波速测试

合集下载

波速测试

波速测试

( 1 ) A 、 B 检波器的距离一定要小于 1 个波长的距离。这是因 为,如果设置的距离过大,就可能会出现相位差的误判。但检波器 间的间距又不应太小,否则会影响相位差的计算精度; (2)为提高确定相位差的精度,应尽量选取小的采样间隔;
( 3 )为保证波峰的可靠对比和压制干扰波,需要时可将正弦 激振波加以调制; 13
式中 m——波速比,m=vP/vs。
17
5.3 试验成果的整理分析
1. 单孔法
确定压缩波或剪切波从振源到达测点的时间时,应符合下 列规定:
(1)确定压缩波的时间,应采用竖向传感器记录的波形; (2)确定剪切波的时间,应采用水平传感器记录的波形。 由于三分量检波器中有两个水平检波器,可得到两张水平分量 记录,应选最佳接收的记录进行整理。 压缩波或剪切波从振源到达测点的时间,应按下列公式进 行斜距校正: T=KTL
岩土工程测试与监测
第5章 波速试验
1
第5章 内
5.1 试验设备和方法 5.2 基本测试原理

5.3 试验成果的整理分析 5.4 试验成果的应用 讨 论
2
5.1 试验设备和方法
5.1.1 试验设备 试验设备一般包含激振系统、信号接收系统(传感器)和信
号处理系统。
测试方法不同,使用的仪器设备也各不相同。 5.1.2 测试方法
s
VR
s
(5-19) (5-20)
0.87 1.12 1
23
5.4 试验成果的工程应用
根据岩土体中的弹性波波速,可以判定场地土的物理力学
性质和地基承载力,评价场地土的液化可能性,计算场地土的 卓越周期,检测地基处理的效果。
24
思 考 题
1.单孔法、跨孔法和面波法各自采用什么方式激振?

波速测试在岩土工程勘察中的作用分析

波速测试在岩土工程勘察中的作用分析

波速测试在岩土工程勘察中的作用分析岩土工程勘察是指对地下岩土地质情况进行调查和分析,以确定地下岩土的性质和特性,为工程设计、施工和运营提供科学依据的一项工作。

而波速测试则是岩土工程勘察中的重要内容之一,通过对岩土体的波速进行测试,可以获取关于岩土体力学性质的重要信息,对于工程设计和施工至关重要。

本文将对波速测试在岩土工程勘察中的作用进行分析。

一、波速测试的原理波速测试是指通过在地下岩土中传播声波或弹性波,测定波的传播速度来判断岩土体的力学性质。

在地下工程勘察中,主要采用的波速测试方法有地震波法、声波法和超声波法等。

地震波法是一种利用地震波在地下介质中传播的速度来反映地下介质性质的一种探测方法,可以用于探测基础岩层、地下水位、构造断裂和地质构造等情况。

声波法则是通过声波在地下介质中传播的特性来判断地下介质的物理性质和力学性质,对于研究地下水位、地质构造和土壤类型等方面有着重要的作用。

超声波法则是利用高频声波在岩土体中传播的速度和衰减特性来判断岩土体的质地、密实度和抗压强度等特性。

1. 判断地下岩土的性质通过波速测试可以精确地获取地下岩土体的波速信息,根据声波或地震波在不同岩土体中传播的速度和衰减特性,可以判断地下岩土体的结构、密实度、水分含量和力学性质等特性。

这些信息对于地下岩土体的性质评价和工程设计具有重要的指导意义。

2. 评估地下水位和地质构造波速测试可以用来评估地下水位、地下断裂和地质构造等情况。

因为地下水和地下断裂会对波速的传播造成影响,通过观测波速的变化可以判断出地下水位和地下构造的情况,对于工程设计和施工有着重要的指导作用。

3. 预测地下岩层的稳定性通过波速测试,可以分析地下岩层的稳定性。

因为岩土体的稳定性与其密实度、结构特性和力学性质有关,而这些信息可以通过波速测试来获取。

通过分析波速的变化和衰减特性,可以对地下岩层的稳定性进行合理的预测和评估,为地下工程的施工和运营提供重要的参考。

波速测试在工程勘察中的应用研究

波速测试在工程勘察中的应用研究

波速测试在工程勘察中的应用研究1引言近年来,地铁工程勘察中广泛采用波速测试试验用来检测土层弹性波速,弹性波又分为压缩波(P波)和剪切波(S波)。

试验方法有单孔法、跨孔法等,在实际工作中,我们常采用单孔法进行测试,其具有测试深度深、激振形式便捷、测试仪器较简单、工作效率较高、测试成本低的特点。

鉴于设备的便携性和可操作性,现今多采用孔中自激自收法进行测试。

其设备采用悬挂式波速测井仪,仪器由主机、井中悬挂式探头及连接电缆、信号电缆、触发电缆等组成。

2、波速测试原理及计算2.1波速测试原理由于各土层的土质颗粒度、孔隙度以及密度等物理性质存有差异,弹性波在各地层中传播的速度也有所不同。

弹性波的传播实质上是应力和应变在介质中的传播,其特性决定于物质受力状态和传播介质的物理力学性质,如弹性模量、剪切模量和泊松比等。

据弹性波理论,波在地层介质中传播时,波速与岩土的物理力学参数有下列关系:Ed=ρV²(3V²-4V²) V²- V²;Gd=ρV²;µ= V²-2V² 2V²-2V²其中V =横波波速(m/s);V =纵波波速(m/s);ρ=密度(t/m³);Ed=动弹性模量(kPa);Gd=动剪切摸量(kPa);µ=动泊松比。

单孔波速测试技术就是建立在上述理论基础上的一种波速测试方法。

在钻孔中以井液作为耦合剂,用电磁震源垂直于井壁作用一瞬时冲击力,就在井壁地层中产生两种类型质点振动,一种是质点振动方向垂直于井壁,沿井壁方向传播,称为S波(剪切波,横波);另一种是质点振动方向与传播方向相同称为P波(压缩波,纵波)。

检波器接收S波的振动信号并转换成电信号,然后传输到计算机,计算机对信号进行数据处理后采用两道互相关分析方法,自动计算S波在两道检波器间传播的时间差,从而计算出两道间的S波传播速度。

波速测试

波速测试

波速测试(wave velocity testing)观测、研究地震波在岩土中的传播速度的工程地震勘探方法。

人工激发的地震波(纵波、横波和面波)在岩土中的传播速度与岩土的形变有直接关系,传播速度的大小,特别是横波速度的大小反映了岩土的状态、结构和物理力学性质。

只要测得岩土的纵波速度v p、横波速度v s和密度ρ值,即可计算岩土的动弹性模量Ed、动剪切模量Gd、动压缩模量Kd和动泊松比舶μd不少学者还用v p,v s值与岩土的主要物理力学参数建立相关关系,因而,可以通过波速测试间接得到这些参数;或直接用岩土的波速值来评价岩土的物理力学性质和强度,评价地基加固效果。

20世纪80年代末,工程地球物理勘探界利用先进的地震波层析成像技术对岩体进行全面细致的质量评价,圈定地质异常体取得显著效果,为波速层析成像技术开拓了新的前景。

波速测试常用的方法有:地面直达(折射)波法、单孔法、跨孔法和瑞雷波法。

(1)地面直达(折射)波法。

在地面、探槽、坑道等岩土露头上,激发、观测直达(折射)波中的纵、横波在岩土中的传播速度。

观测方法有:剖面法和透视法。

利用传播时间和距离计算岩土体的纵、横波速度。

横波激发和接收是测试结果质量的关键,即:横波激发方向应与横波传播方向垂直,接收横波检波器的最大灵敏度轴与质点振动的方向一致。

直达波法使用的仪器设备有大锤或其他震源、检波器、浅层地震仪(见工程地球物理勘探仪器)。

(2)单孔法。

可以在钻孔附近地面上用叩板法激振,孔内不同深度处用三分量检波器接收纵波和横波;也可以在孔内不同深度处用爆炸或井下剪切波锤激振,在钻孔附近地面用三分量检波器接收纵波和横波。

用传播时间与路程之比计算各层纵波和横波速度。

单孔法使用的仪器设备有井下剪切波锤或其他激振设备、三分量检波器和浅层地震仪。

(3)跨孔法。

用井下剪切波锤或其他激振设备在一孔内激发,用井下三分量检波器在另一孔或多孔内接收纵波和横波。

用孔间距与到达时间之比计算地层的纵波和横波速度。

波速测试

波速测试

摘要一般来说,波速测试可原位测定压缩波(P波)、剪切波(S波)和瑞雷面波(R波)在岩(土)体中的传播速度,从而避免了室内测试所带来的误差,它能有效地解决许多地质问题。

波速测试技术是地震勘探方法之一,也是地球物理勘探技术的一个重要分支,目前已广泛应用于水利水电工程、石油工程、铁路工程、冶金工程、工业与民用建筑等众多岩土工程地质勘察领域,取得了良好的应用效果作为地基土动力特性测试项目之一,自80年代以来广泛用于重大工程、高层建筑等一级建筑及有特殊要求的二级建筑中。

通过波速测试可获得岩土体的弹性波速,为工程设计提供所需的动弹性力学参数、划分建筑物场地类别、评价地震效应、进行场地地震反应分析和地震破坏潜势分析等。

文中简述了面波法与单孔法等波速测试方法的工作原理、现场施测技术以及数据处理和资料分析过程。

以工程实例说明了波速测试技术在岩土工程勘察设计中的应用和及其效果。

关键词:弹性波波速测试单孔法跨孔法面波法岩土动力参数第一章绪论波速测试技术是地震勘探方法之一,也是地球物理勘探技术的一个重要分支,目前已广泛应用于水利水电工程、石油工程、铁路工程、冶金工程、工业与民用建筑等众多岩土工程地质勘察领域,取得了良好的应用效果。

如果回顾一下历史,可以发现随着弹性波理论研究的不断发展,波速测试技术不断得到完善,其领域也在不断拓宽。

1821年,C.-L.-M.-H.纳维建立了弹性体平衡和运动的一般方程,弹性波的研究随之展开。

1829年,S.-D.泊松在研究弹性介质中波的传播问题时,发现在远离波源处有纵波和横波两种类型的波。

到1845年,弹性波传播的数学理论已经发展成熟,G.G.斯托克斯证明纵波是胀缩波,1849年又证明横波是畸变波。

后来学者们对拉压、扭转和弯曲三种类型的无限长弹性杆中弹性波的传播问题进行了研究,并得到了精确解。

瑞利、H.兰姆等人给出了无限平板中的波动方程的解。

兰姆在1904年建立了半无限弹性体表面和内部由于扰动线源和点源的作用而引起的波动问题的理论,并得到了问题的解,故该问题称为兰姆问题。

波速测试在岩土工程勘察中的作用分析

波速测试在岩土工程勘察中的作用分析

波速测试在岩土工程勘察中的作用分析波速测试是岩土工程勘察中常用的一种测试方法,通过测定岩土中的波速,可以获得岩土的力学性质和质量状况等信息。

以下是对波速测试在岩土工程勘察中的作用进行分析。

1. 获取岩土的力学性质:波速测试能够测量出岩土中纵波和横波的传播速度,进而可以计算出其弹性模量、剪切模量、泊松比等力学参数。

这些参数是评价岩土力学性质和变形特性的重要参数,可以为工程设计、施工过程中的力学计算和结构分析提供有力的依据。

2. 评估岩土的质量状况:波速测试是快速、非破坏性的测试方法,可以对岩土的质量状况进行初步评估。

通过测定波速数据,可以判断岩土的均质性、饱和度、孔隙度等性质,进而了解其抗剪强度、抗压强度以及抗渗性等性能。

通过评估岩土的质量状况,可以为工程设计提供合理的参数,帮助工程师制定合理的施工方案和措施。

3. 预测工程地质风险:波速测试可以帮助工程师判断岩土的结构特征和变形特性,从而预测地质灾害风险,如滑坡、地面沉降、地震等。

通过测定多点波速,可以揭示地下结构和岩土体的变异性和不均匀性,帮助工程师评估风险和制定相应的防范措施。

4. 指导地基处理设计:波速测试能够提供岩土层的分层情况和岩土的物理性质,对地基处理设计非常有指导意义。

通过测定波速数据,可以确定地基中存在的各种地质层,包括黏性土层、砂层、卵石层等。

波速测试可以揭示地下水位和含水层的分布情况,为地基处理设计提供重要依据。

5. 监测工程施工质量:波速测试可以在工程施工过程中进行现场监测,及时发现问题和隐患。

通过比对施工前后的波速数据变化,可以判断施工质量是否合格,是否存在地下结构的破坏或变形。

及时发现问题并采取相应措施,可以避免工程质量事故的发生,保证工程的安全和稳定。

波速测试在岩土工程勘察中起着重要的作用。

通过测定岩土中的波速,可以获得岩土的力学性质和质量状况的信息,评估地质风险,为地基处理设计和工程施工监测提供依据。

它不仅具有快速、非破坏性的特点,还能提供准确可靠的数据,对于岩土工程的设计和施工具有重要的指导意义。

波速测试在岩土工程勘察中的作用分析

波速测试在岩土工程勘察中的作用分析

波速测试在岩土工程勘察中的作用分析引言岩土工程勘察是指对土壤和岩石地质条件进行调查和研究的工作,其目的是为了为工程建设提供可靠的地质信息。

在岩土工程勘察中,波速测试是一种常用的地质勘察手段,通过测试土壤和岩石的波速,可以对地层结构和物性进行分析,为工程设计和施工提供重要的参考依据。

本文将对波速测试在岩土工程勘察中的作用进行分析,探讨其在工程中的重要性和应用价值。

一、波速测试的基本原理波速测试是一种通过声波或振动波在土壤和岩石中传播速度进行测试的方法,根据传播速度可以推断地层的物性和结构特征。

声波在不同介质中传播的速度与介质的密度、弹性模量、孔隙度等因素有关,可以通过测定声波的传播速度来了解地层的特性。

在波速测试中,常用的测试方法包括声波测试、地震探测和超声波检测等,这些方法可以根据具体的勘察需要选择合适的测试设备和方法。

二、波速测试在岩土工程勘察中的应用1. 地质勘察波速测试可以用于地质勘察中对不同地层的性质和特征进行识别和分类。

通过测定地层中的声波传播速度,可以了解地层的坚固性、均质性和孔隙度等参数,为地质勘察提供重要的地质信息。

在地质勘察中,可以通过波速测试来确定地下岩层的类型、分布和厚度,为工程设计和施工提供准确的地质数据。

2. 工程设计波速测试可以用于工程设计中对地基和地基基础的地层性质进行评估和分析。

在建筑和桥梁等工程设计中,地基土壤和岩石的力学特性对工程的稳定性和安全性有重要影响,通过波速测试可以了解地层的强度、压缩性和变形特性,为地基处理和基础设计提供科学依据。

波速测试还可以用于水利工程、港口工程和道路工程等领域的地质勘察和工程设计。

3. 施工质量控制波速测试可以用于施工质量的控制和监测。

在地基处理和基础施工中,可以通过波速测试来评估地下岩土的力学性质和工程质量,及时发现地基的松软、坚固性差、变形大等问题,为施工现场提供及时的质量监测和技术支持。

波速测试还可以用于挖掘和爆破施工中对岩石的勘探和爆破质量的控制,提高施工的安全性和效率。

波速测试在岩土工程勘察中的作用分析

波速测试在岩土工程勘察中的作用分析

波速测试在岩土工程勘察中的作用分析【摘要】波速测试是岩土工程勘察中常用的一种方法,通过测定波在地层中传播的速度来获取地层的物理性质信息,对岩土工程的设计和施工具有重要意义。

波速测试的原理是利用波在地层中传播的速度与地层的密度、坚实程度等物理性质相关,通过设备发射波并记录波的传播时间来计算波速。

在岩土工程勘察中,波速测试可用于确定地层的坚实程度、岩层的质地等重要信息,为工程设计提供依据。

波速测试还可以在地质勘察中用于识别地层界面、探测地下障碍物等。

未来,随着技术的不断发展,波速测试在岩土工程勘察中的应用将会更加广泛,为工程建设提供更精准的数据支持。

【关键词】波速测试、岩土工程、勘察、地质、工程设计、施工监测、重要性、未来发展1. 引言1.1 背景介绍岩土工程勘察是土木工程领域中非常重要的一项工作,其目的是为工程建设提供可靠的地质和工程地质信息,以指导工程设计和施工。

而波速测试作为岩土工程勘察过程中常用的一种技术手段,在地质勘察、工程设计和施工监测中发挥着重要作用。

波速测试是通过测定波在岩土体中传播的速度来推断岩土体的力学性质和工程特性的一种方法。

利用波速测试可以快速、准确地获取岩土体的物理参数,如密度、弹性模量、泊松比等,为工程建设提供重要的参考依据。

在岩土工程勘察中,波速测试可以用于判断地质构造、岩土体性质及风险评估等,为工程设计提供可靠的依据。

在施工监测中,波速测试可以用于监测和评估工程质量,及时发现问题并采取相应措施,确保工程建设的安全可靠性。

了解波速测试在岩土工程勘察中的作用对于提高工程建设的质量和安全性具有重要意义。

在接下来的文章中,将详细探讨波速测试的原理、应用及未来发展前景。

1.2 研究意义波速测试在岩土工程勘察中扮演着重要的角色,对于工程建设的安全性、稳定性和经济性具有重要意义。

通过波速测试,可以获取地下岩土介质的物理性质和力学特性,为工程设计和施工提供可靠的数据支持。

波速测试可以帮助工程师了解地下岩土的结构和稳定性,预测地下水文条件,为工程设计提供准确的地质信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发射< 发射 <—>电脉冲 <—>压电晶体 <—>机械振动 (声波 )<—>介质<—> 电脉冲< 压电晶体< 机械振动(声波)<— 介质< 接收
④类型:根据测试对象和工作方式的不同,声波探头可 类型:根据测试对象和工作方式的不同, 划分为喇叭型、增压式、弯曲型、测井换能器、 划分为喇叭型、增压式、弯曲型、测井换能器、横波换能器 等多种类型。 等多种类型。
《岩土工程原位测试》 岩土工程原位测试》
第6章 波速测试
第6章 波速测试
学习指导: 了解各种波速测试的方法分类、 学习指导: 了解各种波速测试的方法分类、国家现 行规范对波速测试的要求、波速测试的要点、 行规范对波速测试的要求 、 波速测试的要点 、 资 料整理及成果应用。 料整理及成果应用。 重点: 重点 : 各种波速测试方法以及国家现行规范对该 试验的要求; 弹性波基本理论;仪器组成; 试验的要求 ; 弹性波基本理论 ; 仪器组成 ; 野外 工作方法; 测试指标及物理意义;适用范围; 工作方法 ; 测试指标及物理意义 ; 适用范围 ; 波 速测试要点;资料整理及成果应用。 速测试要点;资料整理及成果应用。
6.1 概述
3.工程中常用的波:纵波(P波)、横波(S波)、瑞利面波(R波) 工程中常用的波:纵波( 横波( 瑞利面波( 4.用弹性参数表示的波速公式
5.Vp、Vs、VR之间的关系 Vp、Vs、
6.1 概述
6.用波速计算弹性参数的公式
7、基本测试方法 (1)、对穿法 V=L/t
(2)、一发双收测孔 ①换能器结构 ②测试原理
6.3 单孔法
6.3.1 基本原理 2 公式推导 定义坐标系原点为钻孔口, 定义坐标系原点为钻孔口 , z 轴沿钻孔向下为正, 轴沿钻孔向下为正, x轴向右为 正。 设测点深度为 hi , 激震点距 钻孔口距离为dx dx。 钻孔口距离为dx。
6.3 单孔法
6.3.1 基本原理 1)正演公式 对于第1 个测试点h 设深度h 对于第 1 个测试点 h1 , 设深度 h1 以上 土层的剪切波速度为v 土层的剪切波速度为 vs1 , 剪切波射线 长度为L 它与钻孔轴线的夹角为θ 长度为 L1 , 它与钻孔轴线的夹角为 θ1 。 根据三角关系,射线长度L 根据三角关系,射线长度L1为
6.3 单孔法
同理可得剪切波到达测点h 的走时t 同理可得剪切波到达测点h3的走时t3 为
根据以上推导, 根据以上推导 , 可得剪切波到达任 意测点的到时t 意测点的到时ti为
6.3 单孔法
6.3.1 基本原理 2)反演公式 反演公式可由正演公式变形得到: 反演公式可由正演公式变形得到:
式中, 式中 , vsi 和 vsj 分别为第 i 和第 j 个测点深度处的剪切 分别为第i 和第j 波速(m/s) 波速(m/s); hi和hj分别为第i和第j个测点的深度(m); 分别为第i和第j个测点的深度(m) (m); 为第i个测点深度的到时( ti为第i个测点深度的到时(s); 为第i 为第 i 个测点到激发点的连线与钻孔轴向的夹角 式计算。 (º),由(6.2)式计算。 使用上式时,沿钻孔从上到下顺序计算。 使用上式时,沿钻孔从上到下顺序计算。
6.2 波速测试的技术要求
3)跨孔法波速测试的技术要求应符合下列规定: 跨孔法波速测试的技术要求应符合下列规定: 波速测试的技术要求应符合下列规定 (1)震源孔和测试孔,应布置在一条直线上; 震源孔和测试孔,应布置在一条直线上; (2)测试孔的孔距在土层中宜取2~5m,在岩层中 测试孔的孔距在土层中宜取2 宜取8 15m 测点垂直间距宜取1 宜取 8 ~ 15m , 测点垂直间距宜取 1 ~ 2m ; 近地表测 点宜布置在0 倍孔距的深度处, 点宜布置在 0.4 倍孔距的深度处 , 震源和检波器应 置于同一地层的相同标高处; 置于同一地层的相同标高处; (3)当测试深度大于15m时,应进行激振孔和测试 当测试深度大于15 15m 孔倾斜度和倾斜方位的量测,测点间距宜取lm 孔倾斜度和倾斜方位的量测,测点间距宜取lm。 lm。
声波探头的选取原则——频率 波长、分辨率、 声波探头的选取原则——频率、波长、分辨率、穿透深度 频率、 1)声波是有一定频率和波长的。频率和波长是成反比的。频率愈高 声波是有一定频率和波长的。频率和波长是成反比的。 声波的波长愈小; 声波的波长愈小; 2)在比较致密完整的介质中进行声测,应选用频率比较高的声波探 在比较致密完整的介质中进行声测, 以求较高的分辨率。 头,以求较高的分辨率。 3)在岩体中进行声测时,因岩体中有各种大小的结构面,相对比较 在岩体中进行声测时,因岩体中有各种大小的结构面, 松散。故应选用频率低、波长大的声波进行探测, 松散。故应选用频率低、波长大的声波进行探测,以求其有足够的穿透 深度。 深度。 4)声波探头功率要足够大。一般来说,频率大于100kHz的探头称为 声波探头功率要足够大。一般来说,频率大于100kHz的探头称为 高频探头,用于岩石声测。频率低于50kHz的探头称为低频探头 的探头称为低频探头, 高频探头,用于岩石声测。频率低于50kHz的探头称为低频探头,用于 岩体声测。作测试时,发射和接收探头的频率要一致。 岩体声测。作测试时,发射和接收探头的频率要一致。 5)另外,目前生产的发射探头和接收探头可以互换使用,比较方便。 另外,目前生产的发射探头和接收探头可以互换使用,比较方便。
则剪切波到达测点h 的走时t 则剪切波到达测点h1的走时t1为
6.3 单孔法
对于第2 个测试点h 设深度h 对于第 2 个测试点 h2 , 设深度 h1 ~ h2 土层 的剪切波速度为v 剪切波射线长度为L 的剪切波速度为 vs2 , 剪切波射线长度为 L2 , 它与钻孔轴线的夹角为θ 它与钻孔轴线的夹角为θ2。 又可分为L 两段,其中L 而 L2 又可分为 L21 和 L22 两段 , 其中 L21 段对 应的波速为v 段对应的波速为v 应的波速为vs1,L22段对应的波速为vs2。 根据三角关系,两段射线的长度L 根据三角关系 , 两段射线的长度 L21 和 L22 分别为
6.3 单孔法
6.3.4 孔内测点布置原则 1.每一土层都应有测点,每个测 每一土层都应有测点, 点宜设在接近每一土层的顶部或底 部处, 尤其对于薄层, 部处 , 尤其对于薄层 , 更不能将测 点设在土层的中点。 点设在土层的中点。 2.若土层厚度小于1m,可以忽略。 若土层厚度小于1 可以忽略。 若土层厚度超过4 需增加测点, 若土层厚度超过 4m , 需增加测点 , 通常可以1 间隔设置一测点。 通常可以1~2m间隔设置一测点。 3.测点设置需考虑土性特点。如 测点设置需考虑土性特点。 各土层相对均匀, 各土层相对均匀 , 可以考虑等间隔 布置,否则,只能不等间隔布置。 布置,否则,只能不等间隔布置。 测点布置示意图
3、RSM-SY5声波仪 RSM-SY5 ①组成:四部分 组成: ②配置的换能器 Ⅰ)平面换能器 Ⅱ)横波换能器 Ⅲ)一发双收换能器 Ⅳ)一发二个收换能器 桩三孔、 桩三孔、岩体跨孔
③ RSM-SY5声波仪主操作界面 RSM-SY5声波仪主操作界面
6.3 单孔法
6.3.3 现场布置 在指定测试地点打钻孔, 在指定测试地点打钻孔 , 垂直度要求与一般勘探孔 一样。 一样。离开孔口 1~1.5m布置激振装置。 布置激振装置。 如要测试孔斜, 钻孔内需设置PVC 套管, 管内有4 如要测试孔斜 , 钻孔内需设置 PVC 套管 , 管内有 4 个 PVC套管 槽口,以备测斜仪沿槽口移动。 槽口,以备测斜仪沿槽口移动。 如果被测土层不厚、 较硬或泥浆护壁后不会坍孔, 如果被测土层不厚 、 较硬或泥浆护壁后不会坍孔 , 测试前可将钻机移走,否则,钻机应留在孔位上备用。 测试前可将钻机移走 , 否则 , 钻机应留在孔位上备用 。
6.3 单孔法
6.3.2 测试设备 设 备 : 专用 井下 三分量 检 波器、木板、负荷重物、大锤。 波器、木板、负荷重物、大锤。 充 气 装置 : 充气 装置可 使 装置 检波器紧贴井壁,或上下移动。 检波器紧贴井壁,或上下移动。
仪器设备— 仪器设备—超声仪
1、四部分组成 ①发射系统: 发射系统: 超声发射机、 超声发射机、发射换能器 ②接收系统: 接收系统: 超声接收机、 超声接收机、接收换能器 ③采集系统:声波信号采集 采集系统: ④数据处理系统:计算机、软件 (采集、处理存贮、显示、打印) 采集、处理存贮、显示、打印) 数据处理系统:计算机、
6.1 概述
1.基本原理:利用弹性波在不同弹性介质中的波速差异, 基本原理:利用弹性波在不同弹性介质中的波速差异, 来获得岩、土体的工程性质。 来获得岩、土体的工程性质。 弹性波的分类: 2.弹性波的分类:体波和面波 体波: (1)体波:在介质体内传播 纵波: 压缩波: 纵波:P波、压缩波:质点振动方向与波的传播 方向一致; 方向一致; 横波: 剪切波: 横波:S波、剪切波:质点振动方向与波的传播 方向垂直;Sv、 方向垂直;Sv、SH 面波: (2)面波:在介质分界面传播 瑞 利 波 (Rayleigh) 、 R 波 : 在 介 质 表 面 传 播 , 其轨迹是逆时针旋转的椭圆; 其轨迹是逆时针旋转的椭圆; 勒夫波(Love) (Love)、 勒夫波(Love)、L波:在介质分界面传播
根据《岩土工程勘察规范》 根据《岩土工程勘察规范》(GB 50021-2001) 50021-2001) 测试参数和测试方法: 1)测试参数和测试方法: 测定各类岩、土体的压缩波 剪切波或瑞利波的波速, 测定各类岩、土体的压缩波、剪切波或瑞利波的波速, 压缩波、 采用单孔法 跨孔法或面波法。 采用单孔法、跨孔法或面波法。 单孔法、 2)单孔法波速测试的技术要求应符合下列规定: 单孔法波速测试的技术要求应符合下列规定: 波速测试的技术要求应符合下列规定 (1)测试孔应垂直; 测试孔应垂直; (2)将三分量检波器固定在孔内预定深度处,并紧贴孔壁; 将三分量检波器固定在孔内预定深度处,并紧贴孔壁; (3)可采用地面激振或孔内激振; 可采用地面激振或孔内激振; (4)应结合土层布置测点,测点的垂直间距宜取1~3m。 应结合土层布置测点,测点的垂直间距宜取1 层位变化处加密,并宜自下而上逐点测试。 层位变化处加密,并宜自下而上逐点测试。
相关文档
最新文档