最新江苏高考附加题及答案
江苏高考语文真题试题及附加题

2021年普通高等学校招生全国统一考试〔江苏卷〕语文I试题一、语言文字运用〔15分〕1.在下面一段话的空缺处依次填入词语,最恰当的一组是〔3分〕中国古代的儒家经典,莫不是古圣人深思熟虑、的结晶。
如果把经典仅仅当作一场的说教,那你永远进不了圣学大门。
必得躬亲实践,才能切实摇圣人的心得,如此我们的修为才能日有所进。
A.特立独行耳提面命顿悟B.特立独行耳濡目染领悟C.身体力行耳提面命领悟D.身体力行耳濡目染顿悟2.在下面一段文字横线处填入语句,衔接最恰当的一项为哪一项〔3分〕“理性经济人〞,把利己看作人的天性,只追求个人利益的最大化,这是西方经济学的根本假设之一。
,。
,,,,更倾向于暂时获得产品或效劳,或与他人分享产品或效劳。
使用但不占有,是分享经济最简洁的表述。
①反而更多地采取一种合作分享的思维方式②不再注重购置、拥有产品或效劳③但在分享经济这一催化剂的作用下④人们不再把所有权看作获得产品的最正确方式⑤在新兴的互联网平台上⑥这个利己主义的假设发生了变化A.③⑥⑤①④②B.③⑥⑤④②①C.⑤⑥③①④②D.⑤⑥③④②①3.以下诗句与所描绘的古代体育活动,对应全部正确的一项为哪一项〔3分〕①乐手无踪洞箫吹,精灵盘丝任翻飞。
②雾縠云绡妙剪裁,好风相送上瑶台。
③浪设机关何所益,仅存边角未为雄。
④来疑神女从云下,去似姮娥到月边。
A.①下围棋②荡秋千③抖空竹④放风筝B.①抖空竹②荡秋千③下围棋④放风筝C.①下围棋②放风筝③抖空竹④荡秋千D.①抖空竹②放风筝③下围棋④荡秋千4.对下面一段文字主要意思的提炼,最准确的一项为哪一项〔3分〕偏见可以说是思想的放假。
它是没有思想的人的家常日用,是有思想的人的星期天娱乐。
假设我们不能怀挟偏见,随时随地必须得客观公正、正经严肃,那就像造屋只有客厅,没有卧室,又好比在浴室里照镜子还得做出摄影机前的姿态。
学#科网A.没有思想的人往往更容易产生偏见。
B.即使有思想的人也常常会怀挟偏见。
江苏高考数学附加题卷例题及答案

B .附加题部分三、附加题部分(本大题共6小题,其中第21~24题为选做题,请考生在第21~24题中任选2个小题作答,如果多做,则按所选做的前两题记分。
第25和第26题为必做题.解答应写出文字说明,证明过程或演算步骤.)21.(本小题为选做题,满分10分) 如图,AB 是O 的直径,M 为圆上一点,ME AB ⊥,垂足为E ,点C 为O 上任一点,,AC EM 交于点D ,BC 交DE 于点F . 求证:(1)AE ED FE EB =::;(2)2EM ED EF =⋅.22.(本小题为选做题,满分10分)已知点(,)P x y 是圆222x y y +=上的动点. (1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围.23.(本小题为选做题,满分10分)求使等式 2 4 2 0 1 03 50 10 -1M ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦成立的矩阵M .24.(本小题为选做题,满分10分)已知(0,)2x π∈,求函数2sin y x =+的最小值以及取最小值时所对应的x 值.25.(本小题为必做题,满分10分) 如图,直三棱柱111A B C ABC -中,12C C CB CA ===,AC CB ⊥. D E 、分别为棱111C C B C 、的中点.(1)求点E 到平面ADB 的距离; (2)求二面角1E A D B --的平面角的余弦值;(3)在线段AC 上是否存在一点F ,使得EF ⊥平面1A DB ?若存在,确定其位置;若不存在,说明理由.26.(本小题为必做题,满分10分)1,2,3,,9这9个自然数中,任取3个不同的在数.(1)求这3个数中至少有1个是偶数的概率; (2)求这3个数和为18的概率;(3)设ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列及其数学期望E ξ.B .附加题部分 三、附加题部分:21.(选做题)(本小题满分10分) 证明:(1)∵MN AB ⊥,∴90B BFE D ∠=-∠=∠, ∴AED ∆∽FEB ∆,∴EB FE ED AE ::=;(5分)(2)延长ME 与⊙O 交于点N ,由相交弦定理,得EM EN EA EB ⋅=⋅,且EM EN =, ∴2EM EA EB =⋅,由(1) ∴2EM ED EF =⋅。
江苏高三数学20套数学附加题

实战演练·高三数学附加分20套江苏省普通高等学校招生考试高三模拟测试卷(一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,AB 、CD 是半径为1的圆O 的两条弦,它们相交于AB 的中点P ,若PC =98,OP =12,求PD 的长.B. (选修4-2:矩阵与变换)已知曲线C :xy =1,若矩阵M =⎣⎢⎡⎦⎥⎤22-222222对应的变换将曲线C 变为曲线C′,求曲线C′的方程.C. (选修4-4:坐标系与参数方程)在极坐标系中,圆C 的方程为 ρ=2acos θ,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =3t +2,y =4t +2(t 为参数).若直线l 与圆C 相切,求实数a 的值.D. (选修4-5:不等式选讲)已知x 1、x 2、x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 23x 2+x 21x 3≥1.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知点A(1,2)在抛物线Γ:y 2=2px 上.(1) 若△ABC 的三个顶点都在抛物线Γ上,记三边AB 、BC 、CA 所在直线的斜率分别为k 1、k 2、k 3,求1k 1-1k 2+1k 3的值; (2) 若四边形ABCD 的四个顶点都在抛物线Γ上,记四边AB 、BC 、CD 、DA 所在直线的斜率分别为k 1、k 2、k 3、k 4,求1k 1-1k 2+1k 3-1k 4的值.23. 设m 是给定的正整数,有序数组(a 1,a 2,a 3,…,a 2m )中a i =2或-2(1≤i ≤2m).(1) 求满足“对任意的k(k ∈N *,1≤k ≤m),都有a 2k -1a 2k=-1”的有序数组(a 1,a 2,a 3,…,a 2m )的个数A ;(2) 若对任意的k 、l(k 、l ∈N *,1≤k ≤l ≤m),都有| i =2k -12la i |≤4成立,求满足“存在k(k ∈N *,1≤k ≤m),使得a 2k -1a 2k≠-1”的有序数组(a 1,a 2,a 3,…,a 2m )的个数B.江苏省普通高等学校招生考试高三模拟测试卷(二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)在△ABC 中,已知CM 是∠ACB 的平分线,△AMC 的外接圆交BC 于点N ,且BN =2AM.求证:AB =2AC.B. (选修4-2:矩阵与变换)设二阶矩阵A 、B 满足A -1=⎣⎢⎡⎦⎥⎤1 23 4,(BA )-1=⎣⎢⎡⎦⎥⎤1 00 1,求B -1.C. (选修4-4:坐标系与参数方程)在极坐标系中,已知曲线C :ρ=2sin θ,过极点O 的直线l 与曲线C 交于A 、B 两点,且AB =3,求直线l 的方程.D. (选修4-5:不等式选讲)已知x、y、z均为正数,求证:xyz+yzx+zxy≥1x+1y+1z.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,设P1,P2,…,P6为单位圆上逆时针均匀分布的六个点.现任选其中三个不同点构成一个三角形,记该三角形的面积为随机变量S.(1) 求S=32的概率;(2) 求S的分布列及数学期望E(S).23.记1,2,…,n满足下列性质T的排列a1,a2,…,a n的个数为f(n)(n≥2,n∈N*).性质T:排列a1,a2,…,a n中有且只有一个a i>a i+1(i∈{1,2,…,n-1}).(1) 求f(3);(2) 求f(n).江苏省普通高等学校招生考试高三模拟测试卷(三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,MN 为两圆的公共弦,一条直线与两圆及公共弦依次交于A 、B 、C 、D 、E ,求证:AB·CD =BC·DE.B. (选修4-2:矩阵与变换)已知a 、b ∈R ,若M =⎣⎢⎡⎦⎥⎤-1a b 3所对应的变换T M 把直线2x -y =3变换成自身,试求实数a 、b.C. (选修4-4:坐标系与参数方程)在极坐标系中,求点M ⎝⎛⎭⎫2,π6关于直线θ=π4的对称点N 的极坐标,并求MN 的长.D. (选修4-5:不等式选讲)已知x 、y 、z 均为正数.求证:x yz +y zx +z xy ≥1x +1y +1z.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在空间直角坐标系Oxyz 中,正四棱锥PABCD 的侧棱长与底边长都为32,点M 、N 分别在PA 、BD 上,且PM PA =BN BD =13. (1) 求证:MN ⊥AD ;(2) 求MN 与平面PAD 所成角的正弦值.23.设ξ为随机变量,从棱长为1的正方体ABCDA 1B 1C 1D 1的八个顶点中任取四个点,当四点共面时,ξ=0,当四点不共面时,ξ的值为四点组成的四面体的体积.(1) 求概率P(ξ=0);(2) 求ξ的分布列,并求其数学期望E(ξ).江苏省普通高等学校招生考试高三模拟测试卷(四)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A、B、C、D四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,锐角三角形ABC的角平分线AD的延长线交它的外接圆于点E,若△ABC面积S=34AD·AE,求∠BAC的大小.B. (选修4-2:矩阵与变换)求使等式⎣⎢⎡⎦⎥⎤1234=⎣⎢⎡⎦⎥⎤1002M⎣⎢⎡⎦⎥⎤100-1成立的矩阵M.C. (选修4-4:坐标系与参数方程)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O、B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M轨迹的长度.D. (选修4-5:不等式选讲)已知a、b、c均为正数,且a+2b+4c=3.求1a+1+1b+1+1c+1的最小值,并指出取得最小值时a、b、c的值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知过一个凸多边形的不相邻的两个端点的连线段称为该凸多边形的对角线.(1) 分别求出凸四边形、凸五边形、凸六边形的对角线的条数;(2) 猜想凸n边形的对角线条数f(n),并用数学归纳法证明.23.从集合M={1,2,3,4,5,6,7,8,9}中任取三个元素构成子集{a,b,c}.(1) 求a、b、c中任意两数之差的绝对值均不小于2的概率;(2) 记a、b、c三个数中相邻自然数的组数为ξ(如集合{3,4,5}中3和4相邻,4和5相邻,ξ=2),求随机变量ξ的分布列及其数学期望E(ξ).江苏省普通高等学校招生考试高三模拟测试卷(五)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,等腰梯形ABCD 内接于圆O ,AB ∥CD.过点A 作圆O 的切线交CD 的延长线于点E.求证:∠DAE =∠BAC.B. (选修4-2:矩阵与变换)已知直线l :ax -y =0在矩阵A =⎣⎢⎡⎦⎥⎤0 112对应的变换作用下得到直线l′,若直线l′过点(1,1),求实数a 的值.C. (选修4-4:坐标系与参数方程)在极坐标系中,已知点P ⎝⎛⎭⎫23,π6,直线l :ρcos ⎝⎛⎭⎫θ+π4=22,求点P 到直线l 的距离.D. (选修4-5:不等式选讲)已知x≥1,y≥1,求证:x2y+xy2+1≤x2y2+x+y.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在三棱锥PABC中,已知平面PAB⊥平面ABC,AC⊥BC,AC=BC=2a,点O、D分别是AB、PB的中点,PO⊥AB,连结CD.(1) 若PA=2a,求异面直线PA与CD所成角的余弦值的大小;(2) 若二面角APBC的余弦值的大小为55,求PA.23. 设集合A、B是非空集合M的两个不同子集,满足:A不是B的子集,且B也不是A的子集.(1) 若M={a1,a2,a3,a4},直接写出所有不同的有序集合对(A,B)的个数;(2) 若M={a1,a2,a3,…,a n},求所有不同的有序集合对(A,B)的个数.江苏省普通高等学校招生考试高三模拟测试卷(六)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,已知AB 是圆O 的直径,圆O 交BC 于点D ,过点D 作圆O 的切线DE 交AC 于点E ,且DE ⊥AC.求证:AC =2OD.B. (选修4-2:矩阵与变换)已知矩阵⎣⎢⎡⎦⎥⎤x 32 1的一个特征值为4,求另一个特征值及其对应的一个特征向量.C. (选修4-4:坐标系与参数方程)求经过极坐标为O(0,0)、A ⎝⎛⎭⎫6,π2、B ⎝⎛⎭⎫62,π4三点的圆的直角坐标方程.D. (选修4-5:不等式选讲)已知正数a 、b 、c 满足abc =1,求(a +2)(b +2)(c +2)的最小值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知曲线C :y 2=2x -4.(1) 求曲线C 在点A(3,2)处的切线方程; (2) 过原点O 作直线l 与曲线C 交于A 、B 两不同点,求线段AB 的中点M 的轨迹方程.23已知数列{a n }满足a 1=23,a n +1·(1+a n )=1.(1) 试计算a 2,a 3,a 4,a 5的值;(2) 猜想|a n +1-a n |与115⎝⎛⎭⎫25n -1(其中n ∈N *)的大小关系,并证明你的猜想.江苏省普通高等学校招生考试高三模拟测试卷(七)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,AB 是圆O 的一条直径,C 、D 是圆O 上不同于A 、B 的两点,过B 作圆O 的切线与AD 的延长线相交于点M ,AD 与BC 相交于N 点,BN =BM.求证:(1) ∠NBD =∠DBM ;(2) AM 是∠BAC 的角平分线.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤2n m 1的一个特征根为λ=2,它对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤12.(1) 求m 与n 的值;(2) 求A -1.C. (选修4-4:坐标系与参数方程)已知在平面直角坐标系xOy 中,圆M 的参数方程为⎩⎨⎧x =532+2cos θ,y =72+2sin θ(θ为参数),以Ox 轴为极轴,O 为极点建立极坐标系,在该极坐标系下,圆N 是以点⎝⎛⎭⎫3,π3为圆心,且过点⎝⎛⎭⎫2,π2的圆.(1) 求圆M 及圆N 在平面直角坐标系xOy 下的直角坐标方程; (2) 求圆M 上任一点P 与圆N 上任一点Q 之间距离的最小值.D. (选修4-5:不等式选讲)已知:a +b +c =1,a 、b 、c>0.求证: (1) abc ≤127;(2) a 2+b 2+c 2≥3abc.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 已知直线l :y =2x -4与抛物线C :y 2=4x 相交于A 、B 两点,T(t ,0)(t>0且t ≠2)为x 轴上任意一点,连结AT 、BT 并延长与抛物线C 分别相交于A 1、B 1.(1) 设A 1B 1斜率为k ,求证:k·t 为定值;(2) 设直线AB 、A 1B 1与x 轴分别交于M 、N ,令S △ATM =S 1,S △BTM =S 2,S △B 1TN =S 3,S △A 1TN =S 4,若S 1、S 2、S 3、S 4构成等比数列,求t 的值.23如图,在三棱柱ABCA 1B 1C 1中,底面△ABC 为直角三角形,∠ACB =π2,顶点C 1在底面△ABC 内的射影是点B ,且AC =BC =BC 1=3,点T 是平面ABC 1内一点.(1) 若T 是△ABC 1的重心,求直线A 1T 与平面ABC 1所成的角;(2) 是否存在点T ,使TB 1=TC 且平面TA 1C 1⊥平面ACC 1A 1?若存在,求出线段TC 的长度;若不存在,说明理由.江苏省普通高等学校招生考试高三模拟测试卷(八)数学附加分(满分40分,考试时间30分钟)21. (本小题满分10分)已知二阶矩阵M 有特征值λ=5,属于特征值λ=5的一个特征向量是e =⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换为(-2,4),求矩阵M .22. (本小题满分10分)已知直线l 的极坐标方程是ρcos ⎝⎛⎭⎫θ+π4=42,圆M 的参数方程是⎩⎨⎧x =1+2cos θ,y =-1+2sin θ(θ是参数).(1) 将直线的极坐标方程化为普通方程; (2) 求圆上的点到直线l 上点距离的最小值.23. (本小题满分10分)如图,在底面边长为1,侧棱长为2的正四棱柱ABCDA 1B 1C 1D 1中,P 是侧棱CC 1上的一点,CP =m.(1) 若m =1,求异面直线AP 与BD 1所成角的余弦;(2) 是否存在实数m ,使直线AP 与平面AB 1D 1所成角的正弦值是13若存在,请求出m的值;若不存在,请说明理由.24. (本小题满分10分)在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次.在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投三次.某同学在A 处的命中率为p ,在B 处的命中率为q.该同学选择先在A 处投一球,以后都在B 处投,用X 表示该同学投篮训练结束后所得的总分,其分布列为X 0 2 3 4 5 Pp 1p 2p 3p 4p 5(1) 若p =0.25,p 1=0.03,求该同学用上述方式投篮得分是5分的概率;(2) 若该同学在B 处连续投篮3次,投中一次得2分,用Y 表示该同学投篮结束后所得的总分.若p<23q ,试比较E(X)与E(Y)的大小.江苏省普通高等学校招生考试高三模拟测试卷(九)数学附加分(满分40分,考试时间30分钟)21. 【选做题】从A 、B 、C 、D 四小题中选做两小题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,锐角△ABC 的内心为D ,过点A 作直线BD 的垂线,垂足为F ,点E 为内切圆D 与边AC 的切点.若∠C =50°,求∠DEF 的度数.B. (选修4-2:矩阵与变换)设矩阵M =⎣⎢⎡⎦⎥⎤a 00 b (其中a >0,b >0),若曲线C :x 2+y 2=1在矩阵M 所对应的变换作用下得到曲线C′:x 24+y 2=1,求a +b 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l 的参数方程是⎩⎨⎧x =22t ,y =22t +42(t 为参数),以O 为极点,x 轴正半轴为极轴的极坐标系中,圆C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ+π4.由直线l 上的点向圆C 引切线,求切线长的最小值.D. (选修4-5:不等式选讲)已知a 、b 、c 均为正数,求证:a 2+b 2+c 2+⎝⎛⎭⎫1a +1b +1c 2≥6 3.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某品牌汽车4S 店经销A 、B 、C 三种排量的汽车,其中A 、B 、C 三种排量的汽车依次有5、4、3款不同车型.某单位计划购买3辆不同车型的汽车,且购买每款车型等可能.(1) 求该单位购买的3辆汽车均为B 种排量汽车的概率;(2) 记该单位购买的3辆汽车的排量种数为X ,求X 的分布列及数学期望.23. 已知点A(-1,0),F(1,0),动点P 满足AP →·AF →=2|FP →|.(1) 求动点P 的轨迹C 的方程;(2) 在直线l :y =2x +2上取一点Q ,过点Q 作轨迹C 的两条切线,切点分别为M 、N ,问:是否存在点Q ,使得直线MN ∥l ?若存在,求出点Q 的坐标;若不存在,请说明理由.江苏省普通高等学校招生考试高三模拟测试卷(十)数学附加分(满分40分,考试时间30分钟)21. (本小题满分10分)已知矩阵M =⎣⎢⎡⎦⎥⎤2 32 1,求矩阵M 的特征值,并任选择一个特征值,求其对应的特征向量.22.(本小题满分10分)在极坐标系中,已知圆C 的圆心坐标为C ⎝⎛⎭⎫2,π3,半径R =2,试判断圆C 是否通过极点,并求圆C 的极坐标方程.23. (本小题满分10分)如图,已知四棱锥SABCD的底面是边长为4的正方形,顶点S在底面上的射影O落在正方形ABCD内,且O到AB、AD的距离分别是2、1.又P是SC的中点,E是BC上一点,CE=1,SO=3,过O在底面内分别作AB、BC垂线Ox、Oy,分别以Ox、Oy、OS为x、y、z轴建立空间直角坐标系.(1) 求平面PDE的一个法向量;(2) 问在棱SA上是否存在一点Q,使直线BQ∥平面PDE?若存在,请给出点Q在棱SA上的位置;若不存在,请说明理由.24.(本小题满分10分)已知抛物线C:x2=4y,在直线y=-1上任取一点M,过M作抛物线C的两条切线MA、MB.(1) 求证:直线AB过一个定点,并求出这个定点;(2) 当弦AB中点的纵坐标为2时,求△ABM的外接圆的方程.江苏省普通高等学校招生考试高三模拟测试卷(十一)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 为圆的内接三角形,AB =AC ,BD 为圆的弦,且BD ∥AC.过点A 作圆的切线与DB 的延长线交于点E ,AD 与BC 交于点F.(1) 求证:四边形ACBE 为平行四边形; (2) 若AE =6,BD =5,求线段CF 的长.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤ 1 a -1 b 的一个特征值为2,其对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤21.(1) 求矩阵A ;(2) 若A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,求x 、y 的值.C. (选修4-4:坐标系与参数方程)在极坐标系中,求曲线ρ=2cos θ关于直线θ=π4(ρ∈R )对称的曲线的极坐标方程.D. (选修4-5:不等式选讲)已知x、y∈R,且|x+y|≤16,|x-y|≤14,求证:|x+5y|≤1.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 某中学有4位学生申请A、B、C三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.(1) 求恰有2人申请A大学的概率;(2) 求被申请大学的个数X的概率分布列与数学期望E(X).23.设f(n)是定义在N*上的增函数,f(4)=5,且满足:①任意n∈N*,有f(n)∈Z;②任意m、n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).(1) 求f(1),f(2),f(3)的值;(2) 求f(n)的表达式.江苏省普通高等学校招生考试高三模拟测试卷(十二)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 为四边形ABCD 的外接圆,且AB =AD ,E 是CB 延长线上一点,直线EA 与圆O 相切.求证:CD AB =ABBE.B. (选修4-2:矩阵与变换)已知矩阵M =⎣⎢⎡⎦⎥⎤1 22 1,β=⎣⎢⎡⎦⎥⎤17,计算M 6β.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos α,y =2sin α(α为参数),以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系.求:(1) 圆的普通方程; (2) 圆的极坐标方程.D. (选修4-5:不等式选讲)已知函数f(x)=|x +1|+|x -2|-|a 2-2a|.若函数f(x)的图象恒在x 轴上方,求实数a 的取值范围.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 甲、乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为23,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.(1) 求甲同学至少有4次投中的概率;(2) 求乙同学投篮次数ξ的分布列和数学期望.23.设S n =C 0n -C 1n -1+C 2n -2-…+(-1)m C m n -m ,m 、n ∈N *且m <n ,其中当n 为偶数时,m =n2;当n 为奇数时,m =n -12. (1) 证明:当n ∈N *,n ≥2时,S n +1=S n -S n -1;(2) 记S =12 014C 02 014-12 013C 12 013+12 012C 22 012-12 011C 32 011+…-11 007C 1 0071 007,求S 的值.江苏省普通高等学校招生考试高三模拟测试卷(十三)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 内接于圆O ,D 为弦BC 上的一点,过D 作直线DP ∥CA ,交AB 于点E ,交圆O 在A 点处的切线于点P.求证:△PAE ∽△BDE.B. (选修4-2:矩阵与变换)已知二阶矩阵M 有特征值λ=1及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤ 1-1且M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,求矩阵M .C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,设动点P 、Q 都在曲线C :⎩⎪⎨⎪⎧x =1+2cos θ,y =2sin θ(θ为参数)上,且这两点对应的参数分别为θ=α与θ=2α(0<α<2π),设PQ 的中点M 与定点A(1,0)间的距离为d ,求d 的取值范围.D. (选修4-5:不等式选讲)已知:a ≥2,x ∈R .求证:|x -1+a|+|x -a|≥3.【必做题】 第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 在长方体ABCDA 1B 1C 1D 1中,AD =AA 1=12AB ,点E 是棱AB 上一点且AEEB =λ.(1) 证明:D 1E ⊥A 1D ;(2) 若二面角D 1ECD 的大小为π4,求λ的值.23. 设数列{a n }共有n(n ≥3,n ∈N )项,且a 1=a n =1,对每个i(1≤i ≤n -1,i ∈N ),均有a i +1a i ∈⎩⎨⎧⎭⎬⎫12,1,2. (1) 当n =3时,写出满足条件的所有数列{a n }(不必写出过程);(2) 当n =8时,求满足条件的数列{a n }的个数.江苏省普通高等学校招生考试高三模拟测试卷(十四)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)已知圆O 的内接△ABC 中,D 为BC 上一点,且△ADC 为正三角形,点E 为BC 的延长线上一点,AE 为圆O 的切线,求证:CD 2=BD ·EC.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤a k 0 1(k ≠0)的一个特征向量为α=⎣⎢⎡⎦⎥⎤ k -1,A 的逆矩阵A -1对应的变换将点(3,1)变为点(1,1).求实数a 、k 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知M 是椭圆x 24+y 212=1上在第一象限的点,A(2,0)、B(0,23)是椭圆两个顶点,求四边形OAMB 面积的最大值.D. (选修4-5:不等式选讲)已知a 、b 、c ∈R ,a 2+2b 2+3c 2=6,求a +b +c 的最大值.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在正四棱锥PABCD 中,PA =AB =2,点M 、N 分别在线段PA 和BD 上,BN =13BD.(1) 若PM =13PA ,求证:MN ⊥AD ;(2) 若二面角MBDA 的大小为π4,求线段MN 的长度.23. 已知非空有限实数集S 的所有非空子集依次记为S 1,S 2,S 3,…,集合S k 中所有元素的平均值记为b k .将所有b k 组成数组T :b 1,b 2,b 3,…,数组T 中所有数的平均值记为m(T).(1) 若S ={1,2},求m(T);(2) 若S ={a 1,a 2,…,a n }(n ∈N *,n ≥2),求m(T).江苏省普通高等学校招生考试高三模拟测试卷(十五)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,△ABC 中,∠ACB =90°,以边AC 上的点O 为圆心,OA 为半径作圆,与边AB 、AC 分别交于点E 、F ,EC 与圆O 交于点D ,连结AD 并延长交BC 于P ,已知AE =EB =4,AD =5,求AP 的长.B. (选修4-2:矩阵与变换)已知点M(3,-1)绕原点逆时针旋转90°后,且在矩阵⎣⎢⎡⎦⎥⎤a 02b 对应的变换作用下,得到点N(3,5),求a 、b 的值.C. (选修4-4:坐标系与参数方程)如图,在极坐标系中,设极径为ρ(ρ>0),极角为θ(0≤θ<2π).圆A 的极坐标方程为ρ=2cos θ,点C 在极轴的上方,∠AOC =π6.△OPQ 是以OQ 为斜边的等腰直角三角形,若C为OP 的中点,求点Q 的极坐标.D. (选修4-5:不等式选讲)已知不等式|a-2|≤x2+2y2+3z2对满足x+y+z=1的一切实数x、y、z都成立,求实数a的取值范围.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在空间直角坐标系Axyz中,已知斜四棱柱ABCDA1B1C1D1的底面是边长为3的正方形,点B、D、B1分别在x、y、z轴上,B1A=3,P是侧棱B1B上的一点,BP=2PB1.(1) 写出点C1、P、D1的坐标;(2) 设直线C1E⊥平面D1PC,E在平面ABCD内,求点E的坐标.23.如图,圆周上有n个固定点,分别为A1,A2,…,A n(n∈N*,n≥2),在每一个点上分别标上1,2,3中的某一个数字,但相邻的两个数字不相同,记所有的标法总数为a n.(1) 写出a2,a3,a4的值;(2) 写出a n的表达式,并用数学归纳法证明.江苏省普通高等学校招生考试高三模拟测试卷(十六)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 的两弦AB 和CD 交于点E ,EF ∥CB ,EF 交AD 的延长线于点F.求证:△DEF ∽△EAF.B. (选修4-2:矩阵与变换)若矩阵M =⎣⎢⎡⎦⎥⎤a 0-1 2把直线l :x +y -2=0变换为另一条直线l′:x +y -4=0,试求实数a 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,直线l 经过点P(0,1),曲线C 的方程为x 2+y 2-2x =0,若直线l 与曲线C 相交于A 、B 两点,求PA·PB 的值.D. (选修4-5:不等式选讲)已知x >0,y >0,a ∈R ,b ∈R .求证:⎝ ⎛⎭⎪⎫ax +by x +y 2≤a 2x +b 2y x +y .【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 在平面直角坐标系xOy 中,已知定点F(1,0),点P 在y 轴上运动,点M 在x 轴上,点N 为平面内的动点,且满足PM →·PF →=0,PM →+PN →=0.(1) 求动点N 的轨迹C 的方程;(2) 设点Q 是直线l :x =-1上任意一点,过点Q 作轨迹C 的两条切线QS 、QT ,切点分别为S 、T ,设切线QS 、QT 的斜率分别为k 1、k 2,直线QF 的斜率为k 0,求证:k 1+k 2=2k 0.23.各项均为正数的数列{x n }对一切n ∈N *均满足x n +1x n +1<2.证明:(1) x n <x n +1; (2) 1-1n<x n <1.江苏省普通高等学校招生考试高三模拟测试卷(十七)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修41:几何证明选讲)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC =CD ,过C 作圆O 的切线交AD 于E.若AB =10,ED =3,求BC 的长.B. (选修42:矩阵与变换) 已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤2301对应的变换作用下变为直线l′:x +by =1.(1) 求实数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.C. (选修44:坐标系与参数方程)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cost ,y =2sint (t 为参数),曲线C 在点(1,3)处的切线为l.以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求l 的极坐标方程.D. (选修45:不等式选讲)设x 、y 、z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z =14,求证:x +y +z =3147.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 一批产品需要进行质量检验,质检部门规定的检验方案是:先从这批产品中任取3件作检验,若3件产品都是合格品,则通过检验;若有2件产品是合格品,则再从这批产品中任取1件作检验,这1件产品是合格品才能通过检验,否则不能通过检验,也不再抽检;若少于2件是合格品,则不能通过检验,也不再抽检.假设这批产品的合格率为80%,且各件产品是否为合格品相互独立.(1) 求这批产品通过检验的概率;(2) 已知每件产品检验费为125元,并且所抽取的产品都要检验,记这批产品的检验费为ξ元,求ξ的概率分布及数学期望.23.已知数列{a n }和{b n }的通项公式分别为a n =3n -19,b n =2n .将{a n }与{b n }中的公共项按照从小到大的顺序排列构成一个新数列记为{c n }.(1) 试写出c 1,c 2,c 3,c 4的值,并由此归纳数列{c n }的通项公式; (2) 证明你在(1)所猜想的结论.江苏省普通高等学校招生考试高三模拟测试卷(十八)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,圆O 的直径AB 的延长线与弦CD 的延长线相交于点P ,E 为圆O 上一点,AE =AC ,DE 交AB 于点F.求证:△PDF ∽△POC.B. (选修4-2:矩阵与变换)已知矩阵A =⎣⎢⎡⎦⎥⎤1 2c d (c 、d 为实数).若矩阵A 属于特征值2,3的一个特征向量分别为⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤11,求矩阵A 的逆矩阵A -1.C. (选修4-4:坐标系与参数方程) 在极坐标系中,已知圆A 的圆心为(4,0),半径为4,点M 为圆A 上异于极点O 的动点,求弦OM 中点的轨迹的极坐标方程.D. (选修4-5:不等式选讲)已知x、y、z∈R,且x+2y+3z+8=0.求证:(x-1)2+(y+2)2+(z-3)2≥14.【必做题】第22题、第23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22. 如图,在直三棱柱ABCA1B1C1中,已知CA=CB=1,AA1=2,∠BCA=90°.(1) 求异面直线BA1与CB1夹角的余弦值;(2) 求二面角BAB1C平面角的余弦值.23.在数列{a n}中,已知a1=20,a2=30,a n+1=3a n-a n-1(n∈N*,n≥2).(1) 当n=2,3时,分别求a2n-a n-1a n+1的值,并判断a2n-a n-1a n+1(n≥2)是否为定值,然后给出证明;(2) 求出所有的正整数n,使得5a n+1a n+1为完全平方数.江苏省普通高等学校招生考试高三模拟测试卷(十九)数学附加分(满分40分,考试时间30分钟)21. 【选做题】 在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.若多做,则按作答的前两题计分.解答时应写出必要的文字说明、证明过程或演算步骤.A. (选修4-1:几何证明选讲)如图,设AB 、CD 是圆O 的两条弦,直线AB 是线段CD 的垂直平分线.已知AB =6,CD =25,求线段AC 的长度.B. (选修4-2:矩阵与变换)设矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32,求ad -bc 的值.C. (选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.设点A 、B 分别在曲线C 1:⎩⎪⎨⎪⎧x =3+cos θ,y =4+sin θ(θ为参数)和曲线C 2:ρ=1上,求线段AB 的最小值.。
江苏省新高考语文试卷答案(含答案)

江苏省新高考语文试卷答案(含答案)下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!专业课原理概述部分一、选择题1. 下列哪个作品是江苏省新高考语文试卷中的必读篇目?A. 《红楼梦》B. 《西游记》C. 《三国演义》D. 《水浒传》答案:A2. 以下哪个诗人不属于唐代?A. 杜甫B. 白居易C. 李白D. 陆游答案:D3. 下列哪个成语出自《论语》?A. 温故知新B. 轻车熟路C. 一鸣惊人D. 画龙点睛答案:A4. 以下哪个选项不是《红楼梦》中的主要人物?A. 贾宝玉B. 林黛玉C. 薛宝钗D. 王熙凤答案:D5. 下列哪个选项是正确的汉字读音?A. 拮据(jié jū)B. 横财(héng cái)C. 横幅(héng fú)D. 横祸(héng huò)答案:A二、判断题1. 《红楼梦》的作者是曹雪芹。
江苏高考语文文学常识附加题部分(高考必备) (校)

文学常识一、文学家及作品1.先秦时代:先秦散文分为:诸子散文、历史散文。
《诗经》(中国最早的诗歌总集,305篇,包括风、雅、颂三部分,主要手法是赋、比、兴,雅包含《大雅》、《小雅》)。
屈原《楚辞》(屈原创作了骚体,宋玉;历代把“诗经”和“楚辞”合称“风骚”)。
我国第一部编年体史书《春秋》;我国第一部叙事完备的编年体史书《左传》春秋三传:《左传》《公羊传》《谷梁传》儒家《论语》(孔丘)、《孟子》(孟轲)、《荀子》(荀况)——克己复礼,待民以仁。
道家《庄子》(庄周)、《老子》(老聃)——追求逍遥隐逸,无为而治,不言之教。
墨家《墨子》(墨翟)——强本节用,兼爱非攻。
兵家《孙子》(孙武)——法为有度。
法家《韩非子》(韩非)——严刑峻法。
四书:《论语》、《孟子》、《大学》、《中庸》。
五经:诗、书、礼、易、春秋。
2.两汉时代司马迁《史记》(我国最早的纪传体通史,分10表、8书、12本纪、30世家、70列传,共130篇。
记载了从黄帝到汉武帝太初年间近3000年的历史。
)西汉刘向《战国策》(国别体)。
班固《汉书》(纪传体断代史)归为前四史前四史:《史记》(司马迁)、《汉书》(班固)、《三国志》(陈寿)、《后汉书》(范晔)汉赋:司马相如《子虚赋》《上林赋》张衡《二京赋》班固《两都赋》贾谊(贾长沙)《过秦论》《论积贮疏》等政论散文晁错《论贵粟疏》3.魏晋南北朝时代诸葛亮:代表作《出师表》(体现忠心),《隆中对》(设计政治蓝图)。
建安文学:公元196-220年是汉献帝建安时期,建安文学指汉末至魏初以建安时期为中心阶段的文学。
曹操《短歌行》、《步出夏门行》(用人思想:唯才是举,不拘一格)曹植《白马篇》、《洛神赋》曹丕《燕歌行》陶渊明和他的田园诗(《桃花源诗并记》、《饮酒》、《归园田居》)、《归去来兮辞》等。
谢灵运和他的山水诗《登池上楼》。
洛阳纸贵:西晋左思《三都赋》竹林七贤有:阮籍、嵇康、山涛、向秀、刘伶、阮咸和王戎。
历年江苏高考语文试卷附加题

历年江苏高考语文试卷附加题附加题就是在不影响总分的前题下加上去的题,可写可不写,答对了有额外加分,答错了不扣分也不加分。
江苏高考语文卷一般都有一些附加题。
以下是店铺为您整理的历年江苏高考语文试卷附加题,仅供参考!历年江苏高考语文试卷附加题一一、阅读材料,1.用斜线(/)给下面的文言文断句(限6处)。
班固论司马迁为《史记》:是非颇谬于圣人论大道则先黄老而后六经序游侠则退处士而进奸雄述货殖则崇势利而羞贫贱此其弊也予按此正是迁之微意。
(选自沈括《梦溪笔谈》,有删节)2.“黄老”和“六经”分别指先秦时期的哪两个学派?3.写出这段文字提到的《史记》中的两个篇名。
二、名著阅读题(15分)4.下列有关名著的说明,不正确的两项是A.郭沫若创作的《凤凰涅架》和《女神之再生》,分别借用了我国女娲炼石补天和天方国古代的神鸟“菲尼克司”从死灰中更生的神话材料。
B.巴金的《家》写了一个封建大家庭的历史,写它必然地走上崩溃的路,走到了它自己亲手掘成的墓穴。
其中写了一个幼稚而大胆的旧礼教的叛徒——觉慧。
C.《三国演义》写赤壁之战中,曹操败走华容道,脱险后到达南郡,突然大哭,说如果荀彧在,决不会遭此大败。
这是曹操在痛骂诸谋士无能。
D.哈姆莱特是文艺复兴时期人文主义者的典型形象,他赞美人类“是一件多么了不起的杰作!”“在行为上多么像—个天使!在智慧上多么像—个天神!宇宙的精华!万物的灵长!”E.巴尔扎克笔下的老葛朗台,除了金钱,对任何人都没有感情,他破例为病危的妻子花钱求医,也是因为妻子一死,她名下的财产就要分给女儿。
5.简答题(1)夏瑜、九斤老太、闰土、单四嫂子、陈土成这些人物分别出于鲁迅小说集《呐喊》中的哪篇作品?(2)《红楼梦》中写道:“都道是金玉良缘,俺只念木石前盟。
”请说说“金玉良缘”、“木石前盟”的含义。
三、材料概括分析题留存至今的古镇,是传统文化不可多得的活化石。
古镇大多有独特的建筑风貌、街巷格局和有关的民间传说。
江苏高考语文试卷附加题及答案

江苏高考语文试卷附加题及答案会一题做一题,一题决定命运。
祝高考成功!下面是店铺为大家推荐的江苏高考语文试卷附加题,仅供大家参考!江苏高考语文试卷附加题一、阅读材料,完成20~23题。
(10分)今日读《列女传》蔡琰二诗,其词明白感慨,颇类世所传木兰诗,东京无此格也。
建安七子,犹涵养圭角,不尽发见,况伯喈女乎?又琰之流离必在父死之后董卓既诛伯喈乃遇祸。
今此诗乃云为董卓所驱虏入胡,尤知其非真也。
盖拟作者疏略,而范晔荒浅,连载之本传.可以一笑也。
(节选自苏轼《题蔡琰传》)20.用斜线“/”给上面文青文中的面线部分断句。
(限3处)(3分)21.作为地名,文中“东京”即今天的▲ (限填城市名)(1分)22.依据材料,其中的《列女传》出自(3分)A.《史记》B.《汉书》C.《后汉书》 D《宋史》23.苏轼从哪几方面判断蔡琰二诗为拟作?请简要概括。
(不超过20个字)(3分)二、名著阅读题(15分)24.下列对有关名著的说明,不正确的两项是f5分)A.《三国演义》中,徐庶之母大骂徐庶不识刘备之伪,“玷辱祖宗,空生于天地间”,骂完自缢而死,其行动具有鲜明的拥曹反刘的倾向。
B..茅盾《子夜》丰要描写光怪陆离、大开大阖的都市生活场景,仅第四章写到双桥镇的农民暴动,所以此章游离了整部小说。
C.《边城》由今年即将到来的端午节写起,回溯之前的两个端午节,因而整部小说都洋溢着赛龙舟、捉鸭子的狂欢气氛。
D.《哈姆莱特》采用多线索布局,哈姆莱特、雷欧提斯和福丁布拉斯三条线索安排得繁简得当、缓急有序,全剧气势跌宕起伏。
E.泰戈尔《飞鸟集》歌颂了自然、生命与爱情,诗句如格言般短小精致,具有浓郁的抒情性和隽永的哲理性,语言清新,意象美妙。
25.简答题(10分)(1)《红楼梦》不同的版本中,凹晶馆联诗一回,黛玉的名句,一为“冷月葬花魂”,一为“冷月葬诗魂”。
请从小说情节和主题两个方面,分别说明“葬花魂”与“葬诗魂”的依据。
(6分)(2)鲁迅《故乡》的结尾处,“我想到希望,忽然害怕起来了”,因为希望不过是“自己手制的偶像”。
江苏高考语文近五年附加题(含答案)

第一套(2010年)一、阅读材料,完成19~21题。
(10分)19.用斜线“/”给下面画线的文言文断句。
(限6处)(6分)欧阳修尝慨《七略》四部,目存书亡,以谓其人之不幸,盖伤文章之不足恃也……然读《史》《汉》之书,而察徐广、裴驷、服虔、应劭诸家之注释,其间不得迁固之意者,十常四五焉。
以专门之攻习犹未达古人之精微况泛览所及爱憎由己耶夫不传者有部目空存之慨其传者,又有推求失旨之病,与爱憎不齐之数。
(节选自《文史通义》) 20.“四部”是我国古代图书的分类名称,通常指哪四类?(2分)答:21.《文史通义》作者是清代的哪位学者?(2分)答:二、名著阅读题(15分)22.下列有关名著的说明,不正确的两项是(5分)A.《阿Q正传》中,阿Q为了革命,用砖砸开了静修庵,砸了庵里“皇帝万岁万万岁”的龙牌,并顺手拿走了观音娘娘座前的宣德炉。
B.《女神•湘累》中,屈原在洞庭湖上说:“我效法造化底精神,我自由创造,自由地表现我自己。
”作者借此表现了五四个性解放精神。
C.在《边城》的结尾部分,傩送出走了,白塔倾圮了,老船夫也死了,老马兵觉得自己却成了翠翠“这孤雏的唯一靠山唯一信托人”。
D.《哈姆莱特》中所写的哈姆莱特、雷欧提斯和小福丁布拉斯三人复仇的举动,既是为了各自故去的父亲,也是为了争得骑士荣誉。
E.《红楼梦》中贾宝玉梦游太虚幻境所见判词:“子系中山狼,得志便猖狂。
金闺花柳质,一载赴黄粱。
”其中暗示了迎春的悲惨命运。
23.简答题(10分)(1)《老人与海》中,圣地亚哥说:“一个人可以被毁灭,但不能给打败。
”结合人物形象,说说你对这句话的理解。
(4分)答:(2)《三国演义》“官渡之战”中“许攸投奔曹操”这一情节,表现了曹操什么样的性格特征? (6分)答:三、材料概括分析题(15分)在健康的城市化进程中,城市不能以剥夺农村为手段采发展自己。
因为城市并不必然代表先进,农村更不意味着落后。
工业区边界的推进和农田的退缩并非天然正当的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
语文Ⅱ卷(附加题)
一、阅读材料,完成21~23题。
(10分)
宋政和间官局编书,诸臣之文,独《临川集》得预其列。
靖康之祸,官书散失。
私集竟无完善之本,弗如欧集、曾集、老苏大苏集之盛行于时也。
公绝类之英,间气所生。
同时文人,虽或意见素异,尚且推崇公文,口许心服,每极其至。
而后来卑陋之士不满其相业因并废其文此公生平所谓流俗胡于公死后而犹然也?
(节选自吴澄《临川王文公集>业序》)
21.用斜线“/”给上面文言文中的画线部分断句。
(限4处)(4分)
22.文中的老苏、大苏是指__________、__________。
(2分)
23.根据材料,概括王安石《临川集》在不同时期的命运。
(4分)
二、名著阅读题(15分)
24.下列对有关名著的说明,不正确的两项是:(5分)
A.《三国演义》中,曹操青梅煮酒,品评天下人物,认为当世只有自己和刘备可称英雄,刘备听后大喜,于是有了夺取天下的雄心。
B.《边城》里,第一个端午,翠翠在河边等爷爷,突然一阵害怕:“假若爷爷死了?”后来,爷爷在雷雨的夜里死去。
死亡的阴影让小说笼上一层淡淡的忧伤。
C.《子夜》前三章用吴老太爷之死把军、政、工、商、学等各界人物聚拢到一处,为小说全景式反映中国社会面貌、剖析中国社会性质奠定了基础。
D.《哈姆莱特》中,克劳狄斯送哈姆莱特赴英国,实际是要借刀杀人,后来哈姆莱特识破了克劳狄斯的奸计,撕毁了给英王的国书,才得以脱险。
E.《老人与海》中,圣地亚哥捕鱼时体会到大马林鱼仿佛也是他的朋友和兄弟,不过为了渔夫的尊严必须杀死它。
这一矛盾具有扣人心弦的张力。
25.简答题(10分)
⑴《红楼梦》第四十五回“金兰契互剖金兰语,风雨夕闷制风雨词”中,黛玉对宝钗说:“我最是个多心的人,只当你心里藏奸……往日竟是我错了,实在误到如今。
”请说明黛玉对宝钗的认识发生变化的原因。
(6分)
⑵《阿Q正传》中,未庄谣传革命党个个白盔白甲,“穿着崇正皇帝的素”;《祝福》里,鲁四老爷一见“我”就大骂其新党,但“他所骂的还是康有为”。
这两个细节共同传达出鲁迅什么样的观点?(4分)
三、材料概括分析题(15分)
阅读材料,完成26~28题。
语言不够“纯净”,据说是新诗的通病。
然而将不同的因素冶于一炉,而使之产生浑然一体的美感效果,是诗歌艺术的可贵之处。
我们并不认为诗和说话居于平等的地位。
诗是经验的艺术化的表现,不是日常会话的达意。
其次,文言在日常生活上虽已僵硬难用,但在艺术品中,经诗人的巧妙安排,却能“起死回生”,加强美感。
反之,如果欠缺艺术的生命,则尽管一首新诗通篇不用一典,不掉一文,那种“纯净”也只是“一贫如洗”的代名词罢了。
说坦白些,在文学的国度中,新诗人们是带点贵族气质的。
我们宁愿自己的作品成为滞销的奢侈品,也不愿它成为畅销的牙膏,人人皆可入口,而转瞬又必吐出的牙膏。
一旦超越了起码的“纯净”之后,我们不难发现,文言宜于表现庄重、优雅、含蓄而曲折的情操,而白话则明快、直率、富现实感。
许多意境,白话表现起来总嫌太直接、太噜苏,改用文言则可保持恰到好处的距离。
艺术当然也追求和谐,但那应该是成品的,不是原料的和谐。
愈能使不同的因素化合成和谐的整体,愈能以不类为类,愈能显示作者艺术的精湛。
愿“纯净主义”的信徒们多想一想。
(节选自余光中《谈新诗的语言》,有删改)
26.请分别解释文中“滞销的奢侈品”与“畅销的牙膏”的含意。
(6分)
27.依据材料,概括“纯净主义”的信条。
(3分)
28.作者反对“纯净主义”的理由有哪些?(6分)
【答案】
21而后来卑陋之士/不满其相业/因并废其文/此公生平所谓流俗/胡于公死后而犹然也?
【解析】由“卑陋之士”“不满”“废”“所谓”“胡……?”可断句。
22(苏洵)(苏轼)
23政和间,列于官书;靖康后,不再盛行。
24(A、D)A项刘备听后并未大喜,而是吃了一惊,手中所执匙箸,不觉落于地下。
表明曹操言中刘备心事,但刘备并未流露出大喜的心迹,也不是就有了夺取天下的雄心。
D项不是撕毁了给英王的国书,而是哈姆雷特察觉后,在半路调换了密信,反而让英国国王杀死克劳迪斯的这两个特使,自己则跳上海盗船,回到丹麦。
25①黛玉在行酒令时“失于检点”,宝钗私下提醒;
②宝钗教导黛玉要做女性“分内的事”,“看杂书不好”;
③宝钗关心黛玉的身体健康。
①民众愚昧、落伍,无法理解新思潮及其运动的意义;
②新思潮及其运动脆弱、不彻底,无力走入民众的世界。
26滞销的奢侈品:不被大多数人欣赏却有很高艺术价值的作品。
畅销的牙膏:一时很受欢迎但艺术价值很低的作品。
27在新诗写作中,只应使用纯净的白话,而不应掺杂文言。
28诗不是日常会话的达意;文言使用得好,可以增强美感;文言与白话各有优势;艺术的精湛贵在调和不同的语言因素。