集合的含义与表示

合集下载

集合的含义与表示

集合的含义与表示

集合的含义与表示知识点1集合的含义与表示(1)元素与集合的关系:属于记为∈;不属于记为∉.(2)集合的三种表示法:列举法、描述法、图示法.思考:集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2}是同一个集合吗?提示:不是.集合A是函数y=x2的定义域,集合B是函数y=x2的值域,集合C 是函数y=x 2图象上的点集.知识点2集合间的基本关系(1)集合间的基本关系:子集、真子集、相等.(2)“⊆”与“”的区别:A⊆B⇒A=B或A B,若A⊆B和A B同时成立,则AB更准确.思考:若{x|ax+1=0}⊆{x|x2-1=0},则实数a的值为________.提示:0或-1或1.[拓展]1.集合的子集和真子集具有传递性:若A⊆B,B⊆C,则A⊆C;若A B,B C,则A C.2.含有n个元素的集合有2n个子集,有2n-1个非空子集,有2n-1个真子集,有2n -2个非空真子集.知识点3集合的基本运算和性质集合的并集集合的交集集合的补集符号表示A∪B A∩B 若全集为U,则集合A 的补集为∁U A图形表示意义{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A}性质A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆AA∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆BA∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A;∁U(A∩B)=(∁U A)∪(∁U B);∁U(A∪B)=(∁U A)∩(∁U B)1.思考辨析(在括号内打“√”或“×”)(1)若{x2,1}={0,1},则x=0,1.()(2){x|x≤1}={t|t≤1}.()(3)对于任意两个集合A、B,关系(A∩B)⊆(A∪B)恒成立.()(4)若A∩B=A∩C,则B=C.()答案:(1)×(2)√(3)√(4)×2.(知识点2)若集合A={x∈N|x≤10},a=22,则下面结论中正确的是()A.{a}⊆A B.a⊆AC.{a}∈A D.a∉A解析:选D.A={0,1,2,3},a=22∉A,故选D.3.(知识点3)已知集合A={x|3≤x<7},B={x|2<x<10},则(∁R A)∩B=.⇐源自必修一P11例9解析:因为∁R A={x|x<3或x≥7},所以(∁R A)∩B={x|2<x<3或7≤x<10}.答案:{x|2<x<3或7≤x<10}4.(知识点3)设集合A={1,2,4},B={x|x2-4x+m=0}. 若A∩B={1},则B=()⇐源自必修一P12A组T6A.{1,-3}B.{1,0}C.{1,3} D.{1,5}解析:选C.∵A∩B={1},∴1∈B,∴1-4+m=0,∴m=3.由x2-4x+3=0,解得x=1或x=3.∴B={1,3}.经检验符合题意.故选C.。

集合的含义及其表示

集合的含义及其表示

集合的含义及其表示一、集合的相关概念元素集合一般用大括号”{}”表示集合,也常用大写的拉丁字母A、B、C…表示集合.用小写的拉丁字母a,b,c…表示元素二、集合三大特性:思考:判断以下元素的全体是否组成集合,并说明理由;(1) 大于3小于11的偶数;(2) 我国的小河流。

三、重要数集:四、元素对于集合的关系五、集合的分类有限集:无限集:空集:六、集合的表示方法1、列举法:例1 用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成的集合。

思考题 (1)你能用自然语言描述集合{2,4,6,8}吗? (2)你能用列举法表示不等式x-7<3吗?2、描述法:3、Venn图:例2 试分别用列举法和描述法表示下列集合:(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合。

课堂小结集合间的基本关系观察以下几组集合,并指出它们元素间的关系:① A={1,2,3}, B={1,2,3,4,5};② A={x| x>1}, B={x | x2>1};③ A={四边形}, B={多边形};④ A={x | x是两边相等的三角形},B={x| x是等腰三角形} .一、子集的定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说这两个集合有包含关系,称集合A为集合B 的子集。

记作:读作:Venn图表示:判断集合A是否为集合B的子集,若是则在()打√,若不是则在()打×:①A={1,3,5}, B={1,2,3,4,5,6} ( )②A={1,3,5}, B={1,3,6,9} ( )③A={0}, B={x x2+2=0} ( )④A={a,b,c,d}, B={d,b,c,a} ( )二、集合相等的定义:一般地,对于两个集合A与B, 如果集合A中的都是集合B的元素,同时集合B中的都是集合A的元素,则称集合A等于集合B,记作三、真子集对于两个集合A与B,如果A B,但存素 ,则称集合A 是集合B的真子集.记作A B四、几个结论①空集是任何集合的子集Φ A②空集是任何非空集合的真子集Φ A (A ≠ Φ)③任何一个集合是它本身的子集,即 A A④对于集合A ,B ,C ,如果 A B,且B C ,则A C例3 设A={x,x 2,xy}, B={1,x,y},且A=B ,求实数x,y 的值.例4 已知集合 与集合 满足Q P , 求a 的取值组成的集合A 作业布置1.教材P.12 A 组 5 B 组2.2. 若A={x |-3≤x≤4}, B={x | 2m -1≤x≤m+1},当B A 时,求实数m 的取值范围.3.已知}06|{2=-+=x x x P },01|{=+=ax x Q {}{}AC B C A B A 求,8,4,2,0,5,3,2,1,,==⊆⊆1.1.3 集合的基本运算(1)观察集合A,B,C元素间的关系:(1) A={4,5,6,8}B={3,5,7,8} C={3,4,5,6,7,8}(2) A={x|x是有理数},B={x|x是无理数}, C={x|x是实数}一、并集一般地,由属于集合A或属于集合B的所有元素组成的集合叫做A与B的并集,记作读作即A∪B=例1. A={4,5,6,8},B={3,5,7,8},求A∪B.例2.设A={x|-1<x<2},B={x|1<x<3},求A∪B性质1A∪A = A∪φ = A∪B B∪A二、交集观察集合A,B,C元素间的关系:A={4,5,6,8}, B={3,5,7,8},C={5,8}一般地,由既属于集合A又属于集合B的元素组成的集合叫做A与B的交集。

集合的含义与表示

集合的含义与表示
集合相等:只要构成两个集合的元素是一样的,就
称这两个集合相等
湖南省长沙市一中卫星远程学校
练习1.下列指定的对象,能构成一个集合 ( B ) 的是 ①很小的数 ②不超过 30的非负实数 ③直角坐标平面的横坐标与纵坐标相等的点 ④的近似值 ⑤高一年级优秀的学生 ⑥所有无理数 ⑦大于2的整数 ⑧正三角形全体 A. ②③④⑥⑦⑧ C. ②③⑥⑦ B. ②③⑥⑦⑧ D. ②③⑤⑥⑦⑧
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2. ∴a=1时这个元素为-2. ∴a=0时这个元素为-1.
课堂练习
1.教科书5面练习第1、2题
2.教科书11面习题1.1第1、2题
课堂小结
1.集合的定义 2.集合元素的性质 3.集合与元素的关系 4.集合的表示 5.集合的分类
解:当a=0时,x=-1.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
解:当a=0时,x=-1.
当a≠0时,=16-4×4a=0. a=1. 此时x=-2.
例4已知集合
A={x|ax2+4x+4=0,x∈R,a∈R} 只有一个元素,求a的值与这个元素.
2.集合的表示:
集合常用大写字母A,B,C,…表示,元素常用 小写字母a,b,c,…表示.
3.集合与元素的关系:
如果a是集合A的元素,就说a属于集 合A,记作a∈A. 如果a不是集合A的元素,就说a不属 于集合A,记作aA.
例如:A表示方程x2=1的解. 2A,1∈A.
4.常用数集及记法:
N:自然数集(含0)
-1 3
x | 0
x | x
x 2

1.1.1集合的含义与表示

1.1.1集合的含义与表示

1.1.1集合的含义与表⽰1.1.1集合的含义与表⽰1. 元素:我们把研究的对象统称为元素;常⽤⼩写字母a , b , c …表⽰元素。

2. 集合:把能够确定的不同元素的全体叫做集合,简称集.常⽤⼤写字母A ,B ,C …表⽰。

3. 集合的性质:(1)确定性:元素必须是确定的。

是否有⼀个明确的客观标准来鉴定这些对象,若有,则能构成集合,否则不能构成集合。

(2)互异性:元素必须是互异不相同的。

(3)⽆序性: 元素是⽆先后顺序的. 如:{1,2},{2,1}为同⼀集合。

4. 集合相等:构成两个集合的元素是⼀样的。

5. 集合与元素的关系:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A . 如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ?A . 6. 重要的数集:N :⾃然数集(含0)N+:正整数集(不含0) Z :整数集 Q :有理数集 R :实数集7. 空集(?):把没有元素的集合叫做空集,记作?。

8. 集合的表⽰⽅法:列举法、描述法、区间表⽰列举法:将集合中元素⼀⼀列举出来,元素之间⽤逗号隔开,⽤花括号{ }括起来。

描述法:⽤集合所含元素的共同特征表⽰集合的⽅法,称为描述法。

如:在⼤括号内先写上表⽰这个集合元素的⼀般符号及取值(或变化)范围,再画⼀条竖线,在竖线后写出这个集合中元素所具有的共同特征。

区间表⽰:设a 、b 是两个实数,且a①满⾜不等式a ≤x ≤b 的实数x 的集合, 叫作闭区间,记作 [a,b];②满⾜不等式a③满⾜不等式a ≤x{}|10x R x ∈<{}|∈⼀般符号范围共同特征{x| a练习:⼀、说法正确的是( ) 1. 接近于0的数的全体构成⼀个集合 2. 棱柱的全体构成⼀个集合 3. 未来世界的⾼科技产品构成⼀个集合 4. 不⼤于3的所有⾃然数构成⼀个集合 5. 漂亮的花 6. 正三⾓形全体⼆、集合{1,2}与集合{(1,2)}是否相等?集合{(1,2),(2,1)}与集合{(2,1),(1,2)}是否相等?三、⑴ 0 ? ⑵ {0} ? 四、⽤列举法表⽰下列集合:(1) ⽅程x x =2 的所有实数根组成的集合; (2) ⽅程0)1(2=-x 的所有实数根组成的集合;(3) 由1~20以内的所有质数组成的集合。

集合的含义及表示方法

集合的含义及表示方法
在实际应用中,无序性使得集合可以更灵活地表示各种数据结构,如数组、列表等。
确定性
集合中的元素具有确定性,即每个元素是否属于某个集合是明确的。对于任意一 个元素,如果它属于某个集合,则它只属于该集合;如果不属于该集合,则它与 该集合没有关系。
确定性的性质使得集合可以准确地描述事物的分类和归属问题,是数学和计算机 科学中基本的概念之一。
集合的含义及表示方法
• 集合的基本概念 • 集合的运算 • 集合的性质 • 集合的应用
01
集合的基本概念
集合的定义
01 集合是由确定的、不同的元素所组成的总体 。
02
集合中的元素具有确定性,即每一个对象是 否属于某个集合是确定的。
03
集合中的元素具有互异性,即集合中不会有 重复的元素。
04
集合中的元素具有无序性,即集合中元素的 排列顺序不影响集合本身。
数据库系统
数据库系统是计算机科学中用来存储和管理大量数据的重要工具。集合理论在数据库设计 中起着重要的作用,例如关系数据库中的表可以看作是集合的表示。
在日常生活中的应用
分类问题
在生活中,我们经常需要对事物进行分类。集合可以用来表示不同的类别,帮助我们更好地组织 和理解事物。
决策制定
在决策制定过程中,我们经常需要考虑多个因素或条件。集合可以帮助我们表示这些因素或条件 ,并分析它们之间的关系,从而做出更好的决策。
03
补集
补集是指全集中不属于某个集合的元素组成的集合。
补集的表示方法是在一个集合后面加上"′",例如:A′。
补集运算满足反演律,即A′=(全集−A)∪(全集−B)。
03
集合的性质
无序性
集合中的元素没有固定的顺序,即元素的位置不影响集合的性质。例如,集合A={1,2,3}和集合B={3,2,1}是同一个集合,因为 元素的无序性,集合A和集合B具有相同的性质。

高中数学知识点总结:集合的含义与表示

高中数学知识点总结:集合的含义与表示

高中数学知识点总结 第 1 页 共 1 页 高中数学知识点总结:集合的含义与表示
集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.
(3)集合与元素间的关系
对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一.
(4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{x |x 具有的性质},其中x 为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合.
(5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).。

集合的含义与表示

集合的含义与表示

集合的含义与表示目录集合的含义与表示 (1)知识点: (1)一、集合的三性:确定性、互异性、无序性 (3)①确定性 (3)②互异性 (4)二、集合的表示方法 (7)①元素与集合的关系 (7)②列举法 (8)③描述法 (10)三、区别点集与数集 (11)知识点:1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。

2.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

例:世界上最高的山、中国古代四大美女、教室里面所有的人……(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

例:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合.3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

①列举法:将集合中的元素一一列举出来{a,b,c……}②描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}③语言描述法:例:{不是直角三角形的三角形}4.集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:{x|x2=-5}5.元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A∉(2)元素不在集合里,则元素不属于集合,即:a A注意:常用数集及其记法:非负整数集(即自然数集)记作:N;正整数集N*或N+;整数集Z;有理数集Q;实数集R.一、集合的三性:确定性、互异性、无序性①确定性1.下列各组对象能够构成集合的是( )A. 我国所有的老人B. 我们班的高个子C. 长命万岁的人D. 我国的小河流答案:C。

高一数学集合的含义与表示

高一数学集合的含义与表示
几个要求
⑴上课前要预习
⑵上课时要认真 ⑶关于作业 ⑷自己整ement)---我们把研究的对象 统称为元素
集合(set)---把一些元素组成的总体叫 做集合, 简称集.
一般用大括号”{ }”表示集合,也常用 大写的拉丁字母A、B、C…表示集合. 用小写的拉丁字母a,b,c…表示元素
注:组成集合的元素可以是物,数,图,点等
集合三大特性:
(1)确定性:集合中的元素必须是确定 的.
(2)互异性:集合中的元素必须是互不相同 的。
(3)无序性:集合中的元素是无先后顺序的. 集合中的任何两个元素都可以交换位置.
只要构成两个集合的元素是一样 的,我们就称这两个集合是相等 的
思考:
判断以下元素的全体是否组成集合,并 说明理由; (1) 大于3小于11的偶数; (2) 我国的小河流。
判断下列例子能否构成集合
中国的直辖市

身材较高的人
×
著名的数学家
×
高一(5)班眼睛很近视的同学 ×
注:像”很”,”非常”,”比较”这些不确定的词 都不能构成集合
找工作之前都会有一个表格的填写,我们对于这样的资料专业上有个统一的称呼,叫做个人的简历说明,其中有很多不同的资料介绍,不过这些都是和你个人有关联的,因为是你在找工作,所以 历上的信息内容都是根据个人的情况来填写的,但是对于这样的资料说明也要有自己的技巧所在。 写个人简历前可以去看一下制作简历的技巧5点,对于你制作个人简历是有很大的帮助的,尤其是在一些国家企业中,个人简历是求职非常重要的一部分,所以对于这些资料有不同的种类。有的建 全表格式的,只要将表格中的那些信息提醒写出来就完成一个完整的简历介绍了。 在规范的简历填写中信息的内容一定要真实,如果你想有一些不同之处就要从实际功夫来研究了。首先现在的简历填写都是手写的,所以对于文字的美观还有整体的规范度要求非常高。不同的工 不同的内容填写,对于白领工作的简历填写有以下几个要求是重点。 白领工作是一个比较严肃的工作种类,所以填写的内容不能有太多性的东西,很多有证书的能力填写是非常有帮助的,比如说你在个别的专业中拿到相关的资格证书,这些都是非常有用的信息填 上不同专业之间的转变也会有不同的填写方向。但是专业性还有真实都是非常重要的,因为你填写的资料对于这些工作场地来说都是要经过一些列的调查,得到证实正式采纳为可以接受的资料。 硬笔书法加盟
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1课时集合的含义与表示
(一)教学目标
1.知识与技能
(1)初步理解集合的含义,知道常用数集及其记法.
(2)初步了解“属于”关系的意义.理解集合相等的含义.
(3)初步了解有限集、无限集的意义,并能恰当地应用列举法或描述法表示集合.
2.过程与方法
(1)通过实例,初步体会元素与集合的“属于”关系,从观察分析集合的元素入手,正确
地理解集合.
(2)观察关于集合的几组实例,并通过自己动手举出各种集合的例子,初步感受集合语
言在描述客观现实和数学对象中的意义.
(3)学会借助实例分析、探究数学问题(如集合中元素的确定性、互异性).
(4)通过实例体会有限集与无限集,理解列举法和描述法的含义,学会用恰当的形式表
示给定集合掌握集合表示的方法.
3.情感、态度与价值观
(1)了解集合的含义,体会元素与集合的“属于”关系.
(2)在学习运用集合语言的过程中,增强学生认识事物的能力.初步培养学生实事求是、
扎实严谨的科学态度.
(二)教学重点、难点
重点是集合的概念及集合的表示.难点是集合的特征性质和概念以及运用特征性质描述
法正确地表示一些简单集合.
(三)教学方法
尝试指导与合作交流相结合.通过提出问题、观察实例,引导学生理解集合的概念,分析、讨论、探究集合中元素表达的基本要求,并能依照要求举出符合条件的例子,加深对概
种.从而指出:导入课题.
识:
集.
第一组实例(幻灯片一):
数.
间的距离的点.
)班全体同学.
成员.
.集合:
这些对象的全体构成的集合(或集)..集合的元素(或成员):
请大家讨论.的要点,然后教师肯定或补充.师总结.
?
第二组实例(幻灯片二):
国代表团的成员构成的集合.
合.
合.
的点的全体构成的集合.
?

…表示.
”.
”.
.集合的元素的基本性质;
的.不能确定的对象不能构成集合.
能算作一个元素.
第三组实例(幻灯片三):
子构成的集合.
的点的全体构成的集合.
集合.
为有限集和无限集.

).
:整数集.:有理数集.为什么?师的引导下明确:只能算作集合的一个元素.
?
例1(1)利用列举法表法下列集合:①{15的正约数};②不大于10的非负偶数集. (2)用描述法表示下列集合:①正偶数集;②{1,–3,5,–7,…,–39,41}. 【分析】考查集合的两种表示方法的概念及其应用.
【解析】(1)①{1,3,5,15}
②{0,2,4,6,8,10} (2)①{x | x = 2n ,n ∈N *}
②{x | x = (–1) n –1·(2n –1),n ∈N *且n ≤21}.
【评析】(1)题需把集合中的元素一一列举出来,写在大括号内表示集合,多用于集合中的元素有有限个的情况.
(2)题是将元素的公共属性描述出来,多用于集合中的元素有无限多个的无限集或元素个数较多的有限集.
例2 用列举法把下列集合表示出来:
(1)A = {x ∈N |9
9x
-∈N }; (2)B = {
9
9x
-∈N | x ∈N }; (3)C = { y = y = – x 2 + 6,x ∈N ,y ∈N }; (4)D = {(x ,y ) | y = –x 2 +6,x ∈N };
(5)E = {x |p
q
= x ,p + q = 5,p ∈N ,q ∈N *}.
【分析】先看五个集合各自的特点:集合A 的元素是自然数x ,它必须满足条件99x
-也是自然数;集合B 中的元素是自然数
9
9x
-,它必须满足条件x 也是自然数;集合C 中的元素是自然数y ,它实际上是二次函数y = – x 2 + 6 (x ∈N )的函数值;集合D 中的元素是点,这些点必须在二次函数y = – x 2 + 6 (x ∈N )的图象上;集合E 中的元素是x ,它必须满足的条
件是x =p
q
,其中p + q = 5,且p ∈N ,q ∈N *.
【解析】(1)当x = 0,6,8这三个自然数时,
9
9x
-=1,3,9也是自然数. ∴ A = {0,6,9}
(2)由(1)知,B = {1,3,9}.
(3)由y = – x 2 + 6,x ∈N ,y ∈N 知y ≤6. ∴ x = 0,1,2时,y = 6,5,2 符合题意. ∴ C = {2,5,6}.
(4)点 {x ,y }满足条件y = – x 2 + 6,x ∈N ,y ∈N ,则有:
0,1,2,
6,
5,
2.x x x y y y ===⎧⎧⎧⎨

⎨===⎩⎩⎩
∴ D = {(0,6) (1,5) (2,2) }
(5)依题意知p + q = 5,p ∈N ,q ∈N *,则
0,
1,2,3,4,
5,4,3,2, 1.p p p p p q q q q q =====⎧⎧⎧⎧⎧⎨

⎨⎨⎨=====⎩⎩⎩⎩⎩
x 要满足条件x =P
q ,
∴E = {0,14,2
3
,32,4}.
【评析】用描述法表示的集合,要特别注意这个集合中的元素是什么,它应该符合什么
条件,从而准确理解集合的意义.
例3 已知–3∈A = {a –3,2a – 1,a2 + 1},求a的值及对应的集合A.
–3∈A,可知–3是集合的一个元素,则可能a –3 = –3,或2a – 1 = –3,求出a,再代入A,求出集合A.
【解析】由–3∈A,可知,a –3 = –3或2a–1 = –3,当a–3 = –3,即a = 0时,A = {–3,–1,1}
当2a– 1 = –3,即a = –1时,A = {– 4,–3,2}.
【评析】元素与集合的关系是确定的,–3∈A,则必有一个式子的值为–3,以此展开讨论,便可求得a.。

相关文档
最新文档