高考数学每日一练-《函数+解析几何》
高考数学:解析几何常考题型及解题方法汇总(含详解),

相信很多同学都知道,解析几何其实并不难,解题思路也相对简单,但是它却折磨着大多数的考生们!
为什么?因为它的计算量实在是太大了,想找个简单快捷的方法去做都是很不容易的一件事。
在高考数学中,解析几何属于必考题,而且其所占的分值和函数也相差不大,都是在3 0分左右,但是它并没有像函数压轴题一样,让人看了就想放弃。
但是只要找对方法,你会发现其实解析几何也没有想象中的那么折磨人,而且出乎意料的简单。
今天,学长就为同学们整理了高考数学中解析几何的热点常考题和解题方法的汇总,希望同学们好好把握,在高考中取得一个更好的成绩!
需要电子打印版的同学可以私信发送,解析几何,就可以打印出来了!用起来超方便!!!。
数学每日一题高考热点问题

数学每日一题高考热点问题全文共四篇示例,供读者参考第一篇示例:数学是一门被广泛认可为机械学科的学科。
它是人类思维的一项技能,但它又不是一门科学。
数学是实现工科技术,经济、商业、金融、统计、数理逻辑、天文学、物理学等等的辅助工具。
其中的问题在中文翻译中被称为“每日一题数学”。
这些问题是一系列的难度逐渐增加的练习,作为对学生日常学习的检测和摸底。
在高考的时候,数学题目是必考科目,所以每个考生都要认真对待。
高考数学考试是每个高中学生毕业的重要一环。
从初中开始,学生就每天要做一些数学练习来提升自己的解题能力。
而这种练习方法在高考之前被称为“每日一题数学”,用来检测学生的潜力和掌握的程度。
正是这种日积月累、扎扎实实的练习,才能在高考中取得优异的成绩。
在高考数学考试中,有一些题目是非常热门的,也是考生最为头疼的。
下面就来列举一些高考热点问题:1. 高考数学中的代数问题代数作为高考数学的一个重要组成部分,经常出现在高考试卷上。
方程式和不等式问题是进阶代数的基础。
代数问题解决的方法有很多种,其中常用的方法包括代换、因式分解、等式转化等等。
2. 高考数学中的几何问题几何题目是高考数学试卷中的另一个关键部分。
高考数学几何问题要求学生熟练运用几何知识,解决实际问题。
几何问题需要学生熟悉各种几何形状的性质,如三角形、四边形等等。
3. 高考数学中的概率与统计问题高考数学试卷中的概率与统计问题需要考生熟练掌握概率论和统计学的基本知识,解决一些实际问题。
通常概率与统计的问题需要考生掌握的知识有:样本空间、事件、概率、随机变量、概率分布、数据整理和分析等等。
4. 高考数学中的函数问题函数问题在高考数学试卷中也是一个重要的部分。
高考数学中的函数问题要求考生掌握函数的性质及其运算法则,解决一些实际问题。
学生需要熟悉常用函数的图像、性质和应用,如常见的线性函数、二次函数、指数函数、对数函数等。
5. 高考数学中的解题方法在高考数学试卷中,解题方法是至关重要的,考生需要灵活运用各种解题方法,快速解决问题。
高考数学每日大题训练

星期一 (三角问题)2018年____月____日【题目1】 已知函数f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x .(1)求f (x )的最小正周期;(2)求证:当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x ) ≥-12.(1)解 f (x )=3cos ⎝ ⎛⎭⎪⎫2x -π3-2sin x cos x =32cos 2x +32sin 2x -sin 2x=12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3,所以f (x )的最小正周期T =2π2=π.(2)证明 由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3.∵x ∈⎣⎢⎡⎦⎥⎤-π4,π4,∴2x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6,∴当2x +π3=-π6,即x =-π4时,f (x )取得最小值-12.∴当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时,f (x ) ≥-12成立.星期二 (立体几何问题)2018年____月____日【题目2】 如图,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD .E 和F 分别是CD 和PC 的中点.求证: (1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ; (3)平面BEF ⊥平面PCD .证明(1)因为平面P AD∩平面ABCD=AD.又平面P AD⊥平面ABCD,且P A⊥AD,P A⊂平面P AD,所以P A⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以ABED为平行四边形.所以BE∥AD.又因为BE⊄平面P AD,AD⊂平面P AD,所以BE∥平面P AD.(3)因为AB⊥AD,且四边形ABED为平行四边形.所以BE⊥CD,AD⊥CD.由(1)知P A⊥底面ABCD,CD⊂平面ABCD,所以P A⊥CD.又因为P A∩AD=A,所以CD⊥平面P AD,又PD⊂平面P AD,从而CD⊥PD,又E,F分别是CD和CP的中点,所以EF∥PD,故CD⊥EF.由EF,BE在平面BEF内,且EF∩BE=E,所以CD⊥平面BEF.又CD⊂平面PCD,所以平面BEF⊥平面PCD.星期三(解析几何问题)2018年____月____日【题目3】已知△ABC的两顶点坐标A(-1,0),B(1,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,CP=1(从圆外一点到圆的两条切线段长相等),动点C的轨迹为曲线M.(1)求曲线M 的方程;(2)设直线BC 与曲线M 的另一交点为D ,当点A 在以线段CD 为直径的圆上时,求直线BC 的方程.解 (1)由题知CA +CB =CP +CQ +AP +BQ =2CP +AB =4>AB , 所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点), 设曲线M :x 2a 2+y 2b 2=1(a >b >0,y ≠0), 则a 2=4,b 2=a 2-⎝ ⎛⎭⎪⎫AB 22=3,所以曲线M :x 24+y 23=1(y ≠0)为所求.(2)注意到直线BC 的斜率不为0,且过定点B (1,0),设l BC :x =my +1,C (x 1,y 1),D (x 2,y 2), 由⎩⎨⎧x =my +1,3x 2+4y 2=12,消x 得(3m 2+4)y 2+6my -9=0, 所以y 1,2=-3m ±6m 2+13m 2+4,所以⎩⎪⎨⎪⎧y 1+y 2=-6m3m 2+4,y 1y 2=-93m 2+4,因为AC →=(my 1+2,y 1),AD →=(my 2+2,y 2),所以AC →·AD →=(my 1+2)(my 2+2)+y 1y 2=(m 2+1)y 1y 2+2m (y 1+y 2)+4=-9(m 2+1)3m 2+4-12m 23m 2+4+4=7-9m 23m 2+4.注意到点A 在以CD 为直径的圆上,所以AC →·AD→=0,即m =±73,所以直线BC的方程3x +7y -3=0或3x -7y -3=0为所求.星期四 (实际应用问题)2018年____月____日【题目4】 经市场调查,某旅游城市在过去的一个月内(以30天计),日旅游人数f (t )(万人)与时间t (天)的函数关系近似满足f (t )=4+1t ,日人均消费g (t )(元)与时间t (天)的函数关系近似满足g (t )=115-|t -15|.(1)求该城市的旅游日收益w (t )(万元)与时间t (1≤t ≤30,t ∈N *)的函数关系式; (2)求该城市旅游日收益的最小值(万元).解 (1)由题意得,w (t )=f (t )·g (t )=⎝ ⎛⎭⎪⎫4+1t (115-|t -15|)(1≤t ≤30,t ∈N *).所以w (t )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫4+1t (t +100)(1≤t <15,t ∈N *),⎝ ⎛⎭⎪⎫4+1t (130-t )(15≤t ≤30,t ∈N *),(2)①当1≤t <15时,w (t )=⎝ ⎛⎭⎪⎫4+1t (t +100)=4⎝ ⎛⎭⎪⎫t +25t +401≥4×225+401=441,当且仅当t =25t ,即t =5时取等号.②当15≤t ≤30时,w (t )=⎝ ⎛⎭⎪⎫4+1t (130-t )=519+⎝ ⎛⎭⎪⎫130t -4t ,可证w (t )在t ∈[15,30]上单调递减, 所以当t =30时,w (t )取最小值为40313.由于40313<441,所以该城市旅游日收益的最小值为40313万元.星期五 (数列问题)2018年____月____日【题目5】 已知各项均为正数的数列{a n }的前n 项和为S n ,满足8S n =a 2n +4a n +3(n ∈N *),且a 1,a 2,a 7依次是等比数列{b n }的前三项. (1)求数列{a n }及{b n }的通项公式;(2)是否存在常数a >0且a ≠1,使得数列{a n -log a b n }(n ∈N *)是常数列?若存在,求出a 的值;若不存在,说明理由.解 (1)n =1时,8a 1=a 21+4a 1+3,a 1=1或a 1=3. 当n ≥2时,8S n -1=a 2n -1+4a n -1+3, a n =S n -S n -1=18(a 2n +4a n -a 2n -1-4a n -1), 从而(a n +a n -1)(a n -a n -1-4)=0因为{a n }各项均为正数,所以a n -a n -1=4.所以,当a 1=1时,a n =4n -3;当a 1=3时,a n =4n -1.又因为当a 1=1时,a 1,a 2,a 7分别为1,5,25,构成等比数列,所以a n =4n -3,b n =5n -1.当a 1=3时,a 1,a 2,a 7分别为3,7,27,不构成等比数列,舍去. 综上所述,a n =4n -3,b n =5n -1. (2)存在满足条件的a ,理由如下: 由(1)知,a n =4n -3,b n =5n -1,从而 a n -log a b n =4n -3-log a 5n -1 =4n -3-(n -1)·log a 5 =(4-log a 5)n -3+log a 5.由题意,得4-log a 5=0,所以a =45.星期六 (函数与导数问题)2018年____月____日【题目6】 设f (x )=e x (ax 2+x +1). (1)若a >0,讨论f (x )的单调性;(2)x =1时,f (x )有极值,证明:当θ∈⎣⎢⎡⎦⎥⎤0,π2时,|f (cos θ)-f (sin θ)|<2. (1)解 f ′(x )=e x (ax 2+x +1)+e x (2ax +1)=a e x (x +1a )(x +2),当a =12时,f ′(x )=12e x (x +2)2≥0, f (x )在R 上单调递增; 当0<a <12时,由f ′(x )>0,得x >-2或x <-1a ;由f ′(x )<0,得-1a <x <-2,∴f (x )在⎝ ⎛⎭⎪⎫-∞,-1a 和(-2,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-1a ,-2上单调递减. 当a >12时,由f ′(x )>0,得x >-1a 或x <-2; 由f ′(x )<0, 得-2<x <-1a ,∴f (x )在(-∞,-2)和⎝⎛-1a ,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2,-1a 上单调递减. (2)证明 ∵x =1时,f (x )有极值, ∴f ′(1)=3e(a +1)=0, ∴a =-1,∴f (x )=e x (-x 2+x +1), f ′(x )=-e x (x -1)(x +2). 由f ′(x )>0, 得-2<x <1,∴f (x )在[-2,1]上单调递增. ∵θ∈⎣⎢⎡⎦⎥⎤0,π2,∴sin θ,cos θ∈[0,1],∴|f (cos θ)-f (sin θ)| ≤f (1)-f (0)=e -1<2.星期日 (解答题综合练)2018年____月____日【题目1】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(a +b -c )(a +b +c )=ab . (1)求角C 的大小;(2)若c =2a cos B ,b =2,求△ABC 的面积.解 (1)在△ABC 中,由(a +b -c )(a +b +c )=ab 得(a +b )2-c 2=ab ,进而得a 2+b 2-c 22ab =-12,即cos C =-12.因为0<C <π,所以C =2π3.(2)法一 因为c =2a cos B , 由正弦定理得sin C =2sin A cos B , 因为A +B +C =π,所以sin C =sin(A +B ), 所以sin(A +B )=2sin A cos B , 即sin A cos B -cos A sin B =0, 即sin(A -B )=0,又-π3<A -B <π3, 所以A -B =0,即A =B ,所以a =b =2. 所以△ABC 的面积为S △ABC =12ab sin C =12×2×2×sin 2π3= 3.法二 由c =2a cos B 及余弦定理得c =2a ×a 2+c 2-b 22ac , 化简得a =b =2,所以△ABC 的面积为S △ABC =12ab sin C =12×2×2×sin 2π3= 3. 【题目2】 如图,在三棱锥P -ABC 中,∠P AC =∠BAC=90°,P A =PB ,点D ,F 分别为BC ,AB 的中点. (1)求证:直线DF ∥平面P AC ; (2)求证:PF ⊥AD .证明 (1)因为点D ,F 分别为BC ,AB 的中点, 所以DF ∥AC ,又因为DF ⊄平面P AC ,AC ⊂平面P AC , 所以直线DF ∥平面P AC . (2)因为∠P AC =∠BAC =90°, 所以AC ⊥AB ,AC ⊥AP ,又因为AB ∩AP =A ,所以AC ⊥平面P AB , 因为PF ⊂平面P AB ,所以AC ⊥PF ,因为P A =PB ,F 为AB 的中点,所以PF ⊥AB , 因为AC ∩AB =A ,所以PF ⊥平面ABC , 因为AD ⊂平面ABC ,所以AD ⊥PF .【题目3】 某商场对A 品牌的商品进行了市场调查,预计2015年从1月起前x 个月顾客对A 品牌的商品的需求总量P (x )件与月份x 的近似关系是: P (x )=12x (x +1)(41-2x )(x ≤12且x ∈N *). (1)写出第x 月的需求量f (x )的表达式; (2)若第x 月的销售量g (x )= ⎩⎪⎨⎪⎧f (x )-21x ,1≤x <7且x ∈N *,x 2e x ⎝ ⎛⎭⎪⎫13x 2-10x +96,7≤x ≤12且x ∈N * (单位:件),每件利润q (x )元与月份x 的近似关系为:q (x )=10e xx ,问:该商场销售A 品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e 6≈403)解 (1)当x =1时,f (1)=P (1)=39. 当x ≥2时, f (x )=P (x )-P (x -1)=12x (x +1)(41-2x )-12(x -1)x (43-2x ) =3x (14-x ). 由于x =1适合上式,∴f (x )=-3x 2+42x (x ≤12,x ∈N *). (2)设月利润为h (x ), h (x )=q (x )·g (x )=⎩⎪⎨⎪⎧30e x (7-x ),1≤x <7,x ∈N *,103x 3-100x 2+960x ,7≤x ≤12,x ∈N *, h ′(x )=⎩⎨⎧30e x (6-x ),1≤x <7,x ∈N *,10(x -8)(x -12),7≤x ≤12,x ∈N *,∵当1≤x ≤6时,h ′(x ) ≥0,当6<x <7时,h ′(x )<0,∴当1≤x <7且x ∈N *时,h (x )max =30e 6≈12 090, ∵当7≤x ≤8时,h ′(x ) ≥0,当8≤x ≤12时,h ′(x ) ≤0, ∴当7≤x ≤12且x ∈N *时,h (x )max =h (8)≈2 987.综上,预计该商场第6个月的月利润达到最大,最大月利润约为12 090元. 【题目4】 如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的上、下两个顶点为A ,B ,直线l :y =-2,点P 是椭圆上异于点A ,B 的任意一点,连接AP 并延长交直线l 于点N ,连接PB 并延长交直线l 于点M ,设AP 所在的直线的斜率为k 1,BP 所在的直线的斜率为k 2.若椭圆的离心率为32,且过点A (0,1).(1)求k 1·k 2的值; (2)求MN 的最小值;(3)随着点P 的变化,以MN 为直径的圆是否恒过定点?若过定点,求出该定点;如不过定点,请说明理由.解 (1)因为e =c a =32,b =1,a 2=b 2+c 2,解得a =2,所以椭圆C 的标准方程为x 24+y 2=1.设椭圆上点P (x 0,y 0),有x 204+y 20=1,所以k 1·k 2=y 0-1x 0·y 0+1x 0=y 20-1x 20=-14.(2)因为M ,N 在直线l :y =-2上, 设M (x 1,-2),N (x 2,-2),由方程知x 24+y 2=1知,A (0,1),B (0,-1),所以k BM ·k AN =-2-(-1)x 1-0·-2-1x 2-0=3x 1x 2,又由(1)知k AN ·k BM =k 1·k 2=-14,所以x 1x 2=-12, 不妨设x 1<0,则x 2>0,则 MN =|x 1-x 2|=x 2-x 1=x 2+12x 2≥2x 2·12x 2=43,所以当且仅当x 2=-x 1=23时,MN 取得最小值4 3. (3)设M (x 1,-2),N (x 2,-2), 则以MN 为直径的圆的方程为 (x -x 1)(x -x 2)+(y +2)2=0,即x 2+(y +2)2-12-(x 1+x 2)x =0,若圆过定点, 则有x =0,x 2+(y +2)2-12=0, 解得x =0,y =-2±23,所以,无论点P 如何变化,以MN 为直径的圆恒过定点(0,-2±23). 【题目5】 已知函数f (x )=x -1-a ln x . (1)若f (x ) ≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122·…·⎝ ⎛⎭⎪⎫1+12n <m ,求m 的最小值.解 (1)f (x )的定义域为(0,+∞),① 若a ≤0,因为f ⎝ ⎛⎭⎪⎫12=-12+a ln 2<0,所以不满足题意.②若a >0,由f ′(x )=1-a x =x -ax 知,当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0, 所以f (x )在(0,a )单调递减,在(a ,+∞)单调递增, 故x =a 是f (x )在(0,+∞)的唯一最小值点. 由于f (1)=0,所以当且仅当a =1时,f (x ) ≥0, 故a =1.(2)由(1)知当x ∈(1,+∞)时,x -1-ln x >0,令x =1+12n ,得ln ⎝ ⎛⎭⎪⎫1+12n <12n . 从而ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n <12+122+…+12n =1-12n <1. 故⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <e , 又⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n >⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122⎝ ⎛⎭⎪⎫1+123=13564>2, ∴当n ≥3时,⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n ∈(2,e), 由于⎝⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <m ,且m ∈N *. 所以整数m 的最小值为3.【题目6】 已知数列{a n }的前三项分别为a 1=5,a 2=6,a 3=8,且数列{a n }的前n 项和S n 满足S n +m =12(S 2n +S 2m )-(n -m )2,其中m ,n 为任意正整数.(1)求数列{a n }的通项公式及前n 项和S n ;(2)求满足S 2n -32a n +33=k 2的所有正整数k ,n . 解 (1)在等式S m +n =12(S 2n +S 2m )-(n -m )2中,分别令m =1,m =2,得 S n +1=12(S 2n +S 2)-(n -1)2,①S n +2=12(S 2n +S 4)-(n -2)2,②②-①,得a n +2=2n -3+S 4-S 22.在等式S n +m =12(S 2n +S 2m )-(n -m 2)中,令n =1,m =2,得S 3=12(S 2+S 4)-1,由题设知,S 2=11,S 3=19,故S 4=29.所以a n +2=2n +6(n ∈N *),即a n =2n +2(n ≥3,n ∈N *).又a 2=6也适合上式,故a n =⎩⎨⎧5,n =1,2n +2,n ≥2.S n =⎩⎨⎧5,n =1,n 2+3n +1,n ≥2.即S n =n 2+3n +1,n ∈N *.(2)记S2n-32a n+33=k2(*).n=1时,无正整数k满足等式(*).n≥2时,等式(*)即为(n2+3n+1)2-3(n-10)=k2.①当n=10时,k=131.②当n>10时,则k<n2+3n+1,又k2-(n2+3n)2=2n2+3n+31>0,所以k>n2+3n.从而n2+3n<k<n2+3n+1.又因为n,k∈N*,所以k不存在,从而无正整数k满足等式(*).③当n<10时,则k>n2+3n+1,因为k∈N*,所以k≥n2+3n+2.从而(n2+3n+1)2-3(n-10)≥(n2+3n+2)2.即2n2+9n-27≤0.因为n∈N*,所以n=1或2.n=1时,k2=52,无正整数解;n=2时,k2=145,无正整数解.综上所述,满足等式(*)的n,k分别为n=10,k=131.。
全国卷高考数学导数、解析几何大题专项训练含答案(二)

全国卷高考数学导数、解析几何解答题专项训练(二)一、解答题1.设函数32()2f x x a x b x a =+++,2()32gx x x =-+,其中x R ∈,a 、b 为常数,已知曲线()y f x =与()y g x =在点(2,0)处有相同的切线l 。
(I ) 求a 、b 的值,并写出切线l 的方程;(II )若方程()()f x g x m x +=有三个互不相同的实根0、x 、x ,其中12x x <,且对任意的[]12,x x x ∈,()()(1)fxg x m x +<-恒成立,求实数m 的取值范围。
2.(本小题满分12分) 已知函数22()ln axf x x e=-,(a e R,∈为自然对数的底数). (Ⅰ)求函数()f x 的递增区间;(Ⅱ)当1a =时,过点(0, )P t ()t ∈R 作曲线()y f x =的两条切线,设两切点为111(,())P x f x ,222(,())P x f x 12()≠x x ,求证12x x +为定值,并求出该定值。
3.若函数()x f 满足:在定义域内存在实数0x,使()()()k f x f k x f +=+00(k 为常数),则称“f (x )关于k 可线性分解”.(Ⅰ)函数()22x x f x+=是否关于1可线性分解?请说明理由;(Ⅱ)已知函数()1ln +-=ax x x g ()0>a 关于a 可线性分解,求a 的取值范围;(Ⅲ)证明不等式:()()12e 321-≤⨯⨯⨯⨯n n n Λ()*∈N n . 4.已知x=1是()2ln bf x x x x =-+的一个极值点(1)求b 的值; (2)求函数()f x 的单调增区间;(3)设x x f x g 3)()(-=,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由。
5.已知函数2()x f x e x ax =--,如果函数()f x 恰有两个不同的极值点1x ,2x ,且12x x <.(Ⅰ)证明:1ln 2x <;(Ⅱ)求1()f x 的最小值,并指出此时a 的值.6.设函数2()ln 4f x a x x =-,2()(0,0,,)g x bx a b a b R =≠≠∈.(Ⅰ)当32b =时,函数()()()h x f x g x =+在1x =处有极小值,求函数()h x 的单调递增区间;(Ⅱ)若函数()f x 和()g x 有相同的极大值,且函数()()()g x p x f x x =+在区间2[1,]e 上的最大值为8e -,求实数b 的值(其中e 是自然对数的底数) 7.(本小题满分12分)已知函数()ln f x x a x =-,1(), (R).ag x a x +=-∈(Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间; (Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.8.已知函数2()(0)f x ax kbx x =+>与函数()ln ,、、g x ax b x a b k =+为常数,它们的导函数分别为()y f x '=与()y g x '=(1)若()g x 图象上一点(2,(2))p g 处的切线方程为:22ln 220x y -+-=,求、a b 的值;(2)对于任意的实数k,且、a b 均不为0,证明:当0ab >时,()y f x '=与()y g x '=的图象有公共点;(3)在(1)的条件下,设112212(,),(,),()A x yB x y x x <是函数()y g x =的图象上两点,21021()y y g x x x -'=-,证明:102x x x <<9.(本小题满分13分)已知函数21()ln (,0).2f x x ax a R a =-∈≠(I )求函数()f x 的单调区间;(II )已知点1111(1,),(,)(1):()2A a x y x C y f x ->=设B 是曲线图角上的点,曲线C上是否存在点00(,)M x y 满足:①1012x x +=;②曲线C 在点M 处的切线平行于直线AB ?请说明理由。
高中数学-解析几何部分讲义及习题

课题:2015高考数学解析几何部分知识点总结直线部分一、直线的倾斜角和斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。
注意:规定当直线和x 轴平行或重合时,其倾斜角为o0,所以直线的倾斜角α的范围是o o 1800<≤α;(2)直线的斜率:倾斜角不是o90的直线,它的倾斜角的正切叫做这条直线的斜率,αtan =k①斜率是用来表示倾斜角不等于o90的直线对于x 轴的倾斜程度的。
②每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。
③斜率计算公式:设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线方程的几种形式:(1)点斜式:过已知点),(00y x ,且斜率为k 的直线方程:)(00x x k y y -=-;注意:①当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;②k x x y y =--0表示:)(00x x k y y -=-直线上除去),(00y x 的图形 。
(2)斜截式:若已知直线在y 轴上的截距为b ,斜率为k ,则直线方程:b kx y +=;注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
(3)两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠),则直线的方程:121121x x x x y y y y --=--; 注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。
高三练习题数学困难

高三练习题数学困难数学在高中阶段是一个重要的学科,对于高三学生来说,数学已经成为了他们每日学习中必不可少的一部分。
而在高三阶段,学生们常常会遇到一些数学难题,这给他们的学习带来了很大的困扰。
本文将围绕高三数学困难题展开论述,并讨论如何应对这些难题。
一、解析几何中的困难题解析几何是高中数学中难度较大的一个章节,许多高三学生都感到困惑。
其中,平面直角坐标系和空间直角坐标系是解析几何的基础。
在解析几何中,求两点距离、点到直线的距离以及点到平面的距离是常见的难题。
解决这类问题,需要明确几何关系,灵活运用相关的定理和公式。
另外,解析几何中的曲线与曲面也是高三学生经常遇到的难题。
对于抛物面、椭球面、双曲面等曲面的性质和方程,很多学生都感到混淆不清。
这时,选择合适的坐标系,并结合几何直观进行分析,可以帮助学生更好地理解和解决相应的问题。
二、复杂方程与不等式难题高三数学中,复杂方程与不等式也是学生常常遇到的困难。
解决这类问题需要学生掌握方程与不等式的基本概念和性质,并能熟练应用代数计算方法。
涉及到多重方程和不等式的联立问题时,学生需要灵活运用等式和不等式之间的关系,合理地引入新的变量或条件,进行适当的变形和化简。
此外,一些复杂方程和不等式问题常常与函数的性质和图像有关。
针对这种情况,学生需要通过对函数图像的分析,确定函数的增减性、单调性、奇偶性等特点,从而求解相应的方程和不等式。
三、概率与统计的困难题在高三阶段,概率与统计也是一个相对较难的数学知识点。
对于概率题,很多学生常常在计算中出现错误,或是在题目分析和模型建立方面存在困难。
解决这类问题,学生需要加强对概率概念和计算方法的掌握,注重细节,注意运算过程中的准确性。
统计题中,常见的难题包括抽样调查、统计图表的分析和推理等。
学生需要掌握统计的基本思想和方法,善于运用数理统计的理论和技巧,从而解决各类统计题。
四、应对高三数学困难题的方法面对高三数学中的困难题,学生可以采取以下方法来提升解题能力:1. 坚实的基础:高三学生需要对数学基础知识进行复习和巩固,熟练掌握相关的定理和公式。
高考数学大题每日一题规范练(第四周)

高考数学大题每日一题规范练【题目1】 (本小题满分12分)已知向量a =(sin x ,m cos x ),b =(3,-1). (1)若a ∥b ,且m =1,求2sin 2x -3cos 2x 的值;(2)若函数f (x )=a ·b 的图象关于直线x =2π3对称,求函数f (2x )在⎣⎢⎡⎦⎥⎤π8,2π3上的值域.解 (1)当m =1时,a =(sin x ,cos x ),又b =(3,-1), 且a ∥b .∴-sin x -3cos x =0,即tan x =-3,∵2sin 2x -3cos 2x =2sin 2x -3cos 2x sin 2x +cos 2x =2tan 2x -3tan 2x +1=2×(-3)2-3(-3)2+1=32,∴2sin 2x -3cos 2x =32.(2)∵f (x )=a ·b =3sin x -m cos x 的图象关于直线x =2π3对称, ∴f ⎝ ⎛⎭⎪⎫2π3-x =f ⎝ ⎛⎭⎪⎫2π3+x,即f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫5π6, 即3=32+32m ,得m =3,则f (x )=23⎝ ⎛⎭⎪⎫32sin x -12cos x =23sin ⎝ ⎛⎭⎪⎫x -π6,∴f (2x )=23sin ⎝⎛⎭⎪⎫2x -π6,∵x ∈⎣⎢⎡⎦⎥⎤π8,2π3,∴2x -π6∈⎣⎢⎡⎦⎥⎤π12,7π6,∴当x =π3时,f (2x )取最大值为23;当x =2π3时,f (2x )取最小值为- 3. 即函数f (2x )在⎣⎢⎡⎦⎥⎤π8,2π3上的值域为[-3,23].星期二 (概率统计) 2018年____月____日【题目2】 (本小题满分12分)某项科研活动共进行了5次试验,其数据如下表所示:(1)从5600的概率;(2)求特征量y 关于x 的线性回归方程y ^=b ^x +a ^:并预测当特征量x 为570时特征量y 的值.(附:回归直线的斜率和截距的最小二乘法估计公式分别为解 (1)从5次特征量y 的试验数据中随机地抽取两个数据,共有C 25=10种方法,都小于600,有C 23=3种方法,∴至少有一个大于600的概率P =1-C 23C 25=1-310=710.-1×1+3×5+(-5)×(-3)+7×(-1)+(-4)×(-2)(-1)2+32+(-5)2+72+(-4)2=0.3,a ^=y-b ^x =600-0.3×556=433.2, 线性回归方程为y ^=0.3x +433.2,当x =570时,y ^=0.3×570+433.2=604.2. 即当特征量x 为570时特征量y 的估计值为604.2.星期三 (数列) 2018年____月____日【题目3】 (本小题满分12分)在数列{a n }中,a 1=1,2+a n +11+a n +1=11+a n +32(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1+a 2n (n ∈N *),求数列{2nb n }的前n 项和S n .解 (1)∵2+a n +11+a n +1=11+a n +32,∴11+a n +1=11+a n+12,即11+a n +1-11+a n =12,设c n =1a n +1,由a 1=1得c 1=12,则数列{c n }是一个首项和公差均为12的等差数列, ∴c n =12+12(n -1)=n 2,则a n =2n -1.(2)由(1)得b n =1+a 2n =22n =12n -1,所以2nb n =2n2n -1,则S n =2×1+4×12+6×122+…+2n ×12n -1①,∴12S n =2×12+4×122+6×123+…+2n ×12n ②, ①-②得12S n =2⎝ ⎛⎭⎪⎫1+12+122+123+…+12n -1-2n ×12n ,即12S n =4-2n +42n .得S n =8-n +22n -2⎝⎛⎭⎪⎫或8-4n +82n .星期四 (立体几何) 2018年____月____日【题目4】 (本小题满分12分)如图,三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面ABC ,∠ACB =90°,AC =CB =2,M ,N 分别是AB ,A 1C 的中点.(1)求证:MN ∥平面BB 1C 1C ;(2)若平面CMN ⊥平面B 1MN ,求直线AB 与平面B 1MN 所成角的正弦值. (1)证明 连接AC 1,BC 1,则N ∈AC 1且N 为AC 1的中点,又∵M 为AB 的中点,∴MN ∥BC 1,又BC 1⊂平面BB 1C 1C ,MN ⊄平面BB 1C 1C , 故MN ∥平面BB 1C 1C .(2)解 由A 1A ⊥平面ABC 且CC 1∥A 1A ,得AC ⊥CC 1,BC ⊥CC 1.又∠ACB =90°,则AC ⊥BC ,以C 为原点,分别以CB ,CC 1,CA 所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,设CC 1=2λ(λ>0).则M (1,0,1),N (0,λ,1),B 1(2,2λ,0),∴CM →=(1,0,1),MN →=(-1,λ,0),NB 1→=(2,λ,-1). 取平面CMN 的一个法向量为m =(x ,y ,z ), 由CM→·m =0,MN →·m =0. 得⎩⎨⎧x +z =0,-x +λy =0,令y =1,得m =(λ,1,-λ).同理可得平面B 1MN 的一个法向量为n =(λ,1,3λ), ∵平面CMN ⊥平面B 1MN ,∴m ·n =λ2+1-3λ2=0,解得λ=22,得n =⎝ ⎛⎭⎪⎫22,1,322,又AB →=(2,0,-2),设直线AB 与平面B 1MN所成角为θ,则sin θ=|cos 〈n ,AB →〉|=|n ·AB →||n ||AB →|=66.所以,直线AB 与平面B 1MN 所成角的正弦值是66.星期五 (解析几何) 2018年____月____日【题目5】 (本小题满分12分)在平面直角坐标系xOy 中,已知椭圆E :x 2a 2+y 2b 2=1(a >b >0),圆O :x 2+y 2=r 2(0<r <b ),若圆O 的一条切线l :y =kx +m 与椭圆E 相交于A ,B 两点.(1)当k =-12,r =1时,若点A ,B 都在坐标轴的正半轴上,求椭圆E 的方程; (2)若以AB 为直径的圆经过坐标原点O ,探究a ,b ,r 是否满足1a 2+1b 2=1r 2,并说明理由.解 (1)依题意原点O 到切线l :y =-12x +m 的距离为半径1,∴|m |1+14=1,解之得m =±52,又点A ,B 都在坐标轴的正半轴上,则m >0, ∴切线l :y =-12x +52,∴A ⎝⎛⎭⎪⎫0,52,B (5,0),∴B 为椭圆的右顶点,A 为椭圆的上顶点,则a =5,b =52, ∴椭圆E 的方程为:x 25+y 254=1.(2)a ,b ,r 满足1a 2+1b 2=1r 2成立,理由如下:设A (x 1,y 1),B (x 2,y 2),直线l 与圆x 2+y 2=r 2相切,则|m |1+k 2=r ,即m 2=r 2(1+k 2),① 联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b2=1,得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0. 则x 1+x 2=-2a 2km b 2+a 2k 2,x 1x 2=a 2m 2-a 2b 2b 2+a 2k 2,所以y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=b 2m 2-a 2b 2k 2b 2+a 2k 2,AB 为直径的圆经过坐标原点O ,则∠AOB =90°, 则OA→·OB →=0, ∴x 1x 2+y 1y 2=a 2m 2-a 2b 2b 2+a 2k 2+b 2m 2-a 2b 2k 2b 2+a 2k 2=(a 2+b 2)m 2-a 2b 2(1+k 2)b 2+a 2k 2=0.则(a 2+b 2)m 2=a 2b 2(1+k 2),②将①代入②,得a 2+b 2a 2b 2=1r 2, ∴1a 2+1b 2=1r 2.星期六 (函数与导数) 2018年____月____日【题目6】 (本小题满分12分)已知函数f (x )=x 2-a ln x (a >0)的最小值是1. (1)求a ;(2)若关于x 的方程f 2(x )e x -6mf (x )+9m e -x =0在区间[1,+∞)有唯一的实根,求m 的取值范围. 解 (1)f ′(x )=2x -ax =2⎝⎛⎭⎪⎫x +a 2⎝ ⎛⎭⎪⎫x -a 2x(x >0).所以,当0<x <a2时,f ′(x )<0,函数f (x )单调递减;当x >a2时,f ′(x )>0,函数f (x )单调递增. 故f (x )min =f ⎝⎛⎭⎪⎫a 2=a 2-a 2ln a 2, 由题意可得:a 2-a 2ln a 2=1,即a 2-a 2ln a2-1=0, 记g (a )=a 2-a 2ln a2-1(a >0),则函数g (a )的零点即为方程a 2-a 2ln a2=1的根; 由于g ′(a )=-12ln a2,故a =2时,g ′(2)=0, 且0<a <2时,g ′(a )>0;a >2时,g ′(a )<0, 所以a =2是函数g (a )的唯一极大值点, 所以g (a )≤g (2),又g (2)=0, 所以a =2.(2)由条件可得f 2(x )e 2x -6mf (x )e x +9m =0, 令g (x )=f (x )e x =(x 2-2ln x )e x , 则g ′(x )=⎝ ⎛⎭⎪⎫x 2+2x -2x -2ln x e x ,令r (x )=x 2+2x -2x -2ln x (x ≥1),则r ′(x )=2x +2+2x 2-2x >2x -2x =2(x 2-1)x≥0,r (x )在区间[1,+∞)内单调递增, ∴g (x )≥g (1)=e ;所以原问题等价于方程t 2-6mt +9m =0在区间[e ,+∞)内有唯一解, 当Δ=0时可得m =0或m =1,经检验m =1满足条件. 当Δ>0时可得m <0或m >1, 所以e 2-6m e +9m ≤0, 解之得m ≥e 26e -9,综上,m的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m =1或m ≥e 26e -9.星期日 (选考内容) 2018年____月____日【题目7】 在下面两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分.1.(本小题满分10分)选修4-4:坐标系与参数方程.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =4t 2,y =4t(t 为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρ(4cos θ+3sin θ)-m =0(其中m 为常数).(1)若直线l 与曲线C 恰好有一个公共点,求实数m 的值; (2)若m =4,求直线l 被曲线C 截得的弦长.解 (1)直线l 的极坐标方程可化为直角坐标方程:4x +3y -m =0,曲线C 的参数方程可化为普通方程:y 2=4x , 由⎩⎨⎧4x +3y -m =0,y 2=4x可得y 2+3y -m =0, ∵直线l 和曲线C 恰好有一个公共点, ∴Δ=9+4m =0,∴m =-94.(2)当m =4时,直线l :4x +3y -4=0恰好过抛物线的焦点F (1,0),由⎩⎨⎧4x +3y -4=0,y 2=4x可得4x 2-17x +4=0,设直线l 与抛物线C 的两个交点分别为A (x 1,y 1),B (x 2,y 2),则x 1+x 2=174, 故直线l 被抛物线C 所截得的弦长为|AB |=x 1+x 2+2=174+2=254. 2.(本小题满分10分)选修4-5:不等式选讲. 设函数f (x )=⎪⎪⎪⎪⎪⎪12x +1+|x |(x ∈R )的最小值为a .(1)求a ;(2)已知两个正数m ,n 满足m 2+n 2=a ,求1m +1n 的最小值.解 (1)f (x )=⎩⎪⎨⎪⎧-32x -1,x <-2,-12x +1,-2≤x ≤0,32x +1,x >0.当x ∈(-∞,0)时,f (x )单调递减; 当x ∈[0,+∞)时,f (x )单调递增; ∴当x =0时,f (x )的最小值a =1.(2)由(1)知m 2+n 2=1,则m 2+n 2≥2mn ,得1mn ≥2, 由于m >0,n >0, 则1m +1n ≥21mn ≥22,当且仅当m =n =22时取等号.∴1m +1n 的最小值为2 2.。
高考数学函数与解析几何压轴题

函数和解析几何练习1. 已知 f (θ) = a sin θ + b cos θ,θ ∈ [ 0, π ],且1与2 cos 2 θ2 的等差中项大于1与 sin 2 θ2的等比中项的平方.求:(1) 当a = 4, b = 3时,f (θ) 的最大值及相应的 θ 值;(2) 当a > b > 0时,f (θ) 的值域.解:易得1 + 2cos 2θ22 >sin 2θ2,∴ 1 + 2cos 2θ 2 >2 sin 2θ 2 ,即2(cos 2θ 2 -sin 2θ2) > -1,∴ 2cos θ > -1,即cos θ >-12 .∵ θ ∈ [0,π ],∴θ ∈ [0, 2π3 ) . 2分(1)当a = 4,b = 3时,有f(θ ) = 4sin θ + 3cos θ = 5sin(θ + ϕ ) (其中ϕ = arctan 34 ).∵ 0≤θ <2π3,∴ϕ ≤θ + ϕ < 2π3 + ϕ ,而0<ϕ = arctan 34 <π4 .∴ 当θ + ϕ = π2 即θ = π2 -arctan 34时,f(θ )max = 5. 5分(2)由(1)知,当a>b>0时,设 ⎩⎨⎧ x = bcos θ y = asin θ, 则有 x 2b 2 + y2a 2 = 1。
∵ 0≤θ <2π3 , ∴ 0≤y ≤a , -b2 <x ≤b ,其方程表示一段椭圆弧,端点为M(b,0),N(-b 2 , 3 a2 ),但不含N 点。
7分设f(θ ) = x + y = t ,则y = -x + t 为一直线。
将y = -x + t 代入x 2b 2 + y 2a 2= 1可得(a 2 + b 2)x 2-2b 2tx + b 2(t 2-a 2) = 0。
当直线与椭圆相切时,有△ = 4b 4t 2-4b 2(a 2 + b 2)(t 2-a 2) = 4b 2[b 2t 2-(a 2 + b 2) (t 2-a 2)] = 0。