力㊂关于a类燕麦类似蛋白与面粉质量的关系,目前尚未检索到相关研究文献,但从本研究结果看,高面团强度品种郑麦158的9个显著上调的燕麦类似蛋白基因中,包括5个a类燕麦类似蛋白基因,且评分也全部达到了优质蛋白水平,由此推测a类燕麦类似蛋白在面团强度性状中发挥着重要效应㊂差异表达基因的染色体组定位分析显示,燕麦类似蛋白基因全部位于A㊁D染色体组,在B组染色体上没有发现燕麦类似蛋白基因㊂据推测,普通六倍体小麦的四倍体祖先中曾发生过4A L/ 7B S易位或近着丝粒倒位情况,可能导致了原来应该位于7B S的燕麦蛋白编码位点转移到了4A L上[26]㊂醇溶蛋白是面筋蛋白的主要成分之一,通常认为,醇溶蛋白是以非共价键形式结合到面筋中,主要影响面团的粘性和延展性,对面团强度具有负向效应㊂本研究结果表明,高面团强度郑麦158的显著下调表达的基因中,醇溶蛋白基因数量占总数的78.6%,这与醇溶蛋白对于面团强度具有负向效应的观点一致[27-29]㊂但是,在郑麦158的显著上调表达基因中,两个γ-醇溶蛋白(T r a e s C S1D02G001100,T r a e s C S1A02G007700)基因也表现显著性上调,其中位于1D染色体的醇溶蛋白(T r a e s C S1D02G001100)基因在3个时期均表现显著性上调,生物信息学分析表明其含有8个自由巯基,面团强度的贡献评分为7.2分,超过了公认的优质HMW-G S(1D y10和1D x5),暗示其面团强度有较大贡献㊂有研究表明,某些醇溶蛋白也可以通过分子间二硫键结合到面筋中(尤其是奇数半胱氨酸残基含量的蛋白质至少存在一个自由巯基),进而影响到面团的强度[20,30-34]㊂研究表明,面粉蛋白中的自由巯基和二硫键㊃268㊃麦类作物学报第43卷Copyright©博看网. All Rights Reserved.对面团结构及面团稳定性有重要影响,在揉面过程中,不同面粉蛋白质分子的自由巯基相互结合成二硫键,形成的面筋骨架决定着面团的结构和特性[35-39]㊂因此,小麦蛋白中的巯基含量是决定面团流变学特性及烘焙质量的关键因素[40-41]㊂本研究表明,高面团强度的郑麦158中,自由巯基含量㊁总巯基含量和总二硫键含量均高于面团强度较低的郑麦369㊂因此,进一步探索小麦籽粒蛋白中的高半胱氨酸和高自由巯基含量形成原因,对于阐释小麦面粉质量形成机制㊁完善优质小麦育种技术具有参考意义㊂4结论燕麦类似蛋白在面团强度性状上有较大贡献,可能是决定面团强度性状的另一遗传因素,个别类型的γ-醇溶蛋白可能对面团强度性状也有贡献;探索小麦籽粒蛋白中高半胱氨酸和高自由巯基含量的形成原因,对于完善现有优质小麦育种技术具有一定的参考意义㊂参考文献:[1]S H E WR YPR,T A T H AM AS,HA L F O R D N G,e t a l.O p-p o r t u n i t i e sf o r m a n i p u l a t i n g t h es e e d p r o t e i nc o m p o s i t i o no f w h e a t a n db a r l e y i no r d e r t o i m p r o v e q u a l i t y[J].T r a n s g e n i c R e s e a r c h,1994,3(1):11.[2]S H E WR YPR,T A T H AM AS,B A R R OF,e t a l.B i o t e c h n o l-o g y o f b r e a d m a k i n g:U n r a v e l i n g a n dm a n i p u l a t i n g t h em u l t i-p r o t e i n g l u t e nc o m p l e x[J].B i o t e c h n o l o g y,1995,13:1186.[3]S H E WR YP R,N A P I E RJA,T A T H AM A S.S e e ds t o r a g e p r o t e i n s:S t r u c t u r e s a n db i o s y n t h e s i s[J].P l a n t C e l l,1995,7: 953.[4]D U P O N TF M,A L T E N B A C H SB.M o l e c u l a r a n db i o c h e m i-c a l i m p a c t s o f e n v i r o n m e n t a l f a c t o r so nw h e a t g r a i nde v e l o p-m e n t a n d p r o t e i ns y n t h e s i s[J].J o u r n a lof C e r e a lS c i e n c e, 2003,38:136.[5]D E L C O U RJA,J O Y EI J,P A R E Y T B,e ta l.W h e a t g l u t e nf u n c t i o n a l i t y a sa q u a l i t y d e t e r m i n a n ti n c e r e a l-b a s e df o o d p r o d u c t s[J].A n n u a lR e v i e wo f F o o dS c i e n c ea n dT e c h n o l o-g y,2012,3(1):470.[6]C H A U D H A R Y N,D A N G IP,K HA T K A R BS.R e l a t i o n s h i p o fm o l e c u l a rw e i g h td i s t r i b u t i o n p r o f i l eo fu n r e d u c e d g l u t e n p r o t e i ne x t r a c t s w i t h q u a l i t y c h a r a c t e r i s t i c so fb r e a d[J].F o o dC h e m i s t r y,2016,210:325.[7]G U P T R B,MA C R I T C H I E F.A l l e l i cv a r i a t i o na t g l u t e n i n s u b u n i ta n d g l i a d i nl o c i,g l u-1,g l u-3a n d g l i-1o fc o mm o n w h e a t s.I I.B i o c h e m i c a lb a s i so ft h ea l l e l i ce f f e c t so nd o u g h p r o p e r t i e s[J].J o u r n a l o f C e r e a l S c i e n c e,1994,19:28. [8]Z H A N G YJ,HU M Y,L I U Q,e t a l.D e l e t i o no f h i g h-m o l e c-u l a r-w e i g h t g l u t e n i ns u b u n i t s i n w h e a ts i g n i f i c a n t l y r e d u c e dd o u g h s t re n g t ha n db r e a d-b a k i n gq u a l i t y[J].B M CP l a n tB i-o l o g y,2018,18:1.[9]C H E N Q,Z H A N G W J,G A O W J,e ta l.H i g h m o l e c u l a r w e i g h t g l u t e n i ns u b u n i t s1B x7a n d1B y9e n c o d e db y G l u-B1 l o c u sa f f e c tw h e a td o u g h p r o p e r t i e sa n ds p o n g ec a k e q u a l i t y [J].J o u r n a l o f A g r i c u l t u r a l a n dF o o dC h e m i s t r y,2019,67 (42):11796.[10]A L T P E T E RF,J U A NCP,W I E S E R H.S t a b l e e x p r e s s i o n o f 1D x5a n d1D y10h i g h-m o l e c u l a r-w e i g h t g l u t e n i n s u b u n i t g e n e s i nt r a n s g e n i cr y ed r a s t i c a l l y i n c r e a s e st h e p o l y m e r i c g l u t e l i n f r a c t i o n i nr y e f l o u r[J].P l a n tM o l e c u l a rB i o l o g y, 2004,54:783.[11]A N J UM F M,K H A N M R,D I N A,e ta l.W h e a t g l u t e n:H i g hm o l e c u l a rw e i g h t g l u t e n i n s u b u n i t s-s t r u c t u r e,g e n e t i c s, a n d r e l a t i o nt od o u g he l a s t i c i t y[J].J o u r n a lo f F o o d S c i-e n c e,2007,72:56.[12]WA N G S,Y U Z,C A O M,e ta l.M o l e c u l a r m e c h a n i s m so f HMW g l u t e n i ns u b u n i t s f r o m1s l g e n o m eo f A e g i l o p s l o n-g i s s i m i p o s i t i v e l y a f f e c t i n g w h e a t b r e a dm a k i n gq u a l i t y[J]. P L o SO n e.2013;8(4):e58947.[13]A N J UM F M,K H A N M R,D I N A,e ta l.W h e a t g l u t e n:H i g hm o l e c u l a rw e i g h t g l u t e n i n s u b u n i t s-s t r u c t u r e,g e n e t i c s, a n d r e l a t i o nt od o u g he l a s t i c i t y[J].J o u r n a lo f F o o d S c i-e n c e,2007,72:56.[14]R A N G A NP,F U R T A D O A,H E N R YRJ.T h e t r a n s c r i p t o m e o f t h e d e v e l o p i n g g r a i n:Ar e s o u r c e f o r u n d e r s t a n d i n g s e e dd e v e l-o p m e n t a n d t h em o l e c u l a r c o n t r o l o f t h e f u n c t i o n a l a n d n u t r i-t i o n a l p r o p e r t i e s o fw h e a t[J].B M CG e n o m i c s,2017,18:1.[15]王宪泽,田纪春,张忠义㊂不同品种小麦籽粒蛋白质及其组分积累规律的研究[J].山东农业大学学报,1994,25(4): 394.WA N G XZ,T I A NJ Z,Z H A N GZY.S t u d y o n a c c u m u l i t i o n l a w so ft h e w h e a t g r a i n p r o t e i na n di t sc o m p o s i t i o n[J]. J o u r n a l o f S h a n d o n g a g r i c u l t u r a lu n i v e r s i t y,1994,25(4): 394.[16]苏珮,蒋纪芸㊂小麦籽粒蛋白质积累规律的初步研究[J].西北农林科技大学学报(自然科学版),1992,20(8):59. S UP,J A N GJY.A p r e l i m i n a r y s t u d y o f a c c u m u l i t i o n l a w s o fw h e a t g r a i n p r o t e i n[J].A c t aA g r i c u l t u r a eB o r e a l i-O c c i-d e n t a l i sS i n i c a.1992,20(8):59.[17]H E T T YCV DB,A N T O I N E HPA,MA R I N U S JMS,e ta l.A m o d i f i e d e x t r a c t i o n p r o t o c o le n ab l e s d e t ec t i o n a nd q u a n t i f i c a t i o no fce l i a cd i s e a s e-r e l a t e d g l u t e n p r o t e i n sf r o m w h e a t[J].J o u r n a l o f C h r o m a t og r a ph y B,2009,877:977.[18]WA T A N A B E-T A K A H A S H IA,I N O U E E,WA T A N A B E-T A K A H A S H IA,e ta l.T r a n s c r i p t o m e p r o f i l i n g o fs u l f u r-r e s p o n s i v e g e n e s i na r a b i d o p s i s r e v e a l s g l o b a l e f f e c t so f s u l-f u rn u t r i t i o n o n m u l t i p l e m e t a b o l i c p a t h w a y s[J].P l a n t P h y s i o l o g y,2003,132:604.[19]WA N G N,MAS,L IL,e t a l.A g g r e g a t i o nc h a r a c t e r i s t i c so f p r o t e i nd u r i n g w h e a t f l o u rm a t u r a t i o n[J].J o u r n a l o f A g r i-c u l t u r a l a n dF o o dC h e m i s t r y,2019,99:720.㊃368㊃第7期晁岳恩等:影响小麦面团强度的贮藏蛋白基因表达研究Copyright©博看网. All Rights Reserved.[20]晁岳恩㊂小麦面粉蛋白质量评价模型构建及蛋白质量再评价[J].麦类作物学报,2022,42(8):983.C H A O YE.E s t a b l i s h m e n t o f e v a l u a t i o nm o d e l a n d r e-d v a l u-a t i o no f w h e a tf l o u r p r o t e i n s[J].J o u r n a lo f T r i t i c e a eC r o p s,2022,42(8):983.[21]C H E NP,WA N GCD,L IKX,e t a l.C l o n i n g,e x p r e s s i o n a n dc h a r a c t e r i z a t i o no fn o v e l a v e n i n-l i k e g e n e s i n w h e a ta n dr e-l a t ed s pe c i e s[J].J o u r n a l of C e r e a l S c i e n c e,2008,48:734.[22]C H E N XY,C A OXY,Z H A N GYJ,e t a l.G e n e t i c c h a r a c-t e r i z a t i o no fc y s t e i n e-r i c ht y p e-ba v e n i n-l i k e p r o t e i nc o d i n gg e n e s i n c o mm o nw h e a t[J].S c i e n t i f i cR e p o r t s,2016,6:6.[23]WA N GY Q,L IM,G U A N YB,e t a l.E f f e c t s o f a n a d d i t i o n-a l c y s t e i n er e s i d u eo fa v e n i n-l i k eb p r o t e i nb y s i t e-d i r ec t ed m u t a ge n e s i s o nd o u g h p r o p e r t i e s i n w h e a t(T r i t i c u ma e s t i-v u m L.)[J].J o u r n a l of Ag r i c u l t u r a l a n dF o o dCh e mi s t r y, 2019,67:8563.[24]MA F Y,L IM,Y U LL,e ta l.T r a n s f o r m a t i o no f c o mm o n w h e a t(T r i t i c u ma e s t i v u m L.)w i t ha v e n i n-l i k eb g e n e i m-p r o v e sf l o u r m i x i n g p r o p e r t i e s[J].M o l e c u l a r B r e e d i n g, 2013,32:861.[25]MAFY,M I A OL I,Y ULL,e t a l.O v e r e x p r e s s i o n o f a v e n i n-l i k e b p r o t e i n s i nb r e a dw h e a t(T r i t i c u ma e s t i v u m L.)i m-p r o v e sd o u g h m i x i n gp r o p e r t i e sb y t h e i r i n c o r p o r a t i o ni n t og l u t e n i n p o l y m e r s[J].P l o sO n e,2013(8):e667588.[26]D E V O SK M,D U B C O V S K YJ,D V O RÁKJ,e t a l.S t r u c t u r-a l e v o l u t i o no fw h e a t c h r o m o s o m e s4A,5A,a n d7Ba n di t s i m p a c t o n r e c o mb i n a t i o n[J].T h e o r e t ic a la nd A p p l ie d G e-n e t i c s.1995,91:282.[27]K H A T K A RBS,F I D ORJ,T A T H AM AS,e t a l.F u n c t i o n-a l p r o p e r t i e s o fw h e a t g l i a d i n s2.E f f e c t s o n d y n a m i c r h e o l o g-i c a l p r o p e r t i e so fw h e a t g l u t e n[J].J o u r n a l o f C e r e a lS c i-e n c e,2002,35:307.[28]K H A T K A RBS,B E L LAE,S C H O F I E L DJD.T h e d y n a m i c r h e o l o g i c a l p r o p e r t i e s o f g l u t e n s a n d g l u t e n s u b f r a c t i o n s f r o m w h e a t so f g o o da n d p o o rb r e a d-m a k i n gq u a l i t y[J]. J o u r n a l o f C e r e a l S c i e n c e,1995,22:29.[29]P E D E R S E N L,J O R G E N S E NJR.V a r i a t i o ni nr h e o l o g i c a l p r o p e r t i e s o f g l u t e n f r o mt h r e e b i s c u i tw h e a t c u l t i v a r s i n r e-l a t i o n t on i t r o g e nf e r t i l i s a t i o n[J].J o u r n a lo f C e r e a lS c i-e n c e,2007,46(2):132.[30]V E N S E L W H,T A N A K ACK,A L T E N B A C HSB.P r o t e i nc o m p o s i t i o n o fw h e a t g l u t e n p o l y m e r f r a c t i o n sde t e r m i n e d b y q u a n t i t a t i v e t w o-d i m e n s i o n a l g e l e l e c t r o p h o r e s i sa n dt a n d e m m a s s s p e c t r o m e t r y[J].P r o t e o m eS c i e n c e,2014,12:8. [31]Q IPF,W E IY M,Y U EY W,e t a l.B i o c h e m i c a l a n dm o l e c u-l a r c h a r a c t e r i z a t i o n ofg l i a d i n s[J].J o u r n a l o f M o l e c u l a rB i-o l o g y,2006,40:715.[32]MU L L E RS,W I E S E R H.T h e l o c a t i o n o f d i s u l p h i d e b o n d s i n α-t y p e g l i a d i n s[J].J o u r n a l o f C e r e a l S c i e n c e,1995,22:26.[33]MU L L E RS,W I E S E R H.T h e l o c a t i o no f d i s u l f i d eb o n d s i n m o n o m e r i cγ-t y p e g l i a d i n s[J].J o u r n a lo f C e r e a lS c i e n c e, 1997,26:174.[34]A N D E R S O N O D,L I T T SJC,G R E E N EFC.T h eα-g l i a d i ng e n e f a m i l y:1.C h a r a c t e r i z a t i o no f t e nn e w w h e a tα-g l i a d i n g e n o m i c c l o n e s,e v i d e n c e f o r l i m i t e d s e q u e n c e c o n s e r v a t i o no f f l a n k i n g D N A,a n d s o u t h e r na n a l y s i s o f t h e g e n e f a m i l y[J]. T h e o r e t i c a l a n dA p p l i e dG e n e t i c s,1997,95:50.[35]S H E WR YPR,T A T H AM A S.D i s u l p h i d eb o n d s i n w h e a tg l u t e n p r o t e i n s[J].J o u r n a lo f C e r e a lS c i e n c e,1997,25: 217.[36]V I S S C H E R SR W,D EJ O N G H H H.D i s u l p h i d eb o n df o r-m a t i o n i n f o o d p r o t e i n a g g r e g a t i o n a n d g e l a t i o n[J].B i o t e c h-n o l o g y a d v a n c e s,2005,23:77.[37]W I E S E R H.C h e m i s t r y o f g l u t e n p r o t e i n s[J].F o o d m i c r o-b i o l o g y,2007,24:118.[38]D E L C O U RJA,J O Y EI J,P A R E Y T B,e t a l.W h e a t g l u t e nf u n c t i o n a l i t y a sa q u a l i t y d e t e r m i n a n ti nc e r e a l-b a s e df o o d p r o d u c t s[J].A n n u a lR e v i e wo f F o o dS c i e n c ea n dT e c h n o l-og y,2012,3:474.[39]J O H A N S S O NE,MA L I K A H,HU S S A I N A,e ta l.W h e a tg l u t e n p o l y m e r s t r u c t u r e s:T h e i m p a c t o f g e n o t y p e,e n v i r o n-m e n t,a n d p r o c e s s i n g o n t h e i r f u n c t i o n a l i t y i n v a r i o u s a p p l i c a-t i o n s[J].C e r e a lC h e m i s t r y,2013,90(4):370. [40]R E I N B O L DJ,R Y C H L I K M,A S AMS,e t a l.C o n c e n t r a t i o n s o f t o t a l g l u t a t h i o n e a n d c y s t e i n e i nw h e a t f l o u r a s a f f e c t e d b y s u l f u r d e f i c i e n c y a n dc o r r e l a t i o nt o q u a l i t yp a r a m e t e r s[J]. J o u r n a lo f A g r i c u l t u r a la n d F o o d C h e m i s t r y,2008,56: 6849.[41]S L A D-A N A R,M I L I C AP,J E L E N A T,e t a l.D e t e r m i n a t i o n o f f r e e s u l p h y d r y l g r o u p s i nw h e a t g l u t e nu n d e r t h e i n f l u e n c e o f d i f f e r e n t t i m e a n d t e m p e r a t u r e o f i n c u b a t i o n:M e t h o d v a l-i d a t i o n[J].F o o dC h e m i s t r y,2014,150:172.㊃468㊃麦类作物学报第43卷Copyright©博看网. All Rights Reserved.。
干旱胁迫对小麦幼苗的影响

干旱胁迫对小麦幼苗生理生化指标的影响杨万坤 114120238 11应用生物教育A班摘要:用小麦幼苗为实验材料,研究干旱胁迫对小麦幼苗生理生化指标的影响。
试验结果表明:在干旱胁迫(5天)下小麦幼苗中脯氨酸(Pro)、丙二醛(MDA)、过氧化氢(H2O2)、抗氧化酶(PPO、POD)、谷胱甘肽(GSH)、ASA的含量都较正常情况下小麦幼苗的含量高。
关键字:干旱胁迫、小麦幼苗、Pro、MDA、H2O2、PPO、POD、GSH、ASA引言:小麦是我国北方地区的主要粮食作物,但是近几年北方地区旱情日益严重,小麦产量安全问题日益突出。
干旱也属于逆境,水分在植物的生命活动中占主导地位,大多数植物遭受干旱逆境后各个生理过程都会受到不同程度的影响。
干旱是我国农业可持续发展面临的主要问题之一, 干旱胁迫对植物的影响是一个复杂的生理生化过程, 涉及到许多生物大分子和小分子【1】。
干旱胁迫对植物的影响主要体现在酶活性、膜系统、细胞失水等,导致细胞代谢紊乱,甚至是细胞死亡。
本次试验测定正常生长的小麦幼苗和干旱胁迫处理小麦幼苗中脯氨酸(Pro)、丙二醛(MDA)、过氧化氢、抗氧化酶(PPO、POD)、谷胱甘肽(GSH)、ASA的含量变化, 来研究干旱胁迫对小麦的影响,从而找到合适的方法来解决干旱胁迫问题,解决小麦生产安全问题提供理论依据。
1材料与方法1.1材料及处理将小麦种子用0.1% HgCl2消毒10 min后,用蒸馏水漂洗干净,用蒸馏水于26℃下吸涨12 h,然后播于垫有6层湿润滤纸的带盖白磁盘(24cm×16cm)中→于26℃下暗萌发60h,计算发芽率(注意与前面结果比较),选取长势一致的小麦幼苗做干旱5天干旱处理。
5天后用相同的方法分别对实验组和对照组的小麦进行脯氨酸、MDA、过氧化氢、抗氧化酶(PPO、POD)、GSH、ASA的含量的测定。
1.2测定方法1.21玉米种子发芽率的测定各取50粒吸胀的玉米种子→沿胚的中心线切成两半(严格区分两个半粒),进行下列实验:其中50个半粒进行TTC染色(30℃水浴 20 min),另50个半粒进行曙红染色(室温染色10 min)洗净后观察。
11个小麦品种产量与主要产量性状关系的分析

11个小麦品种产量与主要产量性状关系的分析
崔天宇;王振国;李岩;李默;崔凤娟;吕静波;王海泽
【期刊名称】《种子科技》
【年(卷),期】2024(42)6
【摘要】为探析影响小麦产量的主要构成因素,以11个小麦品种为试验材料,对株高、穗长、有效穗数、穗粒数、千粒重、体积质量和产量进行变异分析、相关分析和主成分分析。
变异分析结果表明,11个小麦品种的变异系数为1.14%~20.63%,有效穗数的变异系数最大,为20.63%,体积质量的变异系数最小,为1.14%;相关分析结果表明,产量与千粒重的相关性最大,其次是体积质量,与有效穗数的相关性最小;主成分分析结果表明:第一主成分的贡献率最大,为43.01%,前四个主成分的累计贡献率为96.84%。
【总页数】5页(P1-5)
【作者】崔天宇;王振国;李岩;李默;崔凤娟;吕静波;王海泽
【作者单位】通辽市农牧科学研究所
【正文语种】中文
【中图分类】S512.1
【相关文献】
1.小麦新品种绵阳26号主要性状与产量的关系
2.小麦新品种“绵阳26”主要性状与产量的关系
3.小麦新品种产量性状及主要品质性状的因子分析与聚类分析
4.小麦新品种“绵阳26”主要性状与产量的关系
因版权原因,仅展示原文概要,查看原文内容请购买。
31份小麦材料中抗旱基因的KASP检测

麦类作物学报 2023,43(10):1241-1247JournalofTriticeaeCropsdoi:10.7606/j.issn.1009 1041.2023.10.03网络出版时间:2023 07 13网络出版地址:https://kns.cnki.net/kcms2/detail/61.1359.S.20230712.1928.023.html31份小麦材料中抗旱基因的犓犃犛犘检测李玮1,孔淑鑫2,宋国琦1,李玉莲1,张淑娟1,张荣志1,高洁1,李吉虎1,樊庆琦1,李根英1(1.山东省农业科学院作物研究所/小麦玉米国家工程研究中心/农业农村部黄淮北部小麦生物学与遗传育种重点实验室/山东省小麦技术创新中心,山东济南250100;2.山东农业工程学院农业科技学院,山东德州251100)摘 要:为明确小麦材料中抗旱相关基因的组成,利用已报道的29个标记(11个新转化的KASP标记以及已报道的18个KASP标记),对16份抗旱小麦品种和15份高产小麦品种进行KASP检测。
结果表明,多数基因位点在抗旱小麦品种和高产小麦品种间的优异等位基因数目无明显差别;TaPYL1 1B、Wcor14 2B、TaSRL1 4A、TaSnRK2.3 1A、QTDW.caas 6BL位点的优异等位基因在旱地品种中占比较高,而TaWRKY51 2B和TaSnRK2.4 3A位点的优异等位基因仅存在于抗旱品种中,前者的供体材料为晋麦47、晋麦92和晋麦101,后者的供体材料为济麦379。
关键词:小麦;抗旱;分子标记;育种亲本中图分类号:S512.1;S330 文献标识码:A 文章编号:1009 1041(2023)10 1241 07犃狀犪犾狔狊犻狊狅犳犇狉狅狌犵犺狋犚犲狊犻狊狋犪狀狋犌犲狀犲狊犻狀31犠犺犲犪狋犅狉犲犲犱犻狀犵犕犪狋犲狉犻犪犾狊犫狔犓犃犛犘犕犪狉犽犲狉犔犐犠犲犻1,犓犗犖犌犛犺狌狓犻狀2,犛犗犖犌犌狌狅狇犻1,犔犐犢狌犾犻犪狀1,犣犎犃犖犌犛犺狌犼狌犪狀1,犣犎犃犖犌犚狅狀犵狕犺犻1,犌犃犗犑犻犲1,犔犐犑犻犺狌1,犉犃犖犙犻狀犵狇犻1,犔犐犌犲狀狔犻狀犵1(1.CropResearchInstitute,ShandongAcademyofAgriculturalSciences/NationalEngineeringResearchCenterofWheatandMaize/KeyLaboratoryofWheatBiologyandGeneticsandBreedinginNorthernHuang huaiRiverPlain,MinistryofAgricultureandRuralAffairs/ShandongTechnologyInnovationCenterofWheat,Jinan,Shandong250100,China;2.CollegeofAgriculturalScienceandTechnology,ShandongAgricultureandEngineeringUniversity,Dezhou,Shandong251100,China)犃犫狊狋狉犪犮狋:Toclarifydroughtresistantallelesinwheatmaterials,16droughtresistantwheatcultivarsand15high yieldwheatcultivarsweredetectedby29KASPmarkers(11newlyconvertedKASPmarkersand18reportedKASPmarkers)relatedtodroughtresistance.Theresultshowedthattherewasnosignificantdifferenceinthenumberofpriorellelesbetweendroughtresistantcultivarsandhigh yieldcultivarsformostofthegeneloci.ThepercentageofpriorallelesofTaPYL1 1B,Wcor14 2B,TaSRL1 4A,TaSnRK2.3 1AandQTDW.caas 6BLlociwerehigherindroughtresistantcultivarsthaninhigh yieldcultivars.ThepriorallelesofTaWRKY51 2BandTaSnRK2.4 3Alociwereonlydetectedindroughtresistantcultivars,andtheformerdonormaterialswereJinmai47,Jinmai92andJinmai101,andthelatterdonormaterialwasJimai379.犓犲狔狑狅狉犱狊:Wheat;Droughtresistance;Molecularmarker;Parentalmaterials收稿日期:2022 06 23 修回日期:2022 07 14基金项目:山东省农业科学院农业科技创新工程项目(CXGC2022A01);山东省良种工程项目(2021LZGC009)第一作者E mail:davidlee5@163.com通讯作者:李玮(E mail:davidlee5@163.com);李根英(E mail:lgy111@126.com)Copyright©博看网. All Rights Reserved. 干旱是影响小麦产量的重要因素之一。
外源ABA和水分胁迫下不同耐旱品种小麦抗氧化响应和Lea基因表达的对比

外源ABA和水分胁迫下不同耐旱品种小麦抗氧化响应和Lea基因表达的对比摘要:将两个小麦品种——C306(耐旱)和PBW343(敏感),在外源ABA处理、水分胁迫(WS)和复合处理三种情况下的幼苗生长状况进行对比。
通过幼苗生长状况、根与芽的抗氧化潜力和芽中LEA基因的表达水平来研究它们的响应机制。
ABA处理导致抗坏血酸盐含量、坏血酸和脱氢抗坏血酸比例和抗氧化酶含量升高,同时导致脱氢抗坏血酸含量和丙二醛(MDA)含量的降低。
在水分胁迫下, PBW343的抗坏血酸盐含量、坏血酸和脱氢抗坏血酸比例和抗氧化酶含量的减少量高于C306,而 PBW343的脱氢抗坏血酸含量和丙二醛(MDA)含量比C306的高。
相较于单一水分胁迫,ABA和水分胁迫复合处理下 PBW343的一些特征得到了改进。
在单一ABA处理下,两个品种的小麦的脯氨酸含量并没有显著增加。
从十个LEA基因方面研究,C306的六个基因在水分胁迫下比在ABA处理下被诱导的更多,但是PBW343的六个基因在以上两种情况下被诱导的数量相同。
有四个LEA基因在PBW343中比较早表达,而在C306中较晚表达。
ABA处理下C306中的Wdhn13比水分胁迫下C306中的Wdhn13表达的更多,而PBW343中的Wdhn13在两种情况下都无响应。
关键词:ABA、干旱、小麦、抗氧化、LEA、水分胁迫缩写:ABA脱落酸APX抗坏血酸过氧化氢酶DMT邓肯多重比较EST已表达序列标记GAPDH甘油醛-3-磷酸脱氢酶GPOX愈创木酚过氧化物酶GPX谷胱甘肽过氧化物酶GR谷胱甘肽还原酶LEA晚期胚胎丰富MDA丙二醛T/C目标放大控制权WS水分胁迫引言脱落酸调节许多植物生理过程如种子成熟、种子休眠、生长和发育调节等,而它在适应环境压力尤其是高盐和干旱中的作用是一个研究这些压力下全球作物产量影响的重要领域。
ABA信号在抗旱性中起着非常重要的作用,许多抗旱品种是高浓度ABA敏感而许多干旱敏感品种是低浓度ABA敏感。
小麦 TaFer A1基因抗旱相关分子标记的开发

小麦 TaFer A1基因抗旱相关分子标记的开发的报告,600字
本报告旨在报告TaFer A1基因抗旱相关分子标记的开发过程。
近年来,气候变化已成为最大的农业挑战之一,其中极端旱灾造成了巨大损失,严重影响了作物产量。
因此,尝试利用基因技术改造小麦,以增加它们对极端干旱条件的抗性,已成为重大挑战。
本项研究旨在开发TaFer A1基因抗旱相关分子标记。
TaFer
A1基因可以促进植物对各种抗性挑战的抗逆,包括耐旱等。
因此,开发TaFer A1基因的抗旱相关分子标记是利用基因工
程技术来改善小麦耐旱性的一种方法。
为了实现这一目标,首先使用定向遗传学手段检测TaFer A1
基因的多态性以及其是否与抗旱性相关。
结果表明,TaFer A1
基因有着不同的多态性,部分等位基因可能与旱灾耐受性有关。
接着,将有潜力的多态性基因组合起来,并使用其他遗传数据证明它们与抗旱机制有关。
通过这样的研究,我们确定了TaFer A1基因的抗旱相关分子标记。
本工作的结果表明,TaFer A1基因抗旱相关分子标记的开发
是一种表现出良好抗旱抗性的有效方法。
此外,TaFer A1基
因抗旱相关分子标记开发也为实现小麦抗旱性性状的转基因技术提供了一个广阔的平台。
综上所述,TaFer A1基因抗旱相
关分子标记开发具有重要的理论意义和应用前景。
小麦 白蛋白化学式

小麦白蛋白化学式
小麦是一种重要的农作物,也是世界上最重要的粮食作物之一。
它的化学式是C55H70O13N14S。
小麦的白蛋白是其中的一种蛋白质,它在小麦的种子中起着重要的功能。
小麦白蛋白是一种溶解性蛋白质,它主要存在于小麦的细胞质中。
它的结构由多个氨基酸残基组成,其中包括谷氨酸、丝氨酸、异亮氨酸等。
这些氨基酸残基通过肽键连接在一起,形成了蛋白质的多肽链。
小麦白蛋白具有多种功能。
首先,它是小麦种子的主要营养储备物质之一。
在种子发育过程中,白蛋白被合成并积累在胚乳中,以供给幼苗生长所需的能量。
其次,白蛋白还起着重要的结构功能。
它能够与其他蛋白质相互作用,参与到小麦种子的发育和营养转运过程中。
此外,白蛋白还具有抗氧化、抗菌等生物活性,对小麦的抗逆性和品质特性有着重要影响。
小麦白蛋白的研究对于了解小麦的生长发育机制、提高小麦品质和增加产量具有重要意义。
通过对白蛋白的结构和功能进行深入研究,可以揭示小麦种子的形成和发育过程中的分子机制,为小麦育种和种子贮藏提供科学依据。
同时,还可以利用白蛋白的生物活性,开发具有抗菌、抗氧化等功能的食品添加剂和药物。
小麦白蛋白是小麦种子中的重要蛋白质之一,具有多种功能。
通过
对其结构和功能的研究,可以深入了解小麦的生长发育机制,提高小麦的品质和产量。
此外,还可以利用白蛋白的生物活性,开发具有多种功能的食品添加剂和药物,为人类的健康和生活质量提供保障。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Research articleThe drought response displayed by a DRE-binding protein from Triticum dicoccoidesStuart Lucas,Emel Durmaz,Bala An ıAkp ınar,Hikmet Budak *Sabanci University,Biological Sciences and Bioengineering Program,34956Tuzla,Istanbul,Turkeya r t i c l e i n f oArticle history:Received 23July 2010Accepted 11January 2011Available online 21January 2011Keywords:Drought stressWild emmer wheatPutative transcriptional activator DREB AP2domaina b s t r a c tDrought is one of the major causes of dramatic yield loss in crop plants.Knowledge of how to alleviate this loss is still limited due to the complexity of both the stress condition and plant responses.Wild emmer wheat (Triticum turgidum ssp.dicoccoides )is a potential source of important drought-resistance genes for its cultivated relatives.The gene for an emmer DRE-binding protein,TdicDRF1,was cloned and shown to be drought-responsive with orthologs in other plants.This is the first report of the cloning of TdicDRF1,and its expression was further characterized by RT-PCR in both drought-sensitive and drought-resistant accessions of Triticum dicoccoides .Analysis of the AP2/ERF DNA-binding domain of TdicDRF1as a GST-fusion protein and its binding to DRE by electrophoretic mobility shift assay (EMSA)indicate functional differences between wheat DREBs and those characterized in Arabidopsis thaliana .DREB expression increased in drought-stressed roots,correlating with the RT-PCR results,but not in leaf,showing that tissue-speci fic regulation occurs at the protein level.Hence,the DREB e DRE interaction undergoes subtle multi-level regulation.Ó2011Elsevier Masson SAS.All rights reserved.1.IntroductionImproving the yield of crops under environmental stress is one of the major challenges facing modern agriculture.Climate change,human population growth and increasing pressure on land and water resources demand the development of crop strains that remain productive under conditions such as restricted water supply and high salt.Unfortunately,centuries of selective breeding under optimal environmental conditions has eliminated stress tolerance alleles from today ’s elite cultivars,although they may still occur in wild relatives [19].Wild emmer wheat (Triticum turgidum ssp dicoccoides )is a largely untapped source of such alleles for its close relatives,durum and bread wheats.In recent years a considerable number of plant genes involved in drought and salt tolerance have been identi fied (reviewed in [2]).While many encode proteins that directly produce tolerance effects in the plant cell,some of the key players are transcription factors that govern the expression of these effectors [22],including those that bind to the dehydration responsive element,DRE.This 9-bpconsensus sequence,TACCGACAT,was first identi fied in the promoter of Arabidopsis rd29A/lti78and shown to be essential for drought induction in the absence of abscisic acid [21].Subsequently a family of transcription factors were found to bind to this element and therefore named DRE-binding (DREB)proteins [13].In Arabi-dopsis there are 2DREB subfamilies distinguished both by their sequence and their expression characteristics.The DREB1proteins are upregulated in response to cold stress,while DREB2proteins are activated primarily by dehydration or high salt.The presence of multiple DREBs responding to different stresses explains how genes such as rd29A can be differentially regulated through the same cis -acting element.All DREBs contain a conserved AP2DNA-binding domain,which was first identi fied in the developmental gene APETALA2[10]and is also present in ethylene-responsive element binding proteins [16].While the AP2domain sequence is largely conserved,Sakuma et al.[17]found that residues Val-14and Glu-19in DREB AP2domains distinguish them from other AP2domains and confer speci fic binding to DRE.Following these findings DREBs have been identi fied by homology in many other plant species [1].We used a putative DREB sequence labelled DREB3A from Triticum aestivum (Ta DREB3A,Genbank ID:AY781349)to isolate a DREB from wild emmer wheat,T.turgidum ssp dicoccoides ,and investigate its role in the greater drought tolerance of this subspecies compared to cultivated wheats.Abbreviations:DRE,dehydration-responsive element;CBF/DREB,C-repeat/dehydration-responsive element binding factor;RT-PCR,reverse transcription PCR;qRT-PCR,quantitative (real-time)RT-PCR;EMSA,electrophoretic mobility shift assay.*Corresponding author.Tel.:þ902164839575;fax:þ902164839550.E-mail address:budak@ (H.Budak).Contents lists available at ScienceDirectPlant Physiology and Biochemistryjournal h omepage:www.elsevier.co m/locate/plaphy0981-9428/$e see front matter Ó2011Elsevier Masson SAS.All rights reserved.doi:10.1016/j.plaphy.2011.01.016Plant Physiology and Biochemistry 49(2011)346e 3512.Materials and methods2.1.Plant growth and stress treatmentsFor hydroponic growth,T dicoccoides seeds were surface steril-ized with1%NaOCl and then germinated for5days in Perlite moistened with saturated CaSO4.Seedlings were transferred to continuously aerated Hoagland’s solution and grown under controlled conditions modified from those described previously [5]:24e26 C,relative humidity60e70%,under a16-h photoperiod under a photonflux density of600e700m mol mÀ2sÀ1.After14 days plants were drought shocked by removing them from the growth medium and placing them on a sterile dish in the light for 8h,after which they were immediatelyflash frozen in liquid nitrogen and stored atÀ80 C.T.dicoccoides genotypes Tr39477and Ttd22were previously characterized in a screen of about200T.dicoccoides accessions described by Ergen and Budak[7].Based on plant appearance and physiological measurements,they were the most tolerant line and the most sensitive line respectively to water stress.Greenhouse growth was carried out as outlined previously[7]; for each accession six pots were planted with4germinated seeds, and kept well-watered for4weeks while randomly changing the position of the pots.Drought stress was initiated by withholding water from3of the pots for9days.After7and9days,root,shoot and leaf tissues were pooled from all plants in one pot for each genotype and condition,flash frozen in liquid nitrogen and stored atÀ80 C.2.2.RNA isolation and cloningTotal RNA was collected from frozen plant tissues using Trizol (Invitrogen)extraction as previously described[8],and RNA integrity confirmed by observation of the rRNA bands on an agarose gel.First strand cDNAs were synthesized using oligo-dT primers. The following primer pairs were designed to amplify close homo-logs of Ta DREB3a:FP1e GAAGTGAACCAACAACTGGA and RP1e CCACGTACAACACCTTCAAT to amplify the AP2domain with short flanking sequences,for protein expression;FP2e TTCCGTGGTGT AAGGCAA and RP2e ATACATTGCTCTGGCTGCCT within the AP2 domain,as this is the most highly conserved part of DREB genes and so most certain to detect homologous sequences;3F e ATGACGGT AGATCGGAAG and3R e ACAACCCTTCGAAGAACT to amplify the entire coding sequence of any transcripts closely matching Ta DREB3a(Fig.1b).PCR products were TA cloned into vector pCR2.1 (Invitrogen)and sequenced.2.3.RT-PCR analysisFor semi-quantitative PCR,RNA concentrations were measured using a Nanodrop spectrophotometer and equimolar amounts of each sample were used as a template forfirst-strand cDNA synthesis using oligo-dT primers and Mu-MLV Rnase H-reverse transcriptase (Promega)according to the manufacturer instructions.cDNAs derived from TdicDRF1were amplified using the primers above and products analyzed after27,31and35cycles.As internal reference primers GTGACGGGTGACGGAGAATT and GACACTAATGCGCCCGG-TAT designed against T.aestivum18S rRNA(Genbank ID:AJ272181) were amplified using the same conditions.2.4.Expression of the recombinant DNA binding domainof the DREB3The sequence of the TdicDRF1AP2domain amplified by primers FP1and RP1was subcloned into the pGEX-4t-2expression vector and used to transform Escherichia coli strain DH5a.Following induction by IPTG,bacteria were lysed and the fusion protein purified using GST-sepharose beads.Homogeneity and abundance of the purified proteins were confirmed by SDS and native8% polyacrylamide gel electrophoresis,and by immunoblotting with anti-GST-HRP conjugate(GE Healthcare RPN1237)at the recom-mended dilution of1:5000.2.5.Gel mobility shift assayElectrophoretic mobility shift assays(EMSA)were carried out using the LightShift Chemiluminescent EMSA kit(Pierce).Double-stranded DNA probes for binding to the recombinant protein described above were produced as follows.A139bp fragment of the50UTR of Arabidopsis thaliana rd29A was PCR amplified using the following primers:wtDREf:GATATAC T ACC G ACA T GAGTTCC AAAAAGC(DRE sequence highlighted)and DREr:AGAGACTGAGA-GAGATAAAGGGACA.Point mutations were introduced using mDRE primers with the same sequence as wtDREf apart from a single base substitution at one of the underlined residues.All PCR products were cloned into pCR2.1and sequenced.Correct sequences were excised using Bst X I to give4base30overhangs and labelled with biotin(Biotin30End DNA labeling kit,Pierce).Plant nuclear extracts were prepared as described[9]and probes prepared by obtaining71-bp long sense and antisense oligonucleotides spanning the DRE sequence,separately labeling their30ends and then annealing them together.Each binding reaction was carried out using0.1m g of probe DNA.Products were separated on an8%native polyacrylamide gel,transferred onto nylon membrane and visualised using streptavidin e HRP conjugate and chemiluminescence reagents according to the manufacturer petition and supershift were demonstrated using unlabeled WT DRE probe DNA and anti-GST-HRP antibody respectively.2.6.BioinformaticsSequence similarity searches were carried out using BLASTN v2.2.22at the NCBI website[23].Multiple sequence alignments were calculated and displayed using ClustalX v.2.0.12[3,4,11].3.Results3.1.Isolation and cloning of a T.dicoccoides DREBIn order to identify a novel DREB from T.dicoccoides,we used the Conserved Domain Database[14]to identify the AP2domain of Ta DREB3A,as this domain is highly conserved between DREBs of different species[18].PCR primers both within andflanking the AP2domain were designed.Both amplified efficiently from T.dicoccoides cDNA,suggesting that this species contains a close homolog of Ta DREB3A.Therefore further primers were designed to amplify the entire open-reading frame.Both the full-length and AP2motif products were cloned and sequenced(Fig.1).Using the coding sequence,a BLAST search identified close matches in other crop species:Triticum durum DRF1(99%identity), T.aestivum Wdreb2(94%)and Hordeum vulgare DRF1(93%).Align-ment of the predicted protein sequences(Fig.1a)showed that the T.dicoccoides DREB contains2amino acid substitutions compared to Ta DREB3A,and one further amino acid change compared to TdDRF1. TdDRF1,Wdreb2and HvDRF1have all been reported to produce3 different RNA transcripts by alternative splicing[6,12,20],with one or two additional exons being inserted just prior to the putative nuclear localization pared to the T.dicoccoides DREB, Ta DREB3A contains a47-residue insertion at the same location,andS.Lucas et al./Plant Physiology and Biochemistry49(2011)346e351347has an alternative splice variant which lacks this insertion (Ta DREB3B,Genbank ID:AY781350).To minimise confusion of nomenclature,the T.dicoccoides gene has been labelled TdicDRF1.The TdicDRF1cDNA sequence and the ORFs of the most closely related DREBs from other grasses were analyzed phylogenetically (Fig.1c).While TdicDRF1is most similar to T.aestivum DREB3B,T.aestivum Wdreb2was closer to Aegilops tauschii DRF1,suggesting that in bread wheat these two DREBs are descended from thesameFig.1.Analysis of TdicDRF1sequence.a.Alignment of predicted protein sequences of T.dicoccoides DREB (TdicDRF1)with Ta DREB3A and published DREBs from closely related species:DRF1from T.durum and H.vulgare ,and wDREB2from T.aestivum .The 58bp AP2domain is boxed and the V14and E19residues required for binding to the DRE indicated by arrows.b.TdicDRF1cDNA sequence with AP2domain and PCR primer sites marked.c.Phylogenetic relationship of coding sequences of Wdreb/DRF1orthologs.AtDREB2A was used to root the tree (A.thaliana ,Genbank ID:NM_120623.2).Other accession numbers are:T.aestivum DREB3B ,Genbank ID:AY781350,Wdreb2,Genbank ID:AB193608;DRF1.3from T.turgidum ssp durum ,Genbank ID:EU781993,Aegilops speltoides ,Genbank ID:FJ858187,Ae.tauschii ,Genbank ID:EU197052,H.vulgare ,Genbank ID:AY223807;Leymus chinensis DREB3,Genbank ID:EU999998;O.sativa DREB2B ,Genbank ID:AK099221;Zea mays DREB2A ,Genbank ID:AB218832.Sequence of Brachypodium distachyon 2g29960.2from the US Department of Energy Joint Genome Institute ( ).S.Lucas et al./Plant Physiology and Biochemistry 49(2011)346e 351348ancestral DRF1,one each from its tetraploid and diploid ancestors. All of the orthologs in the phylogenetic tree,except for AtDREB2A, have been shown or are predicted to produce multiple transcripts by alternative splicing,suggesting that this is a conserved feature of DRF1/DREB2in grasses.Therefore we would expect tofind multiple TdicDRF1transcripts as well.3.2.Expression of multiple transcripts of TdicDRF1in response to water stressBoth the full-length ORF and the AP2domain of TdicDRF1were amplified by RT-PCR using cDNA derived from the roots and shoots of control and8h drought-shocked plants.Higher amplification was detected from the drought-shocked plants than controls, indicating that TdicDRF1expression is induced in response to drought(Fig.2a).Amplifying equimolar amounts of total RNA,a more intense band was observed from root than shoot tissue.This indicates that under these rapid drought conditions TdicDRF1is transcribed at higher levels in roots,where drought stress impacts first,than in above ground tissues.To assess the effect of a longer drought period,fresh plants were grown and subjected to9days of slow drought stress.In these experiment samples were collected from2different cultivars previously characterized as drought-resistant(“TR”¼Tr39477)and drought-sensitive(“TS”¼Ttd22)[7].Using primers located in exonsflanking the putative alternative splice site,3different transcripts were amplified semi-quantitatively from drought stressed plants(Fig.2b and c).The coding regions of all3transcripts were cloned and sequenced(Supplementary data,Fig.S1;Genbank ID:HM019503e HM019505).As expected from the DRF1orthologs, the transcript sequences were identical apart from the addition of1 or both of2additional sequence segments after position80oftheFig.2.Differential expression of parison of TdicDRF1expression levels using primers FP2and RP2in control and drought shocked T.dicoccoides after35 cycles of amplification.b e c.Detection of TdicDRF1transcripts in roots(b)and leaves(c)of drought-tolerant and-sensitive T.dicoccoides accessions,using primers3aF and RP1(b)or RP2(c)after35cycles of amplification(at lower cycle numbers,all bands were lower intensity,with the same relative brightness of different bands).As a control,a portion of the 18S rRNA gene was also amplified.d.Sequence polymorphisms found within thefirst81bases of all three transcripts.Type1¼sequence obtained from MM5/4and Ttd22plants. Type2¼sequence obtained from Tr39477plants.Each sequence type was detected in clones derived from at least3independent PCR reactions.S.Lucas et al./Plant Physiology and Biochemistry49(2011)346e351349coding sequence,corresponding to the additional exons reported in DRF1orthologs.The longest and shortest transcripts,TdicDRF1.1 and TdicDRF1.3,were predicted to produce full-length proteins of 388and341amino acids respectively.However,TdicDRF1.2con-tained only thefirst additional exon and this introduced a frame-shift,giving a truncated predicted protein product with only61 amino acids and no AP2domain.Interestingly,TdicDRF1.2appeared to be the most abundant transcript in drought-stressed roots,with similar levels of all3transcripts induced in TR and TS plants.In the unstressed plants,TR roots alone expressed TdicDRF1.3,suggesting that drought-resistant plants express this transcript constitutively (Fig.2b).In leaf tissue transcript levels were lower,only detected under drought stress,and TdicDRF1.1was not reliably detected (Fig.2c).Apart from the sequence insertions found in the longer tran-scripts,two linked polymorphic sites were detected in thefirst81 bases of all3transcripts(Fig.2d),a silent single nucleotide poly-morphism at position24and a four base change at45e48,giving a single residue change in the protein sequence of Ala-17to Thr-17. All transcripts derived from TS plants had the same sequence at these two sites(Type1)while those from TR plants had the other sequence at both sites(Type2).No further polymorphisms were detected in the remainder of the transcript sequences.3.3.Analysis,expression and binding activityof the TdicDRF1AP2domainTdicDRF1and its homologs show almost complete amino acid identity in their AP2domains,including the presence of the14V and19E residues required for DRE-binding specificity(Fig.1a). Between these two the residues AEIR indicate that these are members of the DREB2family[17],and are therefore expected to respond to drought.TdicDRF1has a T to A amino acid substitution4residues before the end of its AP2domain.To determine whether this influences its ability to bind DRE we expressed and purified the AP2domain fused to an N-terminal GST tag.The fusion protein migrated on SDS e PAGE at the expected molecular weight of35kDa (Supplementary data,Fig.S2).Immunoblotting with anti-GST demonstrated the homogeneity of the fusion protein,although a faint band running a little below the major product suggests that some C-terminal degradation may have occurred.Electrophoretic mobility shift assays(EMSA)were used to test the ability of recombinant GST-TdicDRF1-AP2to bind to wild-type DRE(TACCGACAT),and probes mutated at the1st,5th and9th positions.The fusion protein reduced the mobility of the WT DRE probe,was competed out by excess unlabeled probe and gave an increased shift on addition of anti-GST antibody,demonstrating that the mobility shift was caused by specific binding.Mutation of the T in position9of DRE to either G or C abolished binding to the GST-TdicDRF1.In contrast,mutating thefirst T residue to G gave a marked increase in binding,while substituting it with A permitted binding at a similar level to wild-type(Supplementary data,Fig.S3).Mutating the G in the5th position to A or C elimi-nated binding,whereas the probe with T at this position again showed equivalent or better binding than wild-type.Taken together,these results suggest that TdicDRF1binds preferentially to GACCTACAT rather than TACCGACAT.3.4.DRE-binding activity of plant nuclear proteinsThe expression of DRE binding proteins in drought exposed and control tissues was also examined by EMSA using biotinylated probes containing wild-type DRE(Supplementary data,Fig.S4). Nuclear extracts were isolated from root and leaf tissues from control and8h drought stress-treated T.dicoccoides.After an8h drought shock,higher expression of DRE binding proteins was detected in the root tissue(Supplementary data,Fig.S4),corre-lating with the RT-PCR analysis.As with the TdicDRF1transcript levels,in both stressed and control samples much lower levels of DREB protein were detected in nuclei of leaf tissue than those from roots;a greater amount of nuclear protein from leaves was required to confirm the presence of DREBs.EMSA was also carried out using plants exposed to9days of drought stress(Supplementary data,Fig.S4b).DRE binding factors were again detected in control root tissue and upregulated in response to drought.Once again much weaker signals were obtained from leaf than root.Interestingly,in the drought-stressed leaf,DREB levels did not appear to be higher than in controls,but the probe migrated more slowly,suggesting that after extended drought leaf tissue expresses either different DREBs,a different isoform of the same DREB,or additional factors that form a larger protein complex.4.DiscussionWe present here thefirst DREB gene to be identified in T.dicoccoides(wild emmer wheat).TdicDRF1is a putative homolog of previously published DREBs from H.vulgare[20],T.aestivum[6] and T.durum[12].These three DREBs all undergo alternative splicing by insertion of additional exons prior to the AP2domain, giving transcripts that produce truncated and extended proteins. Our RT-PCR analysis found that TdicDRF1also has multiple tran-scripts,the longer ones having insertions of similar size and at the corresponding position to those described above;therefore we can deduce that these transcripts are similarly produced by alternative splicing.DREB genes from a number of other grass species are predicted to behave in the same way,suggesting that these are all orthologs(Fig.1c).In the case of T.aestivum Wdreb2the transcripts were found to be differentially regulated,with only the transcripts that produce full-length protein being induced by drought stress and having transactivation activity[6].Recently similar results were reported for Oryza sativa DREB2B[15],which was also found to be the only rice DREB both to be induced by abiotic stress and to have DRE transactivation activity.In our case,TdicDRF1.3,a tran-script producing full-length protein,was constitutively expressed in TR(drought resistant)but not TS(drought sensitive)T.dicoc-coides,whereas TdicDRF1.1and the non-functional TdicDRF1.2 transcripts were induced similarly in both lines following drought (Fig.2c).This is thefirst time that DRF1/DREB2expression has been compared between drought sensitive and resistant varieties of the same species,and raises the possibility that differential expression of TdicDRF1.3contributes to the differing drought phenotypes of these two lines,although further experiments are required to test this hypothesis.As T.dicoccoides has a tetraploid genome,we would expect to find2different forms of TdicDRF1,one each from the A and B genomes.We detected2linked polymorphisms in the putativefirst exon of TdicDRF1,in all three transcripts(Fig.2d).Egawa et al.[6] found the same polymorphisms in thefirst exon of T.aestivum Wdreb2,along with a third sequence type incorporating a6-bp deletion at one of the polymorphic sites,and proposed that the3 sequence types corresponded to the A,B&D homoeologous groups of bread wheat.If this is correct,the two reported here would be the A and B sequences;however,as they were cloned from different T.dicoccoides lines,they may also be different alleles of the same gene.The AP2domain of TdicDRF1exhibits slightly different binding specificity from previous studies carried out with DREBs from A.thaliana[17],in which base substitutions could be tolerated atS.Lucas et al./Plant Physiology and Biochemistry49(2011)346e351 350thefirst and last positions of the wtDRE sequence(TACCGACAT)but not thefifth.Our recombinant AP2domain bound the wild-type sequence,but showed increased binding to T1-G and G5-T mutants. Similarly it was found that HvDRF1AP2domain binds preferen-tially to T(A/T)ACCGCCTT[20],suggesting that different species have slightly different optimal DRE sequences.We also found that DREB proteins are more abundant and more strongly upregulated in response to drought in root tissue than leaf, where total DREB protein levels were not significantly increased even though TdicDRF1transcripts were.In addition,the differential expression of TdicDRF1.3was only observed in root tissue.Previous DREB studies have focused on their expression in above-ground tissues,but these differences suggest that elucidating their function in roots is also required to fully characterise the drought response. Moreover,the DRE-binding complex in leaves increased in molec-ular weight following drought stress treatment.Further studies are required to determine whether this corresponds to binding of the larger TdicDRF1.1protein,or a different DRE-binding protein.In summary the DRF1/Wdreb protein is conserved across a wide variety of grass species,induced by drought,and regulated by alter-native splicing in a tissue-specific fashion.Ourfindings indicate that the specificity,expression and regulation of DRF1differ from Arabi-dopsis DREBs,highlighting the need to characterise these proteins in grass species to understand their role in drought tolerance. AcknowledgementsThis work was partially funded by TUBITAK(The Scientific and Technological Council of Turkey).Appendix.Supplementary dataSupplementary data associated with this article can be found in the online version,at doi:10.1016/j.plaphy.2011.01.016. References[1]P.K.Agarwal,P.Agarwal,M.K.Reddy,S.K.Sopory,Role of DREB transcription factorsin abiotic and biotic stress tolerance in plants,Plant Cell Rep.25(2006)1263e1274.[2] D.Bartels,R.Sunkar,Drought and salt tolerance in plants,Crit.Rev.Plant Sci.24(2005)23e58.[3]H.Budak,Z.Kasap,R.C.Shearman,I.Dweikat,U.Sezerman,A.Mahmood,Molecular characterization of cDNA encoding resistance gene-like sequences in Buchloe dactyloides,Mol.Biotech.34(2006)293e301.[4]H.Budak,S.Su,N.Ergen,Revealing constitutively expressed resistance genes inAgrostis species using PCR-based motif-directed RNAfingerprinting,Genetic.Resour.88(2006)165e175.[5]Ö.Cebeci,B.Köktürk,N.Ergen,L.Öztürk,I.Çakmak,H.Budak,Differentialexpression of wheat transcriptomes in response to varying cadmium concentrations,Biol.Plantarum52(2008)703e708.[6] C.Egawa,F.Kobayashi,M.Ishibashi,T.Nakamura,C.Nakamura,S.Takumi,Differential regulation of transcript accumulation and alternative splicing ofa DREB2homolog under abiotic stress conditions in common wheat,GenesGenet.Syst.81(2006)77e91.[7]N.Z.Ergen,H.Budak,Sequencing over13,000expressed sequence tags fromsix subtractive cDNA libraries of wild and modern wheats following slow drought stress,Plant Cell Environ.32(2009)220e236.[8]N.Z.Ergen,G.Dinler,R.C.Shearman,H.Budak,Identifying,cloning andstructural analysis of differentially expressed genes upon Puccinia infection of Festuca rubra var.rubra,Gene393(2007)145e152.[9] B.K.Fiil,J.-L.Qiu,K.Petersen,M.Petersen,J.Mundy,Coimmunoprecipitationof nuclear proteins and Chromatin Immunoprecipitation from Arabidopsis, Cold Spring Harbor Protocols(2008).doi:10.1101/pdb.prot5049.[10]K.D.Jofuku,B.G.W.den Boer,M.Van Montagu,J.K.Okamura,Control of Ara-bidopsis seed andflower development by the homeotic gene APETALA2,Plant Cell6(1994)1211e1225.[11]rkin,G.Blackshields,N.P.Brown,R.Chenna,P.A.McGettigan,H.McWilliam,F.Valentin,I.M.Wallace,A.Wilm,R.Lopez,J.D.Thompson,T.J.Gibson,D.G.Higgins,ClustalW and ClustalX version2.0,Bioinformatics23 (2007)2947e2948.[12] tini,C.Rasi,M.Sperandei,C.Cantale,M.Iannetta,M.Dettori,K.Ammar,P.Galeffi,Identification of a DREB-related gene in Triticum durum and its expression under water stress conditions,Ann.Appl.Biol.150(2007) 187e195.[13]Q.Liu,M.Kasuga,Y.Sakuma,H.Abe,S.Miura,K.Yamaguchi-Shinozaki,K.Shinozaki,Two transcription factors,DREB1and DREB2,with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression,respectively,in Arabidopsis,Plant Cell10(1998)1391e1406.[14] A.Marchler-Bauer,J.B.Anderson,F.Chitsaz,M.K.Derbyshire,C.DeWeese-Scott,J.H.Fong,L.Y.Geer,R.C.Geer,N.R.Gonzales,M.Gwadz,S.He,D.I.Hurwitz,J.D.Jackson,Z.Ke,nczycki,C.A.Liebert,C.Liu,F.Lu,S.Lu,G.H.Marchler,M.Mullokandov,J.S.Song, A.Tasneem,N.Thanki,R.A.Yamashita, D.Zhang,N.Zhang,S.H.Bryant,CDD:specific functional annotation with the Conserved Domain Database,Nucleic Acids Research37 (2009)205e210.[15]S.Matsukura,J.Mizoi,T.Yoshida,D.Todaka,Y.Ito,K.Maruyama,K.Shinozaki,K.Yamaguchi-Shinozaki,Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes,Mol.Genet.Genomics283(2010)185e196.[16]M.Ohme-Takagi,H.Shinshi,Ethylene-inducible DNA binding proteins thatinteract with an ethylene-responsive element,Plant Cell7(1995)173e182.[17]Y.Sakuma,Q.Liu,J.G.Dubouzet,H.Abe,K.Shinozaki,K.Yamaguchi-Shinozaki,DNA-binding specificity of the ERF/AP2domain of Arabidopsis DREBs,tran-scription factors involved in dehydration-and cold-inducible gene expression, mun.290(2002)998e1009.[18]Y.-G.Shen,W.-K.Zhang,S.-J.He,J.-S.Zhang,Q.Liu,S.Y.Chen,An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold,dehydration and ABA stress,Theor.Appl.Genet.106(2003) 923e930.[19]S.D.Tanksley,S.R.McCouch,Seed banks and molecular maps:unlockinggenetic potential from the wild,Science277(1997)1063e1066.[20]G.-P.Xue,C.Loveridge,HvDRF1is involved in abscisic acid-mediated generegulation in barley and produces two forms of AP2transcriptional activators, interacting preferably with a CT-rich element,Plant J.37(2004)326e339. [21]K.Yamaguchi-Shinozaki,K.Shinozaki,A novel cis-acting element in an Ara-bidopsis gene is involved in responsiveness to drought,low-temperature,or high-salt stress,Plant Cell6(1994)251e264.[22]K.Yamaguchi-Shinozaki,K.Shinozaki,Transcriptional regulatory networks incellular responses and tolerance to dehydration and cold stresses,Ann.Rev.Plant Biol.57(2006)781e803.[23]Z.Zhang,S.Schwartz,L.Wagner,ler,A greedy algorithm for aligningDNA sequences,put.Biol.7(2000)203e214.S.Lucas et al./Plant Physiology and Biochemistry49(2011)346e351351。