计算机组成原理复习要点
计算机组成原理复习提纲复习资料版

《计算机组成原理》复习提纲第一章:绪论1、存储程序概念(基本含义)。
P3⑴计算机(指硬件)应由运算器、存储器、控制器、输入设备和输出设备五大基本部件组成;⑵计算机内部采用二进制来表示指令和数据;⑶将编好的程序和原始数据事先存入存储器中,然后再启动计算机工作2、冯·诺依曼计算机结构的核心思想是什么?存储程序控制3、主机的概念(组成部件是哪些?)中央处理器(运算器和控制器)和主存储器4、计算机的五大基本部件有哪些?输入设备,输出设备,存储器,运算器,控制器5、冯·诺依曼结构和哈佛结构的存储器的设计思想各是什么?P9程序存储、程序控制冯·诺依曼结构也称普林斯顿结构,是一种将程序指令存储器和数据存储器合并在一起的存储器结构。
指令存储地址和数据存储地址指向同一个存储器的不同物理位置。
哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。
CPU首先到指令存储器中读取指令内容,译码后得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)Cache和主存储器分别是采用的哪种设计思想?Cache采用哈佛结构,主存储器采用冯.诺依曼结构6、计算机系统是有软件系统和硬件系统组成的。
7、现代个人PC机在总线结构上基本上都采用的是单总线结构,根据所传送的信息类型不同又可分为哪三类总线?地址总线,数据总线,控制总线第二章:数据的机器层表示1、定点小数表示范围(原码、补码)原码定点小数表示范围为:-(1-2-n)~(1-2-n)补码定点小数表示范围为:-1~(1-2-n)2、定点整数表示范围(原码、补码)原码定点整数的表示范围为:-(2n-1)~(2n-1)补码定点整数的表示范围为:-2n ~(2n-1)3、浮点数表示范围PPT374、规格化的浮点数5、阶码的移码表示6、IEEE 754浮点数标准本章复习范围为ftp上第二章的作业题的1、2、3、4题。
第三章:指令系统1、指令的基本格式(OP字段和地址字段组成)。
计算机组成原理笔记

计算机组成原理笔记
1. 计算机组成原理是研究计算机硬件和软件组成及其相互关系的学科领域。
2. 计算机由中央处理器(CPU)、存储器和输入输出设备组成,其中CPU是计算机的控制中心。
3. CPU由控制单元和算术逻辑单元组成,控制单元负责指令
的解析和执行,算术逻辑单元负责数据的运算。
4. 存储器用于存储计算机运行时所需的数据和指令,其中包括主存储器和辅助存储器。
5. 输入输出设备用于与外部世界进行信息交互,例如键盘、鼠标、显示器和打印机等。
6. 计算机执行程序时,先从辅助存储器中将程序加载到主存储器,然后由CPU依次执行指令。
7. 指令由操作码和操作数组成,操作码表示指令的类型,操作数表示指令所操作的数据。
8. 指令在执行过程中通过执行周期来完成,包括取指令、分析指令、执行指令和写回数据等阶段。
9. 计算机的性能可以通过时钟频率、指令执行速度和吞吐量等指标进行衡量。
10. 计算机的内部结构可以采用冯·诺依曼结构或哈佛结构,冯·诺依曼结构中指令和数据存储在同一存储器中,而哈佛结
构中指令和数据存储在不同的存储器中。
11. 计算机的指令集架构可以分为精简指令集(RISC)和复杂
指令集(CISC)两种类型。
12. 硬件和软件之间通过接口进行通信,例如操作系统作为硬
件和应用软件之间的接口。
13. 并行计算可以提高计算机的性能,包括并行指令和并行处理等技术。
14. 计算机组成原理还涉及到虚拟内存、缓存和流水线等重要概念和技术。
15. 计算机组成原理的研究对于理解计算机的工作原理和优化计算机性能具有重要意义。
(完整版)计算机组成原理重点整理

一.冯·诺依曼计算机的特点1945年,数学家冯诺依曼研究EDVAC机时提出了“存储程序”的概念1.计算机由运算器、存储器、控制器、输入设备和输出设备五大部件组成2.指令和数据以同等地位存放于存储器内,并可按地址寻访。
3.指令和数据均用二进制数表示。
4.指令由操作码和地址码组成,操作码用来表示操作的性质,地址码用来表示操作数在存储器中的位置。
5.指令在存储器内按顺序存放。
通常,指令是顺序执行的,在特定条件下,可根据运算结果或根据设定的条件改变执行顺序。
6.机器以运算器为中心,输入输出设备与存储器间的数据传送通过运算器完成。
二.计算机硬件框图1.冯诺依曼计算机是以运算器为中心的2.现代计算机转化为以存储器为中心各部件功能:1.运算器用来完成算术运算和逻辑运算,并将运算的中间结果暂存在运算器内。
2.存储器用来存放数据和程序。
3.控制器用来控制、指挥程序和数据的输入、运行以及处理运算结果4.输入设备用来将人们熟悉的信息形式转换为机器能识别的信息形式(鼠标键盘)。
5.输出设备可将机器运算结果转换为人们熟悉的信息形式(打印机显示屏)。
计算机五大子系统在控制器的统一指挥下,有条不紊地自动工作。
由于运算器和控制器在逻辑关系和电路结构上联系十分紧密,尤其在大规模集成电路制作工艺出现后,两大不见往往集成在同一芯片上,合起来统称为中央处理器(CPU)。
把输入设备与输出设备简称为I/O设备。
现代计算机可认为由三大部分组成:CPU、I/O设备及主存储器。
CPU与主存储器合起来又可称为主机,I/O设备又可称为外部设备。
主存储器是存储器子系统中的一类,用来存放程序和数据,可以直接与CPU交换信息。
另一类称为辅助存储器,简称辅存,又称外村。
算术逻辑单元简称算逻部件,用来完成算术逻辑运算。
控制单元用来解实存储器中的指令,并发出各种操作命令来执行指令。
ALU和CU是CPU的核心部件。
I/O设备也受CU控制,用来完成相应的输入输出操作。
计算机组成原理复习要点

1、总线、时钟周期、机器周期、机器字长、存储字长、存储容量、立即寻址、直接寻址、MDR、MAR等基本概念。
总线:是连接多个部件的信息传输线,是各部件共享的传输介质。
指令周期:完成一条指令的时间,由若干机器周期组成。
机器周期:完成摸个独立操作,由若干时钟周期组成。
时钟周期:最基本时间单位,由主频决定。
机器字长:是指CPU一次并行处理数据的位数,通常与CPU的寄存器位数有关。
存储字:一个存储单元所存二进制代码的逻辑单位存储字长:一个存储单元所存储的二进制代码的位数。
指令字长:一条指令的二进制代码位数。
存储容量:存储器中可以存二进制代码的总量。
立即寻址:把一个数送到指定地址MOV A, #30H 把数据30H数据送累加器直接寻址:把一个地址内的数据送到指定地址MOV A ,30H 把30H内的数据送累加器直接寻址:指令中指出暂存操作数的寄存器。
寄存器的内容就是操作数。
立即寻址:是把一个“常数”送到指定位置。
直接寻址:是把一个“变量”送到指定位置。
MDR: 存储器数据缓冲寄存器,在主存中用来存放从某单元读出或者要写入某个存储单元的数据。
MAR:存储器的地址寄存器,在主存中用来存放欲访问的存储单元的地址。
2、机器指令的执行过程,CPU工作周期的划分。
机器指令:每一条机器语言的语句称为机器指令。
完成一条指令的功能可以分成:取指令,分析指令,执行指令。
CPU工作周期划分为取指间址执行中断。
指令执行流程①从存储器取指令,送入指令寄存器,并进行操作码译码。
程序计数器加1,为取下一条指令作准备。
②计算数据地址,将计算得到的有效地址送地址寄存器AR。
③到存储器取数。
④进行运算,结果送目的寄存器在CPU执行程序的过程中,将指令周期划分成几个时间段,每个阶段称为一个机器周期,也称为CPU周期或工作周期。
一条机器指令对应一个微程序,这个微程序是由若干条微指令序列组成的。
简言之,一条机器指令所完成的操作划分成若干条微指令来完成,由微指令进行解释和执行。
408-计算机组成原理考点整理

408-计算机组成原理考点整理一.计算机系统概述1.发展历史●电子管●晶体管●中小规模集成电路●超大规模集成电路2.摩尔定理3.冯·诺伊曼结构特点●采用“存储程序”的工作方式,控制流驱动方式,按地址访问并顺序执行指令●计算机硬件系统由输入输出设备、存储器、运算器、控制器5大部件组成●指令和数据以同等地位存储●指令和数据均为二进制码●指令由操作码和地址码组成4.计算机功能部件●输入设备●输出设备●存储器●主存储器(内存储器)●按地址存取方式●组成●地址寄存器MAR●存放访存地址●位数对应存储单元个数●数据寄存器MDR●暂存要读写的信息●与存储字长相等●时序控制逻辑●产生存储器操作所需的各种时序信号●辅助存储器(外存储器)●运算器●核心●算术逻辑单元ALU●必备寄存器●累加器ACC●乘商寄存器MQ●操作数寄存器X●控制器●组成●控制单元CU Control Unit●程序计数器PC Program Counter●存放当前欲执行指令●指令寄存器IR Instrument Register●存放当前正在执行的指令5.C PU●ALU●通用寄存器组GPRs●标志寄存器●控制器●指令寄存器IR●程序计数器PC●存储器地址寄存器MAR●存储器数据寄存器MDR6.计算机软件●系统软件和应用软件●系统软件●基础软件●作为系统资源提供给用户使用●主要有●操作系统OS●数据库管理软件DBMS●语言处理程序●分布式软件系统●网络软件系统●标准库程序●服务性程序●应用软件●用户为解决某个应用领域中的各类问题而编制的程序、●三个级别的语言●机器语言●二进制代码语言●计算机唯一可以直接识别和执行的语言●汇编语言●助记符●高级语言●翻译程序●汇编程序●将汇编程序汇编成机器程序●解释程序●不生成目标语言代码,同声传译●编译程序●生成目标语言代码,笔译●软件和硬件的逻辑等价性●某一功能,既可用软件实现,又可用硬件实现7.层次结构●下层是上层的基础,上层是下层的扩展8.计算机的性能指标●机器字长、指令字长和存储字长●字长也称机器字长是计算机进行一次整数运算(即定点整数运算)所能处理的二进制数据的位数●指令字长是一个指令字中包含的二进制代码的位数●存储字长是一个存储单元存储的二进制代码的长度●字长越长,数的表示范围越大,计算精度越高●数据通路带宽●数据总线一次所能并行传送信息的位数●主存容量●主存储器所能存储信息的最大容量●运算速度●吞吐量●响应时间●CPU时钟周期●主频●CPI●CPU执行时间●MIPS●MFLOPS、GFLOPS、TFLOPS、PFLOPS、EFLOPS、ZFLOPS●基准程序●对于不同的应用场景选择不同的基准程序●不一定准确9.系列机●基本特性:指令系统向后兼容10.兼容●计算机软件或硬件之间的通用性●向前兼容(Forward Compatibility):指老的版本的软/硬件可以使用新版本的软/硬件产生的数据。
计算机组成原理背诵知识点

计算机组成原理背诵知识点
计算机组成原理涉及的知识点非常广泛,包括但不限于CPU、
存储器、输入输出设备、总线、指令系统、微程序控制、并行处理、操作系统等。
以下是一些常见的知识点:
1. CPU,中央处理器是计算机的核心部件,负责执行指令、数
据处理和控制计算机的操作。
2. 存储器,包括内存和外存,用于存储数据和程序。
3. 输入输出设备,键盘、鼠标、显示器、打印机等,用于与外
部世界进行交互。
4. 总线,连接各个部件的通信通道,包括数据总线、地址总线
和控制总线。
5. 指令系统,CPU执行的指令集合,包括数据传输、算术运算、逻辑运算等指令。
6. 微程序控制,控制指令执行的微操作序列,实现指令的解码
和执行。
7. 并行处理,利用多个处理器同时处理任务,提高计算机的性能。
8. 操作系统,管理计算机硬件和软件资源,提供用户界面和服务。
以上是计算机组成原理中的一些常见知识点,涉及到硬件和软件方面的内容。
希望这些信息能够帮助您更好地理解计算机组成原理。
计算机组成原理考研知识点非常全汇编

计算机组成原理考研知识点-非常全汇编一、计算机系统概述1.计算机的基本组成:计算机硬件系统、计算机软件系统、操作系统。
2.计算机的主要性能指标:运算速度、存储容量、输入输出能力、数据传输速率。
3.计算机的应用和发展趋势:人工智能、大数据、云计算、物联网等。
二、运算方法1.数值数据的表示:二进制数、十进制数、十六进制数、非数值数据的表示:字符、图形、音频、视频等。
2.运算方法:二进制数的运算、十进制数的运算、浮点数的运算、逻辑运算。
三、存储系统1.存储器的分类和特点:半导体存储器、磁表面存储器、光存储器。
2.内存储器的组成和编址方式:单元地址、字地址、字节地址、位地址。
3.外存储器的组成和特点:硬盘、U盘、移动硬盘等。
四、指令系统1.指令的组成和格式:指令操作码、指令地址码。
2.指令的分类和功能:算术运算指令、逻辑运算指令、移位指令等。
3.寻址方式:立即寻址、直接寻址、间接寻址等。
五、中央处理器1.CPU的组成和功能:运算器、控制器、寄存器组。
2.CPU的工作原理:指令的读取和执行、指令流水线技术。
3.CPU的性能指标:吞吐量、响应时间、时钟频率等。
六、输入输出系统1.I/O设备的分类和特点:键盘、鼠标、显示器等。
2.I/O接口的分类和功能:数据缓冲区、控制缓冲区、状态缓冲区等。
3.I/O方式:程序控制I/O、中断I/O、直接内存访问。
七、总线与主板1.总线的分类和功能:数据总线、地址总线、控制总线。
2.总线的基本组成和特点:单总线结构、多总线结构。
3.主板的组成和功能:芯片组、BIOS芯片、总线扩展插槽等。
八、并行计算机的组成和工作原理1.并行计算机的分类和特点:多处理器系统、分布式系统。
2.并行计算机的组成和工作原理:并行处理机、并行存储器等。
3.并行计算机的性能指标:并行度、吞吐量、响应时间等。
(完整版)计算机组成原理知识点总结(唐朔飞版)

1、硬件:输入输出设备,控制器,存储器,运算器。
2、计算机技术指标:机器字长、存储容量、运算速度。
3、多总线结构的原理:双总线结构特点是将速度较低的I/O设备从单总线上分离出来,形成主存总线和I/O总线分开的结构。
三总线1由主存总线用于CPU与主存之间的传输,I/O总线供CPU与各类I/O 设备之间传递信息,DMA总线用于高速IO设备与主存之间直接交换信息,任意时刻只能用一种总线,主存总线与DMA总线不能同时对主存进行存取。
三总线2CPU与Cache之间构成局部总线,而且还直接连到系统总线上,cache可通过系统总线与主存传输信息,还有一条扩展总线可以连接IO设备。
四总线由局部总线,系统总线,告诉总线,扩展总线构成。
4、总线判优分为集中式和分布式两种,集中式分为链式查询、计数器定时查询、独立请求方式(排队器)5、总线通信控制的四种方式:同步通信,异步通信,半同步通信,分离式通信。
6、波特率是每秒传输的位数,比特率是每秒传输的有效数据位数(bps)7、存储器技术指标:存储速度,存储容量和位价。
8、存储器分为主存,闪存,辅存和缓存。
9、分层原因:1缓存-主存层解决CPU与主存速度不匹配问题;2主存-辅存层解决系统存储容量的问题。
10、主存的技术指标:存储容量,存储速度(存取时间和存取周期表示)。
11、存储器带宽的计算方法:如存取周期为500ns,每个存取周期可访问16位,则带宽为32M位/秒。
带宽是衡量数据传输率的重要技术指标。
12、动态RAM的刷新方式:集中刷新(是在规定的一个刷新周期内,对全部存储单元集中一段时间逐行进行刷新,此刻必须停止读写操作‘死时间’)分散刷新(指对每行存储单元的刷新分散到每个存取周期内完成。
不存在死时间,整个系统速度降低)异步刷新(前两种方式的结合,即可缩短死时间,又充分利用最大刷新间隔为2ms的特点)。
13、动态RAM集成度远高于静态RAM;动态RAM行列地址按先后顺序输送,减少了芯片引脚,封装尺寸也减少;动态RAM功耗比静态RAM小;动态RAM的价格比静态RAM便宜;由于使用动态元件,因此速度比静态RAM低;动态RAM需要再生,需配置再生电路,也需要消耗一部分功率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章
1、冯。
诺依曼型计算机的主要设计思想是什么?它包括哪些主要组成部分?
存储器的任何位置既可以存放指令,不过一般是将指令和数据分开存放。
将解题的程序(指令序列)存放到存储器中为存储程序,而控制器依据存储的程序来控制全机协调地完成计算任务叫做程序控制。
存储程序按地址顺序执行。
组成:存储程序、程序控制
第三章
1、主存与cache的地址映射的种类
全相联映射方式、直接映射方式、组相联映射方式
2、替换策略
Cache工作原理要求它尽量保存最新数据。
当一个新的主存块需要拷贝到cache,而允许存放此块的行位置都被其他主存块占满时,就要产生替换。
硬件实现的常用算法主要有一下三种:
最不经常使用算法、近期最少使用算法、随机替换
3、cache的写操作策略
写回法、全写法、写一次法
4、静态与动态的特点及优缺点
广泛使用的SRAM(静态)和DRAM(动态)都是半导体随机读写存储器,前者速度比后者快,但集成度不如后者高。
二者的优点是体积小,可靠性高,价格低廉,缺点是断电后不能保存信息。
第四章
1、RISC指令系统
RISC指令系统是目前计算机发展的主流,也是CISC指令系统的改进,它的最大特点是:(1)指令条数少;(2)指令长度固定,指令格式和寻址方式种类少;(3)只有取数/存数指令访问存储器,其余指令的操作均在寄存器之间进行。
第五章
1、寄存器的种类:
指令寄存器、程序计数器、数据地址寄存器、缓冲寄存器、通用寄存器、状态字寄存器
2、指令周期的特点及含义
指令周期常常用若干个CPU周期数来表示,CPU周期成为机器周期,又称时钟周期。
含义:指CPU每取出一条指令并执行这条指令,都要完成一系列的操作,这一系列操作所需的时间通常叫做一个指令周期。
换言之指令周期是取出一条指令并执行这条指令的时间。
特点:各种指令的指令周期是不尽相同的。
3、微程序控制的基本思想
仿照通常的解题程序的方法,把操作控制信号编成所谓的“微指令”,存放到一个只读存储器里。
当机器运行时,一条又一条地读出这些微指令,从而产生全机所需要的各种操作控制信号,使相应部件执行所规定的操作。
4、微命令:控制部件通过控制线向执行部件发出各种控制命令;
微操作:执行部件接受微命令后所进行的操作;
微程序:一条机器指令的功能是用许多条微指令组成的序列来实现的,这个微指令序列通常叫做微程序。
第六章
1、单处理器系统中的总线分为三类:
(1)CPU内部连接各存储器及运算部件之间的总线,称为内部总线;
(2)CPU通计算机系统的其他高速功能部件,如存储器、通道等互相连接的总线,称为系统总线;
(3)中、低速I/O设备之间连接的总线,称为I/O总线。
2、I/O接口的功能:
控制、缓冲、状态、转换、整理、程序中断
3、仲裁方式:
集中式仲裁和分布式仲裁
4、总线数据传送模式:
读、写操作,块传送操作,写后读、读后写改写操作,广播、广集操作
第八章
1、CPU管理外围设备的几种方式
程序查询方式、程序中断方式、直接内存访问(DMA)方式、通道方式
2、中断的基本概念
在程序中断方式中,某一外设的数据准备就绪后,它“主动”向CPU发出请求中断的信号,请求CPU暂时中断目前正在执行的程序而进行数据交换。
当CPU响应这个中断时,边暂停运行这个程序,并自动转移到该设备的中断服务程序。
当中断服务程序结束以后,CPU又回到原来的主程序。