【人教版】六年级下册知识数学鸽巢原理课件
合集下载
人教版六年级数学下册《鸽巢问题》ppt课件

5 ÷ 4= 1(只) ······1 (只)
1﹢1= 2(只)
如果一个鸽笼飞进一只鸽子,最多飞进四只 鸽子,剩下一只,要飞进其中的任何一个鸽笼 里。 不管怎么飞,至少有2只鸽子飞进同一 个鸽笼里。
3. 11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞 进了3只
鸽子。为什么?
11÷4=2……3 2+1=3
第一种情况:
第二种情况:
精选ppt课件
35
一、探究新知
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有
2个同色的,至少要摸出几个球?
摸出5个球,肯定有2个 同色的,因为……
有两种颜色。那摸3个 球就能保证……
只摸2个球能保证是 同色的吗?
只要摸出的球数比它们的颜色种数多1,
就能精保选证pp有t课两件个球同色。
不管怎么放,总有
一个文具盒里至少
0
0
0 放进2枝铅笔。
0
不管怎么放总有一个文具盒里 至少有2枝铅笔。
请同学们把4分解成三个数,共有 几种情况?
(4,0,0)、(3,1,0) (2,2,0)、(2,1,1) 每一种结果的三个数中, 至少有一个数不小于2。
分解法
可以假设先在每个文具盒中放1枝铅笔, 最多放3枝。剩下的1枝还要放进其中 的一个文具盒。所以至少有2枝铅笔放 进同一个文具盒。也就是先平均分, 然后把剩下的1枝,不管放在哪个盒子 里,一定会出现总有一个文具盒里至 少有2枝铅笔。
例1:把4枝铅笔放进3个文具盒中,不管
怎么放,总有一个文具盒里至少有2枝铅笔。 为什么呢?怎样解释这种现象?
小组合作:拿出4枝铅笔和 3个文具盒,把这4枝笔放 进这3个文具盒中摆一摆, 放一放,看有几种情况?
1﹢1= 2(只)
如果一个鸽笼飞进一只鸽子,最多飞进四只 鸽子,剩下一只,要飞进其中的任何一个鸽笼 里。 不管怎么飞,至少有2只鸽子飞进同一 个鸽笼里。
3. 11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞 进了3只
鸽子。为什么?
11÷4=2……3 2+1=3
第一种情况:
第二种情况:
精选ppt课件
35
一、探究新知
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有
2个同色的,至少要摸出几个球?
摸出5个球,肯定有2个 同色的,因为……
有两种颜色。那摸3个 球就能保证……
只摸2个球能保证是 同色的吗?
只要摸出的球数比它们的颜色种数多1,
就能精保选证pp有t课两件个球同色。
不管怎么放,总有
一个文具盒里至少
0
0
0 放进2枝铅笔。
0
不管怎么放总有一个文具盒里 至少有2枝铅笔。
请同学们把4分解成三个数,共有 几种情况?
(4,0,0)、(3,1,0) (2,2,0)、(2,1,1) 每一种结果的三个数中, 至少有一个数不小于2。
分解法
可以假设先在每个文具盒中放1枝铅笔, 最多放3枝。剩下的1枝还要放进其中 的一个文具盒。所以至少有2枝铅笔放 进同一个文具盒。也就是先平均分, 然后把剩下的1枝,不管放在哪个盒子 里,一定会出现总有一个文具盒里至 少有2枝铅笔。
例1:把4枝铅笔放进3个文具盒中,不管
怎么放,总有一个文具盒里至少有2枝铅笔。 为什么呢?怎样解释这种现象?
小组合作:拿出4枝铅笔和 3个文具盒,把这4枝笔放 进这3个文具盒中摆一摆, 放一放,看有几种情况?
人教版六年级下册课件 5数学广角-抽屉原理(鸽巢原理)

解析:数学小组共有20名同学,因此每个同学最多有19个朋友;又由于他们都有朋友 ,所以每个同学至少有1个朋友.因此,这20名同学中,每个同学的朋友数只有19种可 能:1,2,3,……,19.把这20名同学看作20个“苹果”,又把同学的朋友数目看作 19个“抽屉”,根据抽屉原理,至少有2名同学,他们的朋友人数一样多
3.明小学有367名年出生的学生,请问是否有生日相同的学生?
【解析】1年最多有366天,把366天看作366个“抽屉”,将367名学生看作个“苹果”.这样,把 367个苹果放 进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有名同学的生日相同.
答案
探索新知
例2:如果把5个苹果放在2个抽屉里面,不管怎么放,总有一个抽 屉里至少放3个苹果,为什么?如果一共有7个苹果呢?9个呢?
做一做:42个苹果放在5个抽屉里,至少有多少个苹果放在一个抽 屉里?
42÷5 = 8(个) ...... 2(个) 8+1=9(个)
答:至少有9个苹果放在一个抽屉里
答案
知识总结
抽屉原理
将n件物品放入m个抽屉中,如果n÷m=a,那么一
定有一个抽屉里至少抽有屉a件原物理品。
将n件物品放入m个抽屉中,如果n÷m=a...b,那么 一定有一个抽屉里至少有a+1件物品。
答案
例题解析
例6:17名同学参加一次考试,考试题是3道判断题(答案只有对错之分 ),每名同学都在答题纸上依次写上了3道题目的答案。试说明至少有3 名同学的答案是一样的。
解析:3道题所有可能出现的答案有8种,8种答案可以看作8个抽屉,一共有17名同 学,看作17个苹果
17÷8= 2 ...... 1 2+1=3
答:至少有3名同学的答案是一样的。
3.明小学有367名年出生的学生,请问是否有生日相同的学生?
【解析】1年最多有366天,把366天看作366个“抽屉”,将367名学生看作个“苹果”.这样,把 367个苹果放 进366个抽屉里,至少有一个抽屉里不止放一个苹果.这就说明,至少有名同学的生日相同.
答案
探索新知
例2:如果把5个苹果放在2个抽屉里面,不管怎么放,总有一个抽 屉里至少放3个苹果,为什么?如果一共有7个苹果呢?9个呢?
做一做:42个苹果放在5个抽屉里,至少有多少个苹果放在一个抽 屉里?
42÷5 = 8(个) ...... 2(个) 8+1=9(个)
答:至少有9个苹果放在一个抽屉里
答案
知识总结
抽屉原理
将n件物品放入m个抽屉中,如果n÷m=a,那么一
定有一个抽屉里至少抽有屉a件原物理品。
将n件物品放入m个抽屉中,如果n÷m=a...b,那么 一定有一个抽屉里至少有a+1件物品。
答案
例题解析
例6:17名同学参加一次考试,考试题是3道判断题(答案只有对错之分 ),每名同学都在答题纸上依次写上了3道题目的答案。试说明至少有3 名同学的答案是一样的。
解析:3道题所有可能出现的答案有8种,8种答案可以看作8个抽屉,一共有17名同 学,看作17个苹果
17÷8= 2 ...... 1 2+1=3
答:至少有3名同学的答案是一样的。
六年级下册鸽巢ppt课件

鸽巢原理可以通过反证法进行证明,假设存在一个容器没有两个或以上
的物体,那么可以重新分配物体,使得每个容器只包含一个物体,从而
证明鸽巢原理的正确性。
对未来学习的展望
深入理解鸽巢原理
学习其他数学原理
学生可以进一步深入学习鸽巢原理,了解 其在不同领域的应用,并尝试解决一些复 杂的数学问题。
学生可以学习其他数学原理,如归纳推理 、演绎推理、集合论等,以扩大自己的数 学视野。
有1000个乒乓球,需要 放入10个盒子中,每个 盒子至少有一个球,问 最多可以放入多少个盒 子有超过100个乒乓球 ?
根据鸽巢原理,1000个 乒乓球放入10个盒子中 ,每个盒子至少有一个 球,最多只能有9个盒子 有超过100个乒乓球。
有50名学生参加数学竞 赛,需要分成若干小组 进行讨论,每个小组至 少有一名学生,问最多 可以分成多少个小组?
01
解析
根据鸽巢原理,10个苹果放入3个盘 子中,每个盘子至少有一个,有7种 分法。
05
03
解析
根据鸽巢原理,7支钢笔放入3个笔筒 中,每个笔筒至少有1支,最多只能放 2支。
04
题目2
有10个苹果放入3个盘子里,每个盘子 至少有一个,问有多少种分法?
进阶练习题
总结词
题目1
解析
题目2
解析
考察鸽巢原理的复杂应 用和实际问题的解决
在游戏设计中,鸽巢原理可以用于设 计关卡和任务,以增加游戏难度和趣 味性。
资源分配
在企业管理中,鸽巢原理可以用于人 力资源、物资、时间和空间的合理分 配和调度。
04
鸽巢原理的练习题及解析
基础练习题
总结词
考察鸽巢原理的基本每个笔筒 至少有1支,最多放几支?
人教版数学六年级下册第五单元(鸽巢问题的一般形式+鸽巢问题的应用)PPT教学课件

与同伴实践操作一下 验证你的想法吧!
探究新知
数学广角—鸽巢问题
把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3 本书。为什么?
7
6
列举法 7
0
7
1
0
0
5
7
2
0
5
7
1
1
4
4
7
3
7
2
0
1
3
7
3
1
3
7
2
2
把7分解成3个数,共有8种情况,在任何一种情况中, 总有一个数不小于3。
探究新知
假设法
数学广角—鸽巢问题
10 ÷ 3 = 3(本) …… 1(本)
总本数 物体数
抽屉数 平均每个 抽屉放进 的本数
剩下的本数
剩下2本,任选 其中1个或2个 抽屉放进去。
探究新知
数学广角—鸽巢问题
整理这些算式,你发现了什么? 商+1 至少数
7÷3 = 2(本)…… 1(本) 2 + 1=3(本)
8÷3 = 2(本)…… 2(本)
课堂小结
数学广角—鸽巢问题
这节课你们都学会了哪些知识?
利用鸽巢原理解决实际问题的方法
1.根据题意,分析最不利情形。 2.根据最不利情形列式。 3.说明理由,得出结论。
a×(b-1)+1=c
课后作业
数学广角—鸽巢问题
1.从教材课后习题中选取; 2.从课时练中选取。
感谢观看
THANK YOU
他说得对吗?为什么?
课堂练习
数学广角—鸽巢问题
向东小学六年级共有367名学生,其中六(2)班有49名学生。
六年级至少有2个人在同一天过生日。 六(2)班中至少有4个人在同一个过 生日。
新人教版六年级下册数学鸽巢原理课件

你知道这是谁吗? 他就是名侦探柯南。 同学们,你们想变得 和柯南一样聪明吗? 下面我们就一起来玩 一个推理游戏,好吗?
请同学们准备好一 副扑克牌。
你们准备好了吗?
你知道吗?
你知道一副扑克牌一共有多少张吗?
(54张)
拿掉大小王还有多少张?
(52张)
你知道扑克牌有几种颜色吗?
(2种)
你知道扑克牌有几种花色吗?
聪明的你,知道柯南是根据什么判断那个年轻人 是个骗子的吗?
你知道吗?30个人就至少有3人在同一个月里 出生;全世界每分钟大约有 300人出生,难道同一 时间出生的人命运都相同吗?
和她在同一分钟出生 的大约有300人,但世界上 只有一个吕秀芝,由此可见, 以一个人的出生时间或星座 作为算命的根据是没有道理 的。
(有序思考)
观察这四种方法,它们有 什么共同点?
(4 , 0 , 0) (3 , 1 , 0) (2 , 2 , 0) (2 , 1 , 1)
总有一个杯子里至少有两根小棒
4÷3=1(根)……1(根)
2、如果把5根小棒放入4个杯子,会是什么结果? 总有一个杯子里至少有2根小棒。
5÷4=1 (根) ……1 (根)
7÷4=1(根)……3(根)
★把5根小棒放入2个杯子。 ★把15根小棒放入4个杯子。 ★把m根小棒放入n个杯子。
(m﹥n)
不管怎么放,总有一个杯子里 至少有( )根小棒。
你们发现的这个规律和一位
数学家发现的规律一模一样, 只不过他是在150多年前发现的, 你们知道他是谁吗?——德国 数学家?“狄里克雷”,后来 人们为了纪念他从这么平凡的 事情中发现的规律,就把这个 规律用他的名字命名,叫“狄 里克雷原理”,由于人们对鸽 子飞回鸽巢这个引起思考的故 事记忆犹新,所以人们又把这 个原理叫做“鸽巢原理”,它 还有另外一个名字叫“抽屉原 理”。
请同学们准备好一 副扑克牌。
你们准备好了吗?
你知道吗?
你知道一副扑克牌一共有多少张吗?
(54张)
拿掉大小王还有多少张?
(52张)
你知道扑克牌有几种颜色吗?
(2种)
你知道扑克牌有几种花色吗?
聪明的你,知道柯南是根据什么判断那个年轻人 是个骗子的吗?
你知道吗?30个人就至少有3人在同一个月里 出生;全世界每分钟大约有 300人出生,难道同一 时间出生的人命运都相同吗?
和她在同一分钟出生 的大约有300人,但世界上 只有一个吕秀芝,由此可见, 以一个人的出生时间或星座 作为算命的根据是没有道理 的。
(有序思考)
观察这四种方法,它们有 什么共同点?
(4 , 0 , 0) (3 , 1 , 0) (2 , 2 , 0) (2 , 1 , 1)
总有一个杯子里至少有两根小棒
4÷3=1(根)……1(根)
2、如果把5根小棒放入4个杯子,会是什么结果? 总有一个杯子里至少有2根小棒。
5÷4=1 (根) ……1 (根)
7÷4=1(根)……3(根)
★把5根小棒放入2个杯子。 ★把15根小棒放入4个杯子。 ★把m根小棒放入n个杯子。
(m﹥n)
不管怎么放,总有一个杯子里 至少有( )根小棒。
你们发现的这个规律和一位
数学家发现的规律一模一样, 只不过他是在150多年前发现的, 你们知道他是谁吗?——德国 数学家?“狄里克雷”,后来 人们为了纪念他从这么平凡的 事情中发现的规律,就把这个 规律用他的名字命名,叫“狄 里克雷原理”,由于人们对鸽 子飞回鸽巢这个引起思考的故 事记忆犹新,所以人们又把这 个原理叫做“鸽巢原理”,它 还有另外一个名字叫“抽屉原 理”。
人教版六年级数学下册鸽巢问题PPT课件

7本书放进3个抽屉,有一个抽屉 至少放3本书。8本书……
7÷3=2……1 8÷3=2……2 10÷3=3……1
你是这样想的吗?你有什么发现?
第19页/共43页
我发现……
物体数÷抽屉数=商……余数 至少数:商+1
如果物体数除以抽屉数有余数,用所得的商 加1,就会发现“总有一个抽屉里至少有商加1个 物体”。
德国 数学家
原理又称“抽屉原理”;另一个是6只
狄里克雷
鸽子飞进5个鸽巢,总有一个鸽巢至少
(1805.2.13.~1859.5.5.)
飞进2只鸽子,所以也称为“鸽巢原
理”。
第14页/共43页
把6枝铅笔放进5个文具盒里呢? 把7枝铅笔放进6个文具盒里呢?
把8枝铅笔放进7个文具盒里呢?
把100枝铅笔放进99个文具盒里呢?
如果一个鸽笼飞进一只鸽子,最多飞进四只 鸽子,剩下一只,要飞进其中的任何一个鸽笼 里。 不管怎么飞,至少有2只鸽子飞进同一 个鸽笼里。
第25页/共43页
3. 11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞 进了3只
鸽子。为什么?
11÷4=2……3 2+1=3
第26页/共43页
4. 5个人坐4把椅子,总有一把椅子上至少坐2人。为什 么?
第一种情况:
第二种情况:
第34页/共43页
一、探究新知
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定
有2个同色的,至少要摸出几个球?
摸出5个球,肯定有2个 同色的,因为……
有两种颜色。那摸3个 球就能保证……
只摸2个球能保证是 同色的吗?
只要摸出的球数比它们的颜色种数多1, 就能保证有两个球同色。
新课标人教版六年级下册
7÷3=2……1 8÷3=2……2 10÷3=3……1
你是这样想的吗?你有什么发现?
第19页/共43页
我发现……
物体数÷抽屉数=商……余数 至少数:商+1
如果物体数除以抽屉数有余数,用所得的商 加1,就会发现“总有一个抽屉里至少有商加1个 物体”。
德国 数学家
原理又称“抽屉原理”;另一个是6只
狄里克雷
鸽子飞进5个鸽巢,总有一个鸽巢至少
(1805.2.13.~1859.5.5.)
飞进2只鸽子,所以也称为“鸽巢原
理”。
第14页/共43页
把6枝铅笔放进5个文具盒里呢? 把7枝铅笔放进6个文具盒里呢?
把8枝铅笔放进7个文具盒里呢?
把100枝铅笔放进99个文具盒里呢?
如果一个鸽笼飞进一只鸽子,最多飞进四只 鸽子,剩下一只,要飞进其中的任何一个鸽笼 里。 不管怎么飞,至少有2只鸽子飞进同一 个鸽笼里。
第25页/共43页
3. 11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞 进了3只
鸽子。为什么?
11÷4=2……3 2+1=3
第26页/共43页
4. 5个人坐4把椅子,总有一把椅子上至少坐2人。为什 么?
第一种情况:
第二种情况:
第34页/共43页
一、探究新知
盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定
有2个同色的,至少要摸出几个球?
摸出5个球,肯定有2个 同色的,因为……
有两种颜色。那摸3个 球就能保证……
只摸2个球能保证是 同色的吗?
只要摸出的球数比它们的颜色种数多1, 就能保证有两个球同色。
新课标人教版六年级下册