高中数学第二章统计2.1.2系统抽样课堂探究新人教B版必修3资料

合集下载

高中数学第二章统计2.1.2系统抽样课件新人教B版必修3

高中数学第二章统计2.1.2系统抽样课件新人教B版必修3
100 =5.一般地,剔除部分个体常用简单随机抽样的 20 ������'
������ ������
2.填空: 一般地,要从容量为N的总体中抽取容量为n的样本,系统抽样的 步骤为: ①编号:有时可直接使用个体自身所带的号码,如学号、准考证 号、门牌号等; ②分段:对编号进行分段,要保证“等距”分段; ③确定起始编号:在第一段用简单随机抽样确定起始的个体编号; ④按事先指定的规则抽取样本,通常将编号为起始号码+k×分段 间隔的个体抽出(k=0,1,…,n-1). 3.做一做:要从5 003个总体中抽取一个容量为50的样本,按系统 抽样方法抽样,应将总体分成 个部分,每部分都有 个 个体. 解析:应分为50个部分,每部分有100个个体. 答案:50 100
探究一
探究二
易错辨析
变式训练某市场想通过检查发票及销售记录的2%来快速估计每 月的销量总额.采取如下方法:从某本发票的存根中随机抽一张,如 15号,然后按顺序往后将65号、115号、165号、…抽出,发票上的 销售额组成一个调查样本.则这种抽取样本的方法是( ) A.抽签法 B.随机数法 C.系统抽样法 D.其他的抽样方法 答案:C
4.做一做:乡镇卫生院要从某村72名年龄在60岁以上的老人中,用 系统抽样的方法抽取9人,了解心脏功能情况,医生把老人们编号为 01~72,现在医生已经确定抽取了03号,则其余被抽到的编号 为 . 解析:由系统抽样知,每段中有8人,已知在第一段中选的03号,则 下面的各段中依次选的号码应为3+8=11,11+8=19,19+8=27, 27+8=35,35+8=43,43+8=51,51+8=59,59+8=67. 答案:11,19,27,35,43,51,59,67

高中数学第二章统计2.1系统抽样课件2新人教B版必修3

高中数学第二章统计2.1系统抽样课件2新人教B版必修3

作业: P59练习:1,2,3.

第一步,计算k=[N/n],将总体的N-n k个 个体编号. 第二步,对编号进行分组,共分n组. 第三步,在第1段用简单随机抽样确定 起始个体编号l. 第四步,按照一定的规则抽取样本.通常 取l,l+k,l+2k,…,l+(n-1)k作为样本.
思考7:系统抽样适合在哪种情况下使用? 系统抽样公平吗? [注意]:①系统抽样适合于总体的个体数 较多的情形. ②系统抽样也是等概率抽样,即每个 个体被抽到的概率是相等的,其概率仍 为P=n/N,从而保证了抽样的公平性.
总体中的个体数N除以样本容量n所得 的商.
思考6:用系统抽样抽取样本时,每段 各取一个号码,其中第1段的个体编号 怎样抽取?以后各段的个体编号怎样 抽取? 用简单随机抽样抽取第1段的个体编 号.在抽取第1段的号码之后,自定义规 则确定以后各段的个体编号,通常是将 第1段抽取的号码依次累加间隔k.
2.用系统抽样从含有N个个体的总体中抽 取一个容量为n的样本,其操作步骤如下:
知识探究(一):系统抽样的定义
思考1:某中学高一年级有10个班,每 班50人,为了了解高一年级学生对老师 教学的意见,教务处打算从年级500名 学生中抽取50名进行问卷调查,那么年 级每个同学被抽到的概率是多少? P=1/10 思考2:你能用简单随机抽样对上述问题 进行抽样吗?具体如何操作?除此外,你 能否设计出其他抽取样本的方法?
知识探究(二):系统抽样的操作步骤
思考1:用系统抽样从总体中抽取样本 时,首先要做的工作是什么? 将总体中的所有个体编号. 思考2:如果用系统抽样从505个学生中 抽取50个学生进行问卷调查,由于505个 学生不能均衡分成50部分,对此应如何 处理? 先从总体中随机剔除5个个体,再均衡 分成50部分.

人教B版必修3 2.1.2 系统抽样 课件(29张)

人教B版必修3 2.1.2 系统抽样 课件(29张)

多少时不需要剔除个体( )
A.3
B.4
C.5
D.6
解析:选 B ∵524=4×131,∴抽样间隔为 4 时,不需要
剔除个体.
4.某中学采用系统抽样方法,从该校高一年级全体 800 名
学生中抽取 50 名学生做牙齿健康检查.现将 800 名学生从 1 到
800 进行编号.已知 33~48 这 16 个数中抽到的数是 39,则在第
6.将参加夏令营的 600 名学生编号:001,002,…,600,采
用系统抽样的方法抽取一个容量为 50 的样本,且随机抽得的号
码为 003,这 600 名学生分住在三个营区,从 001 到 300 住第一
营区,从 301 到 495 住第二营区,从 496 到 600 住第三营区,这
三个营区被抽中的人数依次为( )
的数目为(720-480)÷20=12.
课后拔高提能练
一、选择题
1.从学号为 0~50 的高一某班 50 选中的 5 名学生的
学号可能是( )
A.1,2,3,4,5
B.2,4,6,8,10
C.3,13,23,33,43 解析:选 C
D.都相等,且为410
解析:选 C 因为在系统抽样中,若所给的总体个数不能被
样本容量整除,则应先剔除几个个体,本题先剔除 16 人,然后
再分组,在剔除过程中,每个个体被剔除的机会相等,所以,每
个个体被抽到的机会都相等,均为2
50016=1
25 008.
3.总体容量为 524,若采用系统抽样法抽样,当抽样间隔为
1 小组 1~16 中随机抽到的数是( )
A.5
B.7
C.11
D.13
解析:选 B 间隔数 k=85000=16,即每 16 人抽取一个人.由

人教社B版高一数学必修三抽样方法

人教社B版高一数学必修三抽样方法

那么, (1)怎样从总体中抽取样本呢? (2)如何表示样本数据呢? (3)如何从样本数据中提取基本信息 (样本分布、样本数字特征等),来 推断总体的情况呢? 这些正是本章要研究解决的问题。
思考:
要判断一锅汤的味道需要把整锅 汤都喝完吗?应该怎样判断? 将锅里的汤“搅拌均匀”,品尝一 小勺就知道汤的味道,这是一个简单随 机抽样问题,对这种抽样方法,我们从 理论上作些分析. 高质量的样本数据来自“搅拌均匀”的 总体.否则调查结果就会出现较大偏差。
其中取号位置与方向具有任意性.
2.1.2系统抽样
复习回顾:
简单随机抽样的概念
一般地,设一个总体的个体数为 N,如果通过逐个不放 回地抽取的方法从中抽取一个样本,且每次抽取时各个个体 被抽到的概率相等,就称这样的抽样为简单随机抽样。 适用范围:总体中个体数较少的情况,抽取
的样本容量也较小时。
思考3:用系统抽样从含有N个个体的总 体中抽取一个容量为n的样本,要平均 分成多少段,每段各有多少个号码? 思考4:如果N不能被n整除怎么办? 从总体中随机剔除N除以n的余数个个体 后再分段.
思考5:将含有N个个体的总体平均分成 n段,每段的号码个数称为分段间隔, 那么分段间隔k的值如何确定?
总体中的个体数N除以样本容量n所得 的商.
与所抽取号码一致的学生即被选中
结束
抽签法的一般步骤:
(总体个数N,样本容量n)
(1)将总体中的N个个体编号;
(2)将这N个号码写在形状、 大小相 同的号签上; (3)将号签放在同一箱中,并 搅拌均匀; (4)从箱中每次抽出1个号签, 连续抽出n次; (5)将总体中与抽到的号签编 号一致的n个个体取出。
第一步,先将800袋牛奶编号,可以编为000,001,…,799 第二步,在随机数表中任选一个数,例如选出第8行第7 列的数7.(为了便于说明,下面摘取了附表1的第6行至第10行)

高中数学 第二章 统计 2.1 随机抽样教材习题点拨 新人教B版必修3-新人教B版高中必修3数学试题

高中数学 第二章 统计 2.1 随机抽样教材习题点拨 新人教B版必修3-新人教B版高中必修3数学试题

高中数学第二章统计 2.1 随机抽样教材习题点拨新人教B版必修3练习A1.什么是简单随机抽样?解:一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.2.在一般“调查”时,为什么要进行抽样调查?解:做一般“调查”最好是对每一个个体逐一进行“调查”,但这样做有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取的机会均等的前提下从总体中抽取部分个体,进行抽样调查.3.如果想了解你所在班上同学喜欢听数学课的比例,计划抽取8名同学做调查.请你用抽签法抽取一个样本.解:(1)将班内60名同学的学号1,2,…,60分别写在相同的60X纸片上.(2)将60X纸片放在一个容器里均匀搅拌之后,就可以抽样.(3)抽出一X纸片,记下上面的,然后均匀搅拌,继续抽取第2X纸片,记下这个,重复这个过程,直到取得8个时终止.(4)于是,和这8个对应的同学就构成了一个简单随机样本.练习B1.某居民区有730户居民,居委会计划从中抽取25户调查其家庭收入状况,你能帮助居委会抽出一个简单随机样本吗?解:随机数表法:(用教材第87页的随机数表)(1)将730户居民编号为001,002, (730)(2)给出的随机数表是5个数一组,使用各个5位数组的后3位,从各个数组中任选一个后3位小于或等于730的数作为起始,如从第2行的第6组开始,取出572作为25户中的第1个代号;(3)继续向右读,每组后3位符合要求的数取出,前面已经取出的跳过,到行末转下一行从左向右继续读,得数据:572,483,459,073,242,372,048,088,600,636,171,247,303,422,421,183,546,385,120,042 ,320,500,219,225,059.编号为以上所选的25个的居户被选中.2.使用计算器或计算机制作一X1 000个一位数的随机数表,并检查0~9这10个数在表中出现的可能性是否相同?解:相同.练习A1.什么是系统抽样?系统抽样有什么优点?解:将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.系统抽样的优点:它很好地解决了当总体容量和样本容量都较大时,用简单随机抽样不方便的问题.2.从编号为1~900的总体中用系统抽样的办法抽取一个容量为9的样本.解:按编号顺序分成9组,每组100个号,先在第一组用简单随机抽样方式抽出k(1≤k≤100)号,其余的k+100n(n=1,2,…,8)也被抽到,即可得所需样本.练习B1.某批产品共有1 563件,产品按出厂顺序编号,为从1~1 563.检测员要从中抽取15件产品作检测,请你给出一个系统抽样方案.解:S1 将产品的调整为0001,0002,0003, (1563)S2 从总体中剔除3件产品(剔除方法可用随机数表法),将剩下的1 560件产品重新编号(分别为0001,0002,…,1560),并分成15段;S3 在第一段0001,0002,...,0104,这104个编号中用简单随机抽样抽出一个(如0003)作为起始,则各段对应编号分别为0003,0107,0211, (1459)S4 将编号为0003,0107,0211,…,1459的个体抽出,即得到一个容量为15的样本.2.要考察某商场2003年的日销售额,从一年时间中抽取52天的销售额作为样本,请给出你的系统抽样方案.并说说你的抽样方案的优点和不足.解:S1 用随机数表法从365天中随机剔除1天;S2 将其余的364天编号,为001,002,003,…,364,并将依次分为52段;S3 在第一段001,002,…,007这7个中用抽签法选取一个,如002;S4 将为002,009,016,…,359的日期找出,组成样本.该抽样方案的优点是:抽取的样本能代表总体;缺点是:所抽取的日期与日常用的日期相比规律性差,不便于该方案的操作.练习A1.某校高一学生共500名,经调查,喜欢数学的学生占全体学生的30%,不喜欢数学的人数占40%,介于两者之间的学生占30%.为了考查学生的期中考试的数学成绩,如何用分层抽样抽取一个容量为50的样本.解:由题意知喜欢数学的学生有150人,不喜欢数学的有200人,介于两者之间的有150人.三个层次的学生人数之比为3∶4∶3.所以应抽喜欢数学的学生15人,不喜欢数学的学生20人,介于两者之间的学生15人.用随机数表法抽样分别从对应的部分抽取相应的人数即可.2.某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人.为了调查员工的身体健康状况,从中抽取100名员工,用分层抽样应当怎样抽取?解:S1 确定抽样比100500=15,所以不到35岁的应抽取125÷5=25(人),35~49岁的应抽取280÷5=56(人),50岁以上的应抽取95÷5=19(人);S2 用简单随机抽样法或系统抽样法分别抽取不到35岁的25人,35~49岁的56人;50岁以上的19人.这些人便组成了我们要抽取的样本.3.某大学就餐中心为了了解新生的饮食习惯,以分层抽样的方式从1 500名新生中抽取200名进行调查,新生中的南方学生有500名,北方学生有800名,西部地区的学生有200名,应如何抽取?解:由题意知南方学生有500名,北方学生有800名,西部地区的学生有200名.样本容量与总体容量的比为200∶1 500=2∶15.所以应抽取南方学生约67名,北方学生约106名,西部地区的学生约27名.用分层抽样法分别从对应的部分抽取相应的人数即可.练习B某市电视台在因特网上征集电视节目的现场参与观众,报名的共有12 000人,分别来自4个城区,其中东城区2 400人,西城区4 605人,南城区3 795人,北城区1 200人.用分层抽样的方式从中抽取60人参加现场节目,应当如何抽取?解:从12 000人中抽取60人,抽取比例为12 000∶60=200∶1,所以应在东城区抽取 2 400÷200=12(人),在西城区抽取 4 605÷200≈23(人),在南城区抽取 3 795÷200≈19(人),在北城区抽取1 200÷200=6(人).用系统抽样法分别从对应的部分抽取相应的数即可.练习A1.想一想怎样可以得到你所在班级同学的身高数据.解:设计调查问卷请每位同学填写自己的身高,然后汇总即可.2.你还能想到哪些可以得到数据资料的途径?解:如:教材或教材提供的数据;课堂数据(它们是在教室中收集的,主要与班上的学生有关,而不问结论是否对于更大的群体也成立).练习B为了了解中学生如何度过课余时间,请你设计一份关于中学生课余活动的调查问卷,实际调查后写出调查分析报告.解:提示:在设计调查问卷时,设计的题目意思要明确,覆盖面要广,不要有答题倾向即可.习题2-1A1.为了考察某地10 000名高一学生的体重情况,从中抽出了200名学生做调查.这里的总体、个体、样本、样本容量各指什么?为什么我们一般要从总体中抽取一个样本,通过样本来研究总体?解:统计的总体是指该地10 000名高一学生的体重;个体是指这10 000名学生中每一名学生的体重;样本是指这10 000名学生中抽出的200名学生的体重;样本容量为200.若对每一个个体逐一进行“调查”,有时费时、费力,有时根本无法实现,一个行之有效的办法就是在每一个个体被抽取机会均等的前提下从总体中抽取部分个体,进行抽样调查.2.要从编号为1~100的100道选择题中随机抽取20道题组成一份考卷,请你用抽签法给出考题的编号.解:(1)编号1~100;(2)制作大小相同的号签,并写上;(3)放入一个大容器,均匀搅拌;(4)依次抽取20个签(注意每次都要均匀搅拌),具有这20个编号的题组成一份考卷.3.某商店有590件货物,要从中选出50件货物做质量检查,请你用随机数表法给出一个抽样方案.解:(1)将590件货物编号为001,002, (590)(2)给出的随机数表是5个数一组,使用各个5位数组的中间3位,从各个数组中任选中间3位小于或等于590的数作为起始,如从第3行的第4列数037开始,取出037作为590件货物中的第1个代号;(3)继续向右读,将每组中间3位符合要求的数取出,已取出重复的跳过,到行末转下一行从左向右继续读,得数据:037,104,460,463,317,290,030,042,142,237,318,154,038,212,404,132,…,编号为以上所选的50个的货物被选中,即得到一个容量为50的样本.4.故宫博物院某天接待游客10 000人(假设把他们编号为0~9 999),如果要从这些游客中随机选出10名幸运游客,请你用系统抽样的方式给出幸运游客的编号.解:按编号顺序分成10组,每组1 000个号,先在第1组用简单随机抽样方式取出k(0≤k≤999)号,其余的k+1 000n(n=1,2,…,9)也被抽到,即可得到所需样本.5.一支田径队中有男运动员56人,女运动员42人,用分层抽样的方式从全队中抽取28名运动员.解:从男运动员中抽16人,女运动员中抽12人.6.某市有210家百货商店,其中大型商店有20家,中型商店有40家,小型商店有150家.为了了解商店的销售情况,要从中抽取21家商店进行调查,请你用分层抽样的方式进行抽取.解:大型商店、中型商店、小型商店分别抽取2家、4家、15家.习题2-1B1.某公园为了考察每天游览的人数,从一年中要抽取30天进行统计,请你分别用随机数表法、系统抽样法、分层抽样法给出样本,并根据样本比较这3种抽样方式.解:方法1:随机数表法S1 将一年的365天编号为001,002, (365)S2 在教材第一节提供的随机数表中任选一数作为开始,任选一方向作为读数方向,比如,选第1行第6个数“5”,向右读;S3 从数“5”开始,向右读,每次读取3位,凡不在001~365中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到30个符合要求的;S4 以上对应的日期就是抽取的对象.方法2:系统抽样法S1 将365天用随机方式编号;S2 从总体中剔除5天(剔除方法可用随机数表法),将剩下的360天重新编号(分别为001,…,360),并分成30段;S3 在第一段001,…,012这12个编号中用简单随机抽样抽出一个(如003)作为起始;S4 将编号为003,015,027,…,351的日期抽出,组成样本.方法3:分层抽样法S1 将一年分为春、夏、秋、冬四个层次;S2 在每个层次中用随机数表法抽取8天;S3 4×8=32,再用抽签法剔除2天,剩下的30天组成样本.点拨:3种抽样方法的共同点是每个个体被抽到的可能性均相等.2.随着互联网络的发展与普及,网络调查方式的使用越来越多.你能比较一下传统的调查方式与网络调查方式的优劣吗?解:网络调查省时、省力,但有时也不具备代表性.如调查农业方面的问题,应该调查农民,但农民上网的人数很少;传统调查方式虽费时、费力,但针对性强.。

高中数学 2.1.2系统抽样课件 新人教B版必修3

高中数学 2.1.2系统抽样课件 新人教B版必修3
成才之路 ·数学 (shùxué)
人教B版 ·必修 (bìxiū)3
路漫漫其修远兮 吾将上下而求索
第一页,共40页。
统计(tǒngjì)
第二章
第二页,共40页。
2.1 随机抽样 2.1.2 系统抽样
第二章
第三页,共40页。
1 课前自主预习
2 课堂典例讲练
4 思想方法技巧
3 易错疑难辨析
5 课后强化作业
[解析] 按照
的比例抽取样本,则样本容量为15×295
=59.
(1)编号:按现有的号码.
(2)确定分段间隔 k=5,把 295 名同学分成 59 组,每组 5
人,第 1 组是编号为 1~5 的 5 名学生,第 2 组是编号为 6~10
的 5 名学生,依次下去,第 59 组是编号为 291~295 的 5 名学
第七页,共40页。
2.系统抽样的步骤 一般地,假设要从容量为 N 的总体中抽取容量为 n 的样本, 可以按下列步骤进行系统抽样: (1)先将总体的 N 个个体__编_号__(_b.iān有hà时o)可直接利用个体自身 所带的号码,如学号,准考证号,门牌号等; (2)确定分段间隔 k 对编号进行分段,当Nn(n 是样本容量)是
第九页,共40页。
3.系统抽样的特点
(1) 适 用 于 总 体 __容__量__(r_ó_n_g_li的àn情g)较况大; 是 从 总 体 中 逐 个 的 抽
取;
(2) 剔 除 多 余 个 体 及 第 一 段简单抽(jiǎ样ndān都)随机采抽样用
(cǎiyò简ng单)_随__机__抽__样_______ , 因 而 与 ________________ 有 密 切 联
[解析] (1)先把这253名学生编号001,002,…,253; (2)用随机数表法任取出3个号,从总体中剔除与这三个号对 应的学生;

高中数学 第二章 统计 2.1 随机抽样 2.1.2 系统抽样教学案 新人教B版必修3

高中数学 第二章 统计 2.1 随机抽样 2.1.2 系统抽样教学案 新人教B版必修3

2.1.2 系统抽样预习课本P52,思考并完成以下问题(1)系统抽样的概念是什么?(2)系统抽样适用范围是什么?[新知初探]1.系统抽样的概念将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本的抽样方法.2.系统抽样的适用范围适用于样本容量较大,且个体之间无明显差异的情况.[小试身手]1.某报告厅有50排座位,每排有60个座位(编号1~60),一次报告会坐满了观众,会后留下座号为18的所有观众进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案:C2.为了解1 200名学生对学校教改实验的意见,学校打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为( )A.40 B.30C.20 D.12答案:A3.乡镇卫生院要从某村72名年龄在60岁以上的老人中,用系统抽样的方法抽取9人,了解心脏功能情况,医生把老人们编号为01~72号,现在医生已经确定抽取了03号,那么其余被抽到的编号为_______________________________________________.解析:由系统抽样知,每段中有8人,已知在第一段中选的03号,则下面的各段中依次选的号码应为3+8=11,11+8=19,19+8=27,27+8=35,35+8=43,43+8=51,51+8=59,59+8=67.答案:11,19,27,35,43,51,59,67系统抽样的概念[典例] 采用如下方法:从某本发票的存根中随机抽一张,如15号,然后按顺序将65号,115号,165号,…,发票上的销售金额组成一个调查样本.这种抽取样本的方法是( )A .抽签法B .随机数法C .系统抽样法D .以上都不对[解析] 上述抽样方法是将发票平均分成若干组,每组50张,从第一组抽出了15号,以后各组抽15+50n (n ∈N *)号,符合系统抽样的特点.[答案] C系统抽样的判断方法(1)首先看是否在抽样前知道总体是由什么组成,多少个个体.(2)再看是否将总体分成几个均衡的部分,并在每一个部分中进行简单随机抽样.(3)最后看是否等距抽样.[活学活用]一个总体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个小组,组号依次为1,2,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m ,那么在第k 组中抽取的号码的个位数字与m +k 的个位数字相同.若m =6,则在第7组中抽取的号码是________.解析:由题意知,若m =6,则在第7组中抽取的号码的个位数字与13的个位数字相同,而第7组中编号依次为60,61,62,63,…,69,故在第7组中抽取的号码是63.答案:63系统抽样的设计[典例] (1)800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k =80050=16,即每16人抽取一人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是________.(2)某装订厂平均每小时大约装订图书360册,要求检验员每小时抽取40册图书,检验其质量状况,请你设计一个抽样方案.[解析] (1)因为采用系统抽样方法,每16人抽取一人,1~16中随机抽取一个数抽到的是7,所以在第k 组抽到的是7+16(k -1),所以从33~48这16个数中应取的数是7+16×2=39.答案:39(2)解:第一步:把这些图书分成40个组,由于36040=9,所以每个小组有9册书; 第二步:对这些图书进行编号,编号分别为0,1, (359)第三步:从第一组(编号为0,1,…,8)的书中用简单随机抽样的方法,抽取1册书.比如说,其编号为k ;第四步:按顺序抽取编号分别为下面的数字的图书:k ,k +9,k +18,k +27,…,k +39×9.这样总共就抽取了40个样本.系统抽样的4个步骤(1)编号(在保证编号的随机性的前提下,可以直接利用个体所带有的号码).(2)分段(确定分段间隔k ,注意剔除部分个体时要保证剔除的随机性和客观性).(3)确定起始个体编号l (在第1段采用简单随机抽样来确定).(4)按照事先确定的规则抽取样本(通常是将l 加上k ,得到第2个个体编号l +k ,再将l +k 加上k ,得到第3个个体编号l +2k ,这样继续下去,直到获取整个样本).[活学活用]某校高中二年级有253名学生,为了了解他们的视力情况,准备按1∶5的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.解:(1)先把这253名学生编号000,001, (252)(2)用随机数表法任取出3个号,从总体中剔除与这3个号对应的学生;(3)把余下的250名学生重新编号1,2,3, (250)(4)分段.取分段间隔k =5,将总体均分成50段,每段含5名学生;(5)以第一段即1~5号中随机抽取一个号作为起始号,如l .(6)从后面各段中依次取出l +5,l +10,l +15,…,l +245这49个号.这样就按1∶5的比例抽取了一个样本容量为50的样本.[层级一 学业水平达标]1.老师从全班50名同学中抽取学号为3,13,23,33,43的五名同学了解学习情况,其最可能用到的抽样方法为( )A .简单随机抽样B .抽签法C .随机数法D .系统抽样解析:选D 从学号上看,相邻两号总是相差10,符合系统抽样的特征.2.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14解析:选B 由系统抽样定义可知,所分组距为84042=20,每组抽取一个,因为包含整数个组,所以抽取个体在区间[481,720]的数目为(720-480)÷20=12.3.某班级有52名学生,要从中抽取10名学生调查学习情况,若采用系统抽样方法,则此班内每个学生被抽到的机会是________.解析:52名学生中每名学生被抽到的机会均等,且均为1052=526. 答案:5264.某学校高一年级有1 003名学生,为了解他们的视力情况,准备按1∶100的比例抽取一个样本,试用系统抽样方法进行抽取,并写出过程.解:由于总体容量不能被样本容量整除,需先剔除3名学生,使得总体容量能被样本容量整除,取k =1 00010=100,然后再利用系统抽样的方法进行. (1)将每位同学由0001至1003编号.(2)利用随机数表法剔除3名同学.(3)将剩余的1 000名学生重新编号1至1 000.(4)分段,取间隔k =1 00010=100,将总体均分为10组,每组含有100名学生. (5)从第一段即001到100号中随机抽取一个号l .(6)按编号将l,100+l,200+l ,…,900+l 共10个号选出.这10个号所对应的学生组成所需样本.[层级二 应试能力达标]1.下列抽样试验中,最适宜用系统抽样法的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .从某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样解析:选C A 总体有明显层次,不适宜用系统抽样法;B 样本容量很小,适宜用随机数法;D 总体容量很小,适宜用抽签法.2.下列抽样不是系统抽样的是( )A .体育老师让同学们随机站好,然后按1~5报数,并规定报2的同学向前一步走B .为了调查“地沟油事件”,质检人员从传送带上每隔五分钟抽一桶油进行检验C .五一期间麦当劳的工作人员在门口发放50份优惠券D .《唐山大地震》试映会上,影院经理通知每排(每排人数相等)28号观众留下来座谈 解析:选C C 中,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的规则入样,所以不是系统抽样.3.学校为了了解某企业1 203名职工对公司餐厅建设的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k 为( )A .40B .30.1C .30D .12解析:选C 因为1 203除以40不是整数,所以先随机去掉3个人,再除以40,得到每一段有30个人,则分段的间隔k 为30.4.某机构为了了解参加某次公务员考试的12 612名考生的成绩,决定采用系统抽样的方法抽取一个容量为200的样本,那么从总体中随机剔除个体的数目是( )A .2B .12C .612D .2 612解析:选B 因为12 612=200×63+12,系统抽样时分为200组,每组63名,所以从总体中随机剔除个体的数目是12.5.某厂将从64名员工中用系统抽样的方法抽取4名参加2016年职工劳技大赛,将这64名员工编号为1~64,若已知编号为8,24,56的员工在样本中,那么样本中另外一名员工的编号是________.解析:由系统抽样的知识知,将64名员工对应的编号分成4组,每组16个号码,由题意8,24,56在样本中,知8,24,56分别是从第1,2,4组中抽取的,则第3组中抽取的号码是8+2×16=40.答案:406.若总体含有1 645个个体,采用系统抽样的方法从中抽取一个容量为35的样本,则编号后编号应分为________段,分段间隔k =________,每段有________个个体.解析:由N =1 645,n =35,知编号后编号应分为35段,且k =N n =1 64535=47,则分段间隔k =47,每段有47个个体.答案:35 47 477.已知标有1~20号的小球20个,若我们的目的是估计总体号码的平均值,即20个小球号码的平均数.试验者从中抽取4个小球,以这4个小球号码的平均数估计总体号码的平均值,按下面方法抽样(按小号到大号排序):(1)以编号2为起点,系统抽样抽取4个球,则这4个球的编号的平均值为________;(2)以编号3为起点,系统抽样抽取4个球,则这4个球的编号的平均值为________.解析:20个小球分4组,每组5个.(1)若以2号为起点,则另外三个球的编号依次为7,12,17,4球编号平均值为2+7+12+17=9.5.4(2)若以3号为起点,则另外三个球的编号依次为8,13,18,4球编号平均值为3+8+13+18=10.5.4答案:(1)9.5 (2)10.58.为了了解参加某种知识竞赛的20个班的1 000名学生(每个班50人)的成绩,要抽取一个样本容量为40的样本,应采用什么抽样方法比较恰当?简述抽样过程.解:系统抽样的方法比较恰当.系统抽样的过程:(1)分别将每个班的50名学生随机地编号为1,2,3, (50)(2)在第一个班的学生编号中,利用简单随机抽样抽取两个编号,如15,34;(3)将其余19个班的编号为15和34的学生成绩取出,这样,所有的编号为15和34的40名学生的成绩就是所要抽取的样本.9.一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其分成10组,组号为0,1,2,…,9.要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地取出后面各组的号码,即第k组中抽取号码的后两位数为x +33k的后两位数.(1)当x=24时,写出所抽取样本的10个号码;(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.解:(1)当x=24时,按规则可知所抽取样本的10个号码依次为:024,157,290,323,456,589,622,755,888,921.(2)当k=0,1,2,…,9时,33k的值依次为:0,33,66,99,132,165,198,231,264,297.又抽取的样本的10个号码中有一个的后两位数是87,从而x可以是:87,54,21,88,55,22,89,56,23,90.所以x的取值范围是{21,22,23,54,55,56,87,88,89,90}.。

高中数学新人教版B版精品教案《人教版B高中数学必修3 2.1.2 系统抽样》

高中数学新人教版B版精品教案《人教版B高中数学必修3 2.1.2 系统抽样》

第二章统计2.1.2 系统抽样教材分析(1)三维目标1、知识与技能:(1)正确理解系统抽样的概念;(2)掌握系统抽样的一般步骤;(3)正确理解系统抽样与简单随机抽样的关系;2、过程与方法:通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法;3、情感态度与价值观:通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系。

(2)教学重点正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。

(3)教学难点正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。

(4)教学建议注意本章节于实际生活的联系的紧密性,劲量在学生身边的、关心的话题切入学习,指导学生能够运用所学知识解决实际问题,达到知其然、也知其所以然的目的,同时培养学生浓厚的学习兴趣。

教学设计【课前预习】(1)系统抽样的概念是什么?(2)系统抽样适用范围是什么?【探究新知】一、系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。

系统抽样适用的条件:总体中个体差异不大并且总体的容量较大。

注:1.系统抽样与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;2.简单随机抽样和系统抽样过程中,每个个体被抽取的可能性是相等的。

【问题探究一】一、问题情境情境:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?二、学生活动用简单随机抽样获取样本,但由于样本容量较大,操作起来费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,你能否设计其他抽取样本的方法?思考:1. 某报告厅有50排座位,每排有60个座位(编号1~60),一次报告会坐满了观众,会后留下座号为18的所有观众进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样 D.有放回抽样2.下列抽样中不是系统抽样的是()A、从标有115号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D 、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈点拨: 1.C2.C 不是系统抽样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学 第二章 统计 2.1.2 系统抽样课堂探究 新人教B 版必修3
系统抽样的操作要领
剖析:系统抽样操作的要领是先将个体数较多的总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分中抽取一个个体,得到所需样本.由于抽样的间隔相等,因此系统抽样也被称作等距抽样(或称机械抽样).所以系统抽样中必须对总体中的每个个体进行合理(即等距)分段.
若从容量为N 的总体中抽取容量为n 的样本,系统抽样时,应先将总体中的各个个体编号,再确定分段间隔k ,以便对总体进行分段.
当N n 是整数时,取k =N n 为分段间隔即可,如N =100,n =20,则分段间隔k =10020
=5. 当N n
不是整数时,应先从总体中随机剔除一些个体,使剩余个体数N′能被n 整除,这时分段间隔k =N′n
,如N =101,n =20,则应先在总体中剔除一个个体,使剩余的总体容量(即100)能被20整除,从而得出分段间隔k =10020
=5. 一般地,用简单随机抽样从总体中剔除部分个体,其个数为总体中的个体数除以样本容量所得的余数.
上述过程中,总体中的每个个体被取出(或被剔除)的可能性相等,也就是每个个体不被选取(或不被剔除)的可能性也相等,所以在整个抽样过程中每个个体被抽取的机会仍然都相等,这说明使用系统抽样抽取样本的过程是公平的.
题型一 系统抽样的概念
【例1】 下列抽样中不是..
系统抽样的是( ) A .从标有1~15号的15个球中,任选三个作样本,按从小号到大号排序,随机选起点i 0(1≤i 0≤5),以后选i 0+5,i 0+10号入选
B .工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验
C .进行某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定的调查人数为止
D .在报告厅对与会听众进行调查,通知每排(每排人数相等)座位号为14的观众留下来座谈
解析:选项C 不是系统抽样,因事先不知道总体,抽样方法不能保证每个个体等可能入选,其余3个间隔都相同,符合系统抽样的特征.
答案:C
反思 (1)系统抽样最明显的特征是“分组抽取”,否则不是系统抽样,系统抽样适用于总体中的个数较多时,因此此种情况应用简单随机抽样不方便.
(2)系统抽样中,抽样的间隔相同,因此系统抽样也称作等距抽样.
题型二 系统抽样的应用
【例2】 某工厂有1 001名工人,从中抽取10人参加体检,试写出系统抽样的具体实施步骤.
分析:由于总体容量不能被样本容量整除,需先剔除1名工人,使得总体容量能被样本
容量整除,取k =1 00010
=100,然后再利用系统抽样的方法进行. 解:(1)将每名工人编一个号由0001至1001;
(2)利用随机数表法找到1个号将这1个号所对应的工人剔除;
(3)将剩余的1 000名工人重新编号0001至1000;
(4)分段,取间隔k =1 00010
=100,将总体均分为10组,每组含100名工人; (5)从第一段即0001号到0100号中随机抽取一个号l ;
(6)按编号将l,100+l,200+l ,…,900+l 共10个号选出.
这10个号所对应的工人即组成样本.
反思 当总体容量不能被样本容量整除时,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除.
题型三 易错辨析
【例3】 从容量为111的总体中抽取容量为10的样本,每个个体入样的可能性为多少?若采用系统抽样的方法抽样,则抽样间隔k 是多少?
错解1:采用系统抽样的方法,先将个体编号:001,002,…,111,然后确定抽样间隔为⎣⎢⎡⎦
⎥⎤N n =k ,即k =11,每段11个个体,在第一段内,将编号为001,002,…,011的这11个个体采用简单随机抽样的方法抽取一个个体的可能性是
111
,故每个个体入样的可能性是111
,抽样间隔k =11. 错解2:由系统抽样的概念可知,每个个体入样的可能性均为n N
,故每个个体入样的可能性是10111.抽样间隔k =N n =11110=11.1. 错因分析:对个体入样的可能性与⎣⎢⎡⎦
⎥⎤N n 的理解不准确. 正解:由系统抽样的概念可知,每个个体入样的可能性均为n N
,故每个个体入样的可能
10 111.抽样间隔k=⎣⎢

⎦⎥
⎤N
n

⎣⎢

⎦⎥

111
10
=11,故k=11.
性是。

相关文档
最新文档