改进的粒子群算法在动态OD矩阵反推中的应用

合集下载

改进的粒子群优化算法(APSO和DPSO)研究【精品文档】(完整版)

改进的粒子群优化算法(APSO和DPSO)研究【精品文档】(完整版)

大连理工大学硕士学位论文改进的粒子群优化算法(APSO和DPSO)研究姓名:张英男申请学位级别:硕士专业:计算机应用技术指导教师:滕弘飞20080601大连理工大学硕士学位论文摘要粒子群优化(PSO)算法由Kennedy和Eberhart于1995年提出,是群体智能优化方法中具典型代表性的算法,具有广泛的应用领域,例如神经网络训练,工程优化等。

PSO的基本思想是群体中的每一个成员通过学习患身和群体中其他成员的信息以决定下一步动作,即一个粒予通过追随两个目标点(分别代表离身信息和其他成员信息) 进行寻优,第一个譬标点为囊身历史最优点,第二个冒标点有两种:~种是种群最优点(称为全局版PSO),另一种是邻域最优点(称为局部版PSO)。

PSO计算简单有效、鲁棒性好。

僵是,PSO最大弱点是在处理多峰溺数优化闯题时,容易出现晕熟收敛,并且搜索后期的局部搜索能力较差。

如何解决上述问题并进一步提高PSO的性能,~直是PSO 研究的重要开放性课题。

本文的研究目的,~是从理论方法上研究一种性能较好算法,二是从应用上将这种方法既用于高效求解函数优化又用于求解Packing问题,最终期望用它作为求解卫星舱布局设计混合方法中的有效组成部分。

由此,本文尝试从研究修改粒子搜索路径的角度,通过构造新的速度更新公式,提出了两种改进的粒子群优化算法,分别为活跃目檬点粒子群优化(APSO)算法和搽测粒子群优纯(DPSO)算法,并应用予求解匾数优化和约束布局优化问题。

本文的工作主要包括以下两个方面:(1)提出了一种活跃目标点粒子群优化(APSO)算法。

基本思想是,在标准PSO速度更新公式中引入第3个目标点,称为活跃目标点,从而构成新的基于3圈标点速度更新机制的粒子速度更新公式。

APSO的优点是较好地竞服了PSO的早熟收敛问题,并兼具复合形法射线搜索的能力;缺点是增加了一定的额外计算开销。

(2)提出了~种探测粒子群优化(DPSO)算法。

粒子群优化算法理论及应用ppt课件

粒子群优化算法理论及应用ppt课件
国内期刊如《计算机学报》、《电子学报》、《物理
学报》、《分析化学》等
15
PSO的研究与应用现状概述
截至2010年3月
• 在《科学引文索引扩展版SCI Expanded》的“Science
Citation Index Expanded (SCI-EXPANDED)--1999-present” 数据库中以“General Search,TOPIC,Title only”为检索 方式,以“Particle Swarm Optimization”为检索词,进行 检索,可以检索到1075篇相关文章;
进化计算是模拟自然界生物进化过程与机理求解优化 问题的人工智能技术,其形式是迭代算法,从选定的初始群 体(一组初始解)出发,对群体中的每个个体进行评价,并 利用进化产生机制产生后代个体,通过不断迭代,直至搜索 到优化问题的最优解或者满意解。
6
开始
群体初始化

对群体中的每个个体进行评价


利用进化产生机制产生后代个体
11
PSO算法起源
• 模拟鸟类飞行的Boid模型
群体行为可以用几条简单行为规则在计算机
中建模,Reynolds使用以下规则作为行为规则:

向背离最近同伴的方向移动;

向目的移动;

向群体的中心移动。
12
PSO算法起源
• 假设在一个区域里只有一块食物,一群鸟进行随机
搜索,所有鸟都不知道食物具体在哪里,但知道它 们当前位置离食物还有多远,那么一种简单有效的 觅食策略是搜索目前离食物最近的鸟的周围区域。
过程中,个体适应度和群体中所有个体的平均适应度不断得到
改进,最终可以得到具有较高适应度的个体,对应于问题的最

粒子群算法的改进及其在求解约束优化问题中的应用

粒子群算法的改进及其在求解约束优化问题中的应用

第43卷 第4期吉林大学学报(理学版)Vol.43 No.4 2005年7月JOURNAL OF J I L I N UN I V ERSI TY(SC I E NCE E D I TI O N)July 2005粒子群算法的改进及其在求解约束优化问题中的应用刘华蓥1,林玉娥1,王淑云2(1.大庆石油学院计算机与信息技术学院,黑龙江省大庆163318;2.吉林大学数学学院,长春130012)摘要:在用粒子群算法求解约束优化问题时,处理好约束条件是取得好的优化效果的关键.通过对约束问题特征和粒子群算法结构的研究,提出求解约束优化问题一种改进的粒子群算法,该算法让每个粒子都具有双适应值,通过双适应值决定粒子优劣,并提出了自适应保留不可行粒子的策略.实验证明,改进的算法是可行的,且在精度与稳定性上明显优于采用罚函数的粒子群算法和遗传算法等算法.关键词:粒子群优化算法;双适应值;自适应中图分类号:TP301 文献标识码:A 文章编号:167125489(2005)0420472205A M odi fi ed Parti cle Swar m Opti m i zati on forSolvi n g Constra i n ed Opti m i zati on Proble m sL I U Hua2ying1,L I N Yu2e1,WANG Shu2yun2(1.College of Co m puter and Infor m ation Technology,D aqing Petroleum Institute,D aqing163318,Heilongjiang Province,China;2.College of M athe m atics,J ilin U niversity,Changchun130012,China)Ab s trac t:I n trying t o s olve constrained op ti m izati on p r oble m s by particle s war m op ti m izati on,the way t o han2 dle the constrained conditi ons is the key fact or f or success.Some features of particle s war m op ti m izati on and a large number of constrained op ti m izati on p r oble m s are taken int o account and then a ne w method is p r oposed, which means t o separate the objective functi ons fr om its constrained functi ons.Therefore,every particle of particle s war m op ti m izati on has double fitness values whether the particle is better or not will be decided by its t w o fitness values.The strategy t o keep a fixed p r oporti on of infeasible individuals is used in this ne w method. Numerical results show that the i m p r oved PS O is feasible and can get more p recise results than particle s war m op ti m izati on by using penalty functi ons and genetic alg orith m and other op ti m izati on algorithm s.Key wo rd s:particle s war m op ti m izati on;double fitness value;adap tive对于约束优化问题,大多数算法都基于梯度的概念,要求目标函数和约束条件可微,而且一般只能求得局部最优解.粒子群优化算法(Particle S war m Op ti m azit on,简称PS O)[1,2],由于其具有容易理解、易于实现、不要求目标函数和约束条件可微,并能以较大概率求得全局最优解的特点,目前已在许多优化问题中得到成功应用[3~5].当用PS O算法求解约束优化问题时,如何处理约束条件是得到好的优化结果的关键.惩罚函数法是处理约束条件最常用的方法,通过在适应值函数上添加一个惩罚项,即将原来的约束问题变成无约束问题.惩罚函数法简单易行,但选择适当的惩罚因子却不是一件容易的事,若选的过小,则惩罚项在目标函数中所占比例较小,较难产生可行解;若选的过大,则将会较早地收敛于某个局部最优点.收稿日期:2004211220.作者简介:刘华蓥(1969~),女,汉族,硕士,副教授,从事智能计算的研究,E2mail:liuhuaying2000@.本文结合PS O 算法及约束优化问题的特点,提出了比较个体优劣的一个新准则将约束条件与目标函数分离,并引入自适应保持群体中不可行解比例的策略,二者相结合得到了处理约束条件的一种新方法,将这种方法和基本的PS O 算法相结合,得到了求解约束优化问题的一种改进的PS O 算法.1 粒子群优化算法PS O 算法与其他进化类算法相似,也采用“群体”与“进化”的概念,同样也依据个体(粒子)的适应值大小进行操作.不同的是,粒子群算法不像其他进化算法那样对于个体使用进化算子,而是将每个个体看作是在n 维搜索空间中的一个没有重量和体积的粒子,并在搜索空间中以一定的速度飞行.每个粒子的飞行速度由其本身的飞行经验和群体的飞行经验调整.假设在一个n 维的目标搜索空间中,有m 个粒子组成一个群落,其中第i 个粒子表示为一个n 维向量x i =(x i 1,x i 2,…,x in )(i =1,2,…,m ),即第i 个粒子在n 维搜索空间中的位置是x i ,每个粒子的位置代表一个潜在的解.将x i 带入一个目标函数就可以计算其适应值,根据适应值的大小衡量x i 的优劣.第i 个粒子的“飞翔”速度也是一个n 维向量,记为v i =(v i 1,v i 2,…,v in ).记第i 个粒子最终搜索到的最优位置为p i =(p i 1,p i 2,…,p in ),整个粒子群最终搜索到的最优位置为p g =(p g 1,p g 2,…,p gn ).每个粒子的位置和速度按下述方程迭代:v ij (t +1)=w v ij (t )+c 1r 1j (t )(p ij (t )-x ij (t ))+c 2r 2j (t )(p g j (t )-x ij (t )),(1.1)x ij (t +1)=x ij (t )+v ij (t +1),(1.2)其中,j 表示粒子维数(i =1,2,…,n ),i 表示第i 个粒子(i =1,2,…,m ),t 表示第t 代,c 1和c 2为加速度常数,通常取值于0~2,c 1调节粒子向自身最优位置飞行的步长,c 2调节粒子向全局最优位置飞行的步长.r 1j ~U (0,1),r 2j ~U (0,1)为两个相互独立的随机函数.为了减小在进化过程中粒子离开搜索空间的可能性,v ij 通常限定于一定范围内,即v ij ∈[-v max ,v max ].如果问题的搜索空间限定在[-x max ,x max ]内,则可设定v max =kx max (0.1≤k ≤1).迭代中若粒子的位置和速度超出了对其限定的范围,则取边界值.p ij (t )-x ij (t )表示粒子i 目前位置到其最终搜索到最优位置的距离,p g j (t )-x ij (t )表示粒子i 目前位置到整个粒子群最终搜索到最优位置的距离.方程(1.1)用于计算粒子速度,如当前是t 时刻,则粒子在t +1时刻速度是由当前时刻的速度、位置与该粒子的局部最优位置距离、当前位置与全局最优位置距离三部分共同决定.方程(1.2)用于计算粒子速度更新后的位置,它由粒子当前位置和粒子更新后的速度两部分决定.所有粒子的初始位置和速度随机产生,然后根据式(1.1),(1.2)进行迭代,不断变化它们的速度和位置,直至找到满意解为止(粒子的位置即是要寻找的解).2 处理约束条件的分离比较方法求解带有约束条件的极值问题称为约束优化问题,一般形式表示为m in f (x ),s .t .g j (x )≥0,j =1,…,q ;h p (x )=0,p =1,…,m;x l i ≤x i ≤x u i ,i =1,…,n,(2.1)这里x =(x 1,…,x n )∈R n 是n 维实向量,f (x )为目标(适应值)函数,g j 表示第j 个不等式约束,h p 表示第p 个等式约束,变量x i 在区间[x l i ,x u i ]中取值.S =∏n i =1[x l i ,x u i ]表示搜索空间,S 中所有满足约束条件的可行解构成的可行域记为F ΑS.当对带有约束条件的问题进行优化处理时,无论采用何种优化算法,约束条件的处理方法都是一个非常重要的环节.目前,使用最广泛处理约束条件的方法是惩罚函数法,但对于要解决的约束优化问题,事先确定适当的罚因子很困难,往往需要通过多次实验不断进行调整.文献[6]将分离方法的思想与遗传算法中广泛使用的竞争选择方法相结合,引入了不需要罚因子而直接比较个体优劣的分离374 第4期 刘华蓥,等:粒子群算法的改进及其在求解约束优化问题中的应用 个给定的解个体,当两个解个体都可行时,通过比较它们的适应值f (x )来判断优劣;当二者之中有一个可行而另一个不可行时,则无条件地认为可行解的个体为优;当这两个解个体都不可行时,则根据它们所对应的作为违反约束的度量函数值直接判定它们的优劣,违反约束越小的个体越好.这种分离比较方法既可以避免选择罚因子,同时也达到了使任一可行解个体优于任一不可行解个体的目的.3 采用双适应值比较法与自适应保留不可行解改进的PS O 算法3.1 PS O 算法中的双适应值比较法考虑到PS O 算法与遗传算法都是根据适应值大小确定其个体优劣的,把处理约束条件的分离比较方法引入到PS O 算法中.PS O 算法中每个粒子均有一个适应值,其适应值可由目标函数来度量.对于最小化问题,适应值小者为优.对于约束优化问题(2.1),采用分离目标函数与约束条件的方法,于是,原来的问题可转化为fitness (i )=f (x ),vo ilation (i )=∑q j =1m ax (0,g j (x ))+∑mp =1h p (x ),i =1,2,…,n,(3.1)其中,i 指第i 个粒子,fitness (i )对应于所求问题的目标函数值;voilati on (i )对应于所求问题约束条件,由所有的约束条件共同构成,该值反映了每个粒子与约束边界的接近程度.这两个函数一起作为粒子的适应函数,每个粒子的优劣将由这两个函数值按一定规则共同决定,因此每个粒子均具有双适应值,这种方法称为双适应值比较法.3.2 PS O 算法中粒子的比较准则考虑到存在一大类约束优化问题,其最优解位于约束边界上或附近,即在最优点处不等式约束的全部或大部分取为等号,对于这类问题,当目标函数f (x )连续时,在最优解附近的不可行解的适应值很可能优于位于可行域F 内部的一个可行解的适应值,而这样的不可行解对找到最优解都是很有帮助的.鉴于PS O 算法是一种群体搜索策略,从提高优化效率的角度考虑,让一部分接近边界的不可行解与可行解按照它们的适应值进行比较,以便在群体中保留一定比例的不可行解个体.因此,我们采用下列比较准则:首先给定一个常数ε>0.(1)当两个粒子i 和j 都可行时,比较它们之间的适应值finess (i )和fitness (j ),适应值小的个体为优(对最小化问题);(2)当两个粒子i 和j 都不可行时,比较voilati on (i )和voilati on (j ),voilati on 小的个体为优(最大化和最小化问题都采用该规则);(3)当i 粒子可行而j 粒子不可行时,如果voilati on (j )<ε,则比较它们的适应值fitness (i )和fitness (j ),适应值小的个体为优(对最小化问题);否则,i 粒子为优.3.3 保持不可行解粒子的自适应策略如果让所有可行解粒子无条件地优于不可行解粒子,则在群体中很难保持一定比例的不可行解粒子,从而无法发挥不可行解的作用.我们的最终目的是求得可行解,在群体中保持不可行解是为了更好地搜索可行的最优解,因此,将不可行解的比例控制在一个适当水平是必要的.由于PS O 算法的进化过程是一个动态的自适应过程,相应的控制策略也应当设计成自适应的.由上述比较准则可知:ε越大,群体中不可行解的比例就可能越高,为了将不可行解的比例保持在一个固定的水平p >0,可引入如下自适应调整ε的策略:ε=1.2ε,当不可行解所占比例小于p 时;0.8ε,当不可行解所占比例大于p 时;ε,当不可行解所占比例等于p 时.(3.2) 在PS O 算法中,每隔10代将根据式(3.2)对ε进行一次更新,从而保证了不可行解所占的比例.4 参数设定与数值实验为了测试改进的PS O 算法对约束优化问题的求解性能,下面选择3个例子进行仿真实验.例4.1 非凸可行域的非线性约束优化问题[7]:m in f (x )=(x 21+x 2-11)2+(x 1+x 22-7)2,s .t .g 1(x )=4.84-(x 1-0.05)-(x 2-2.5)≥0,g 2(x )=x 21+(x 2-2.5)-4.84≥0, 0≤x 1,x 2≤6. 例4.1的真实可行域为一个月牙形的狭窄空间,可行域面积仅占总的解空间面积的0.7%,目前已知其最优值f (x 3)=13.5908.本文算法的参数设置:群体规模设为80,p =0.2,ε=0.01,取加速权重c 1=1.5,c 2=2.5,惯性权重w =1.4.w 将随着迭代次数的增加而逐渐减小,当w <0.4时,将令w =0.4,即不再减小,以保证迭代后期粒子能够在一定的空间内探索到更好地解.在采用罚函数的PS O 算法中,惩罚因子设置为108,两种方法最大进化次数均为20次.分别进行了10次实验,两种方法每次所得结果都很稳定,改进的PS O 算法在进化到10次左右时,就得到最优值13.5908,而采用罚函数的PS O 算法在15~20次时得最优值为14.4245.图1为两种PS O 算法10次实验的平均进化过程曲线.为了进一步验证改进的PS O 算法优于采用罚函数的PS O 算法,选择一个未知量多、约束条件也多的例子[8]进行测试.例4.2 m in f (x )=(x 1-10)2+5(x 2-12)2+x 43+3(x 4-11)2+10x 65+7x 26+x 47-4x 6x 7-10x 6-8x 7,s .t .-127+2x 21+3x 42+x 3+4x 24+5x 5≤0,-282+7x 1+3x 2+10x 23+x 4-x 5≤0,-196+23x 1+x 22+6x 26-8x 7≤0,4x 21+x 22-3x 1x 2+2x 23+5x 6-11x 7≤0, -10≤x i ≤10,i =1,2, (7) 已知例4.2最优值f (x 3)=680.6300573.取种群规模为150,进化200次,进行10次实验.改进的PS O 算法每次都能在150次左右求得最优值680.632;而采用罚函数的PS O 算法每次所得的结果很不稳定,最好结果为683.036,最差结果为831.354.图2为两种PS O 算法10次实验的平均进化过程曲线.从上面两组实验可以看出,改进的PS O 算法不但收敛速度快,求解精度高,而且稳定性能也大大优于采用罚函数的粒子群算法.通过实验也发现,当问题变得复杂时,不需要调整算法的任何参数,只要适当的加大种群数量即可.为了和遗传算法等其他一些算法进行比较,我们对下面的例子进行了测试.例4.3 m in f (x )=(x 1-2)2+(x 2-1)2,s .t .g 1(x )=x 1-2x 2+1=0,g 2(x )=-x 21/4-x 22=1>0, 0≤x 1,x 2≤10. 已知最优值为f (x 3)=1.393,取种群规模为80,采用改进的PS O 算法进行10次实验,每次均能574 第4期 刘华蓥,等:粒子群算法的改进及其在求解约束优化问题中的应用674 吉林大学学报(理学版) 第43卷 在进化20次内收敛到最优值1.393465.表1列出了改进的PS O算法和遗传算法等其他算法所得结果的比较结果.Table1 The best results by usi n g follow i n g m ethodsI m p r oved PS O Self2adap tive multi p lier[9]Gen[10]Homaifar[11]GRG[12]x10.8228760.82280.80800.81020.8229 x20.9114380.91120.885440.90260.9115 g1(x)00.0040.0370.050.0001 g2(x)-0.00000046-0.0430.0520.025-0.0000515 f(x)1.3934651.39371.43391.42511.3934 综上可见,处理好约束条件是用PS O算法求解约束优化问题时所面临的一个关键问题.本文结合PS O算法的群体搜索特性,采用新的比较准则双适应值比较法来比较粒子的优劣,得到了求解约束优化问题改进的PS O算法.数值实验表明,它是一种便于实现、通用性强、高效稳健的方法,不仅优于采用罚函数的PS O算法,而且也优于遗传算法等其他一些算法,为利用PS O算法求解约束优化问题提供一条可行途径.参考文献[1] Kennedy J,Eberhart R C.Particle S war m Op ti m izati on[C].I EEE I nternati onal Conference on NeuralNet w orks.Perth,Piscata way,N J,Australia:I EEE Service Center,1995,Ⅳ:1942—1948.[2] Shi Y,Eberhart R C.A Modified Particle S war m Op ti m izer[C].I EEE I nt’l Conf on Evoluti onary Computati on.Anchorage,A laska,1998:69—73.[3] Eberhart R C,Hu X.Hu man Tre mor Analyis U sing Particle S war m Op ti m izati on[C].Pr oceeding of the I EEE Congresson Evoluti onary Computati on(CEC1999).W ashinggon:I EEE Press,1999:1927—1930.[4] HUANG Lan,WANG Kang2p ing,ZHOU Chun2guang.Particle S war m Op ti m izati on f or Traveling Sales man Pr oble m s[J].Journal of J ilin U niversity(Science Edition),2003,41(4):477—480.(黄 岚,王康平,周春光.粒子群优化算法求解旅行商问题[J].吉林大学学报(理学版),2003,41(4):477—480.)[5] Z HANG L i2biao,Z HOU Chun2guang.A Novel Evoluti onary A lgorith m f or Solving Constrained Op ti m izati on Pr oble m s[J].Journal of J ilin U niversity(Science Edition),2004,42(4):534—540.(张利彪,周春光.求解约束优化问题的一种新的进化算法[J].吉林大学学报(理学版),2004,42(4):534—540.)[6] Powell D,Skolnick M.U sing Genetic A lgorith m s in Engineering Design Op ti m izati on with Nonlinear Constraints[C].I n:For2est S,ed.Pr oceeding Sof the5th I nternati onal Conference on Genetic A lgorith m s.San mateo,C A:MorganKauf mann Publishers,1993:424—430.[7] Z HAN Shi2chang.Genetic A lgorith m f or Constrained Op ti m izati on Pr oble m sW hich is Based on the Annealing I nfeasibleDegree[J].Journal of B asic Science and Engineering,2004,12(3):299—304.(詹士昌.基于退火不可行度的约束优化问题遗传算法[J].应用基础与工程科学学报,2004,12(3):299—304.)[8] P AN Zheng2jun,K ANG L i2shan.Evoluti onary Computati on[M].Beijing:Tsinghua University Press,2001.(潘正君,康立山.演化计算[M].北京:清华大学出版社,2001.)[9] Z HANG Chun2kai,S HAO Hui2he.App licati on of Self2adap tive Multi p lier in Engineering Op ti m izati on Pr oble m[J].Control and D ecision,2001,16(6):669—672.(张春慨,邵惠鹤.自适应乘子在工程优化问题中的应用[J].控制与决策,2001,16(6):669—672.)[10] Gen M,CHE NG Run2wei.Genetic A lgorith m s and Engineering Design[M].Ne w York:John W iley&Sona Press,1997.[11] Homaifar A,Lai S H Y,Q i X.Constrained Op ti m izati on via Genetic A lgorith m s[J].S i m ulation,1994,62(4):242—254.[12] David M H i m melblau.App lied Nonlinear Pr ogramm ing[M].Ne w York:McGraw2H ill Press,1972.(责任编辑:赵立芹)。

改进粒子速度和位置更新公式的粒子群优化算法

改进粒子速度和位置更新公式的粒子群优化算法

改进粒子速度和位置更新公式的粒子群优化算法
粒子群优化算法是一种经典的优化算法,其基本思想是模拟鸟群或鱼群等自然现象中的集体行为,通过不断调整所有粒子的位置和速度,以寻找最优解。

在传统的粒子群优化算法中,粒子的速度和位置更新公式非常简单,只是根据当前位置和速度以及全局最优解和个体最优解进行加权计算。

这种简单的更新公式可能会导致算法陷入局部最优解,无法找到全局最优解。

因此,针对这个问题,研究人员提出了许多改进的粒子速度和位置更新公式,如自适应权重粒子群优化算法(AWPSO)、改进的精英粒子群优化算法(EPSO)等。

这些算法在一定程度上提高了算法的性能和收敛速度。

其中,自适应权重粒子群优化算法利用当前粒子的运动状态和历史最优解的信息来自适应地调整权重因子,从而更好地平衡全局搜索和局部搜索的能力;改进的精英粒子群优化算法则引入了一些辅助粒子,通过跟踪全局最优解和个体最优解,帮助其他粒子更快地找到最优解。

总之,改进粒子速度和位置更新公式的粒子群优化算法是当前研究的热点之一,不断有新的算法被提出,并在实际应用中得到了良好的效果。

- 1 -。

一种改进的动态惯性权重粒子群优化算法

一种改进的动态惯性权重粒子群优化算法

一种改进的动态惯性权重粒子群优化算法李艳;杨华芬【摘要】针对粒子群算法在寻优过程中容易陷入局部最优,以及难以平衡求精和求泛的能力,提出一种动态惯性权重粒子群优化算法。

该算法同时考虑到粒子的进化速度和集聚程度对算法寻优的影响,当粒子集聚程度较高时,增大惯性权值,提高算法的全局搜索能力。

为平衡算法全局和局部寻优能力,当进化速度较快时,提高局部搜索能力,以免错过较好的位置。

将此算法用于优化4个经典测试函数,实验表明:此算法不仅可以平衡局部和全局的搜索能力,还能提高算法的搜索效率和精度。

%Considering the problems of local optimum and difficulty in balancing the search capability of searching accuracy and extension caused by particle swarm optimization, this paper proposes a modified particle swarm optimization by using dynamic inertia weight. This algorithm considers the influence to opti‐mization both from the evolution velocity of particle swarm and the agglomeration degree. To improve the global searching capacity of this algorithm, and to increasethe inertia weight, when agglomeration of parti‐cles is high. In order to balance global and local optimization ability of this algorithm, local optimization a‐bility should be increased w hen algorithm has higher evolution velocity, so as not to miss a good location. The algorithm in this paper can be used in 4 classical testing functi ons, and the results show that the pro‐posed algorithm can not only balance the global and local search abilities, but also optimize the searching ef‐ficiency and accuracy.【期刊名称】《长春工程学院学报(自然科学版)》【年(卷),期】2014(000)004【总页数】4页(P116-119)【关键词】粒子群算法;集聚度;进化速度;惯性权重【作者】李艳;杨华芬【作者单位】曲靖师范学院计算机科学与工程学院,云南曲靖655011;曲靖师范学院计算机科学与工程学院,云南曲靖655011【正文语种】中文【中图分类】TP1830 引言粒子群算法(Particle Swarm Optimization,PSO)是一种进化算法[1],它和其他智能算法一样:随机初始化种群,通过多次迭代寻优,根据个体当前的信息进行更新。

混合粒子群算法在动态车间调度中的应用

混合粒子群算法在动态车间调度中的应用

混合粒子群算法在动态车间调度中的应用【摘要】本文主要介绍了混合粒子群算法在动态车间调度中的应用。

首先对动态车间调度问题进行了介绍,随后简要介绍了混合粒子群算法的原理和特点。

接着列举了混合粒子群算法在动态车间调度中的应用案例,并对其优势和不足之处进行了分析。

在结论部分总结了混合粒子群算法在动态车间调度中的应用效果,并展望了未来的研究方向。

本文通过详细的介绍和分析,旨在为动态车间调度问题的解决提供新的思路和方法。

混合粒子群算法的应用为动态车间调度问题的解决提供了一种有效的方式,同时也为相关领域的研究和实践提供了有益的参考。

【关键词】混合粒子群算法、动态车间调度、应用案例、优势分析、不足之处、总结、未来展望、研究背景、研究意义、研究目的。

1. 引言1.1 研究背景车间调度问题是生产过程中的重要问题,主要考虑生产设备在不同时间段内如何安排和分配作业任务,以最大化生产效率和降低生产成本。

随着生产环境的动态变化和市场需求的不断变化,传统的静态车间调度方法已经不能完全满足实际生产的需求,因此动态车间调度问题成为了一个备受关注的研究领域。

混合粒子群算法是一种基于群体智能的优化算法,它结合了粒子群算法和其他优化算法的特点,能够有效地解决复杂的优化问题。

在动态车间调度中,由于任务处理时间和任务到达时间都是随机的,传统的调度算法往往不能有效应对这种变化,而混合粒子群算法具有较强的搜索能力和自适应性,可以更好地适应动态环境下的车间调度问题。

研究混合粒子群算法在动态车间调度中的应用具有重要的意义,可以为生产企业提供更有效的调度方案,提高生产效率,降低成本。

在本文中,我们将探讨混合粒子群算法在动态车间调度中的应用案例,分析其优势和不足之处,并对未来的研究方向进行展望。

部分结束。

1.2 研究意义在动态车间调度问题中,生产任务的数量、到达时间、工艺路线等都是变化的,需要及时调整生产计划以适应变化。

而对于传统的调度算法来说,无法很好地处理这种动态性,导致生产效率下降,生产过程不稳定。

改进量子粒子群算法

改进量子粒子群算法

改进量子粒子群算法量子粒子群算法是一种用于优化问题的随机搜索算法,具有很强的全局最优解寻找能力和计算速度优势。

然而,在使用过程中,由于粒子群的性质,导致算法容易陷入局部最优解,并且算法的收敛速度也趋于缓慢。

因此,我们需要改进量子粒子群算法,以提高算法的性能和效率。

改进一:自适应量子粒子群算法传统的量子粒子群算法中,不同个体之间的位置与速度是相互独立的,缺乏协同演化的机制,不能充分利用个体之间的信息交流。

为此,我们可以引入自适应量子粒子群算法,通过动态调整量子位、所谓“粒子魔数”和适应度函数等参数,逐步优化搜索过程。

自适应粒子魔数的引入可以直接改善种群的分布性质,如增加搜索的多样性和有效性,以及加速种群的收敛速度,显著改善本算法的搜索质量和效率。

改进二:多目标量子粒子群算法多目标量子粒子群算法通过引入多个目标函数,兼顾搜索的多个最优解,避免了传统粒子群算法容易受局部最优解的困扰。

这种算法通过多指标的优化,可以在不同的情况下对不同的目标进行权衡,进一步提高算法的适用性。

其中,可以引入多种量子位的变式,如系数、相位、纠缠态等,来对不同的目标进行快速处理,避免局部最优和振荡现象的发生。

改进三:协同量子粒子群算法协同量子粒子群算法是一种将多个粒子群算法组合起来进行多目标优化的方法。

它将不同的粒子群模型进行合理的融合,利用协同演化的机制,将搜索群体划分成不同的子群,分别独立地搜索目标函数最优值,通过相互交换信息和粒子之间的协同,不断优化最优解。

协同粒子群算法具有更高的收敛速度和优化效率,能够在处理大规模多目标优化问题时,更好地保证搜索质量和效率。

综上所述,各种改进方法可以对传统的量子粒子群算法进行强化,提高算法的全局搜索和收敛速度,提高最终的优化结果。

但同时也需要指出,由于量子粒子群算法的特殊性质和优化目标的多样化,如何选择适当的改进方法和实现算法的具体细节仍然存在着相当的挑战。

因此,未来的研究仍要进一步深入探讨,进一步优化算法的求解能力和性能。

改进的多目标粒子群算法优化设计及应用

改进的多目标粒子群算法优化设计及应用

改进的多目标粒子群算法优化设计及应用张兰勇刘胜于大泳【摘要】摘要针对粒子群算法存在易陷入局部最优点的缺点,提出了一种改进的带变异算子的多目标粒子群优化算法。

采用非支配排序策略和动态加权法选择最优粒子,引导种群飞行,提高帕累托(Pareto)最优解的多样性。

与其他优化算法相比,该算法易于实现并且计算速度更快。

通过计算Pareto前沿最优解设计最佳多层电磁吸收体,在吸收体的厚度与反射系数之间取得最佳折衷。

通过对反射系数函数与吸收体厚度函数测试验证,该算法能够在保持优化解多样性的同时具有较好的收敛性。

【期刊名称】电波科学学报【年(卷),期】2011(026)004【总页数】7【关键词】关键词多目标粒子群算法;变异算子;电磁吸收体;优化设计1.引言在电磁兼容测试中,电磁吸收体的广泛应用促使工程师去开发有效的优化设计算法。

理想情况下,一个最薄最轻带宽最宽的吸收体是最好的。

但是这些特征是互相矛盾的。

比如,设计最高反射衰减的吸收体是可实现的,但是同时具有高厚度或重量。

另一方面,薄的和轻的吸收体可能只有较低的反射衰减。

因此,在电波暗室中铺设吸收体时,工程师经常会遇到很多强迫他们寻找在两个矛盾目标函数中最合适的折衷解的问题。

所以,如果存在一系列的最优解而不是一种解,设计师可以在每种情况下选择最适合的折衷解。

这些优化解的集合在最优化理论中被称为帕累托(Pareto)前沿最优解[1]。

目前,一些Pareto优化方法用来寻找吸收体的Pareto前沿,这些方法通常以遗传算法为基础[2]。

此外,多目标粒子群优化算法(MOPSO)也在这个问题中得到应用。

但是,一些MOPSO算法却得不到比非支配寻优遗传算法更好地结果[3]。

应用改进的MOPSO算法计算多层电磁吸收体的反射系数与厚度的关系,仿真测试结果证明该方法具有更好地优化效果。

2.改进的多目标粒子群优化算法粒子群优化算法(PSO)是一种模仿鸟群社会行为的智能优化算法,已成功地应用于许多工程优化问题中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档