2016-2017学年高中数学人教A版选修2-2学业测评:2.2.1
人教a版(数学选修2-2)测试题及参考答案

人教a 版(数学选修2-2)测试题第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒 3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞ 4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件 6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________; 2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
三、解答题1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。
2016-2017学年高中数学人教A版选修2-2学业测评:1.1.1+2 变化率问题 导数的概念

【答案】 c>a=d=e>b
4.(2016·南充高二检测)某一运动物体,在 x(s)时离开出发点的距离(单位:
2 m)是 f(x)=3x3+x2+2x.
(1)求在第 1 s 内的平均速度;
(2)求在 1 s 末的瞬时速度;
(3)经过多少时间该物体的运动速度达到 14 m/s?
f1-f0 11 【解】 (1)物体在第 1 s 内的平均变化率(即平均速度)为 1-0 = 3 m/s.
Δy (1+Δx,-2+Δy),则Δx=( )
A.4 C.4+2Δx
B.4x D.4+2(Δx)2
【解析】 因为 Δy=f(1+Δx)-f(1)=2(1+Δx)2-4-(2×12-4)
=4Δx+2(Δx)2,
2
1
Δy 4Δx+2Δx2 所以Δx= Δx =4+2Δx.
【答案】 C
4.设函数 f(x)在点 x0 附近有定义,且有 f(x0+Δx)-f(x0)=aΔx+b(Δx) 2(a,b 为常数),则( )
2Δx
,e=x→limx0
fx-fx0
x-x0 , 则 a,b,c,d,e 的大小关系为__________.
fx0+Δx-fx0
【解析】 a=Δlxi→m 0
Δx
=f′(x0),
2
1
fx0-Δx-fx0
b=Δlxi→m 0
Δx
fx0-Δx-fx0
=-Δlxi→m 0
Δy f1+Δx-f1
(2)Δx= Δx
2
11
1+Δx3+1+Δx2+21+Δx-
3
3
=
Δx
2 =6+3Δx+3(Δx)2.
2
1
Δy 当 Δx→0 时,Δx→6,
2016-2017学年高中数学阶段质量检测(二)推理与证明新人教A版选修2-2

阶段质量检测(二) 推理与证明班级:____________ 姓名:____________ 得分:____________(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.观察下列各等式:22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为( )A.nn -4+8-n8-n -4=2 B.n +1n +1-4+n +1+5n +1-4=2C.nn -4+n +4n +4-4=2 D.n +1n +1-4+n +5n +5-4=22.下列三句话按“三段论”模式排列顺序正确的是( ) ①y =cos x (x ∈R )是三角函数; ②三角函数是周期函数; ③y =cos x (x ∈R )是周期函数. A .①②③ B .②①③ C .②③①D .③②①3.由“正三角形的内切圆切于三边的中点”可类比猜想:“正四面体的内切球切于四个面________.”( )A .各正三角形内一点B .各正三角形的某高线上的点C .各正三角形的中心D .各正三角形外的某点4.(山东高考)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根 B .方程x 3+ax +b =0至多有一个实根 C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根5.将平面向量的数量积运算与实数的乘法运算相类比,易得下列结论:( ) ①a·b =b·a ;②(a·b )·c =a·(b·c );③a·(b +c )=a·b +a·c ;④由a·b =a·c (a≠0)可得b =c .则正确的结论有( ) A .1个 B .2个 C .3个D .4个6.用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n×1×3×…×(2n -1)(n ∈N *)时,从n =k 到n =k +1时,左边需增乘的代数式是( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +17.已知a ∈(0,+∞),不等式x +1x ≥2,x +4x 2≥3,x +27x 3≥4,…,可推广为x +axn ≥n+1,则a 的值为( )A .2nB .n 2C .22(n -1)D .n n8.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图形需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +29.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .19910.数列{a n }满足a 1=12,a n +1=1-1a n ,则a 2 015等于( )A.12 B.-1 C .2D .3二、填空题(本大题共4小题,每小题5分,共20分)11.设函数f (x )=12x +2,利用课本中推导等差数列前n 项和公式的方法,可求得S=f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为________.12.已知 2+23=2 23, 3+38=3 38, 4+415=4 415,…,若 6+a b=6ab(a ,b 均为实数),请推测a =________,b =________. 13.若定义在区间D 上的函数f (x )对于D 上的n 个值x 1,x 2,…,x n ,总满足1n[f (x 1)+f (x 2)+…+f(x n )]≤f ⎝⎛⎭⎪⎫x 1+x 2+…+x n n ,称函数f (x )为D 上的凸函数;现已知f (x )=sin x 在(0,π)上是凸函数,则△ABC 中,sin A +sin B +sin C 的最大值是________.14.观察下列数字: 1 2 3 4 3 4 5 6 7 4 5 6 7 8 9 10 ……则第________行的各数之和等于2 0152.三、解答题(本大题共4小题,共50分.解答时应写出文字说明,证明过程或运算步骤) 15.(本小题满分12分)观察下列式子: ①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两个式子的结构规律,你能否提出一个猜想?并证明你的猜想.16.(本小题满分12分)已知△ABC 的三边长分别为a ,b ,c ,且其中任意两边长均不相等,假设1a ,1b ,1c成等差数列.(1)比较b a 与 cb的大小,并证明你的结论; (2)求证:角B 不可能是钝角.17.(本小题满分12分)先解答(1),再通过结构类比解答(2).(1)求证:tan ⎝⎛⎭⎪⎫x +π4=1+tan x 1-tan x .(2)设x ∈R ,a 为非零常数,且f (x +a )=1+f x1-f x ,试问:f (x )是周期函数吗?证明你的结论.18.(本小题满分14分)在各项为正的数列{a n }中,数列的前n 项和S n 满足S n =12⎝ ⎛⎭⎪⎫a n +1a n .(1)求a 1,a 2,a 3;(2)由(1)猜想到数列{a n }的通项公式,并用数学归纳法证明你的猜想.答 案1.选A 观察分子中2+6=5+3=7+1=10+(-2)=8. 2.选B 按三段论的模式,排列顺序正确的是②①③.3.选C 正三角形的边对应正四面体的面,边的中点对应正四面体的面正三角形的中心.4.选A 因为“方程x 3+ax +b =0至少有一个实根”等价于“方程x 3+ax +b =0的实根的个数大于或等于1”,因此,要做的假设是方程x 3+ax +b =0没有实根.5.选B 平面向量的数量积的运算满足交换律和分配律,不满足结合律,故①③正确,②错误;由a·b =a·c (a≠0)得a·(b -c )=0,从而b -c =0或a⊥(b -c ),故④错误.6.选B 增乘的代数式为k +1+k k +1+k +1k +1=2(2k +1).7.选D 将四个答案分别用n =1,2,3检验即可,故选D.8.选C 归纳“金鱼”图形的构成规律知,后面“金鱼”都比它前面的“金鱼”多了去掉尾巴后6根火柴组成的鱼头部分,故各“金鱼”图形所用火柴棒的根数构成一首项为8,公差是6的等差数列,通项公式为a n =6n +2.9.选C 记a n +b n=f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.10.选B ∵a 1=12,a n +1=1-1a n ,∴a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,a 6=1-1a 5=2,∴a n +3k =a n (n ∈N *,k ∈N *) ∴a 2 015=a 2+3×671=a 2=-1.11.解析:∵f (x )=12x+2, f (1-x )=121-x+2=2x2+2·2x =12·2x2+2x . ∴f (x )+f (1-x )=1+12·2x2+2x =22, 发现f (x )+f (1-x )正好是一个定值, ∴2S =22×12,∴S =3 2. 答案:3 212.解析:由前面三个等式,推测归纳被平方数的整数与分数的关系,发现规律.由三个等式知,整数和这个分数的分子相同,而分母是这个分子的平方减1,由此推测 6+a b中,a =6,b =62-1=35,即a =6,b =35.答案:6 3513.解析:因为f (x )=sin x 在(0,π)上是凸函数(小前提), 所以13(sin A +sin B +sin C )≤sin A +B +C 3(结论),即sin A +sin B +sin C ≤3sin π3=332.因此,sin A +sin B +sin C 的最大值是332.答案:33214.解析:观察知,图中的第n 行各数构成一个首项为n ,公差为1,共2n -1项的等差数列,其各项和为S n =(2n -1)n +2n -12n -22=(2n -1)n +(2n -1)·(n -1)=(2n -1)2,令(2n -1)2=2 0152,得2n -1=2 015,解得n =1 008. 答案:1 00815.解:猜想sin 2α+cos 2(30°+α)+sin αcos(30°+α)=34.证明如下:sin 2α+cos 2(30°+α)+sin αcos(30°+α) =1-cos 2α2+1+cos 60°+2α2+12[sin(30°+2α)+sin(-30°)]=1+cos 60°+2α-cos 2α2+12sin(2α+30°)-14=34+12[cos 60°·cos 2α-sin 60°sin 2α-cos 2α]+12sin(2α+30°) =34-12·⎝ ⎛⎭⎪⎫12cos 2α+32sin 2α+12sin(2α+30°) =34-12sin(2α+30°)+12sin(2α+30°)=34, 即sin 2α+cos 2(30°+α)+sin α·cos(30°+α)=34.16.解:(1) b a < cb.证明如下: 要证b a <c b ,只需证b a <c b. ∵a ,b ,c >0,∴只需证b 2<ac . ∵1a ,1b ,1c 成等差数列,∴2b =1a +1c≥21ac,∴b 2≤ac .又a ,b ,c 均不相等,∴b 2<ac . 故所得大小关系正确.(2)证明:法一 假设角B 是钝角,则cos B <0. 由余弦定理得cos B =a 2+c 2-b 22ac ≥2ac -b 22ac >ac -b 22ac>0,这与cos B <0矛盾,故假设不成立. 所以角B 不可能是钝角.法二 假设角B 是钝角,则角B 的对边b 为最大边,即b >a ,b >c ,所以1a >1b >0,1c>1b>0,则1a +1c >1b +1b =2b ,这与1a +1c =2b矛盾,故假设不成立.所以角B 不可能是钝角.17.解:(1)根据两角和的正切公式得tan ⎝⎛⎭⎪⎫x +π4=tan x +tanπ41-tan x tanπ4=tan x +11-tan x =1+tan x1-tan x,即tan ⎝⎛⎭⎪⎫x +π4=1+tan x 1-tan x ,命题得证. (2)猜想f (x )是以4a 为周期的周期函数.因为f (x +2a )=f [(x +a )+a ]=1+f x +a1-f x +a =1+1+fx 1-f x 1-1+fx 1-f x=-1f x , 所以f (x +4a )=f [(x +2a )+2a ]=-1fx +2a=f (x ).所以f (x )是以4a 为周期的周期函数. 18.解:(1)S 1=a 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,得a 21=1,因为a n >0,所以a 1=1.S 2=a 1+a 2=12⎝⎛⎭⎪⎫a 2+1a 2,得a 22+2a 2-1=0, 所以a 2=2-1.S 3=a 1+a 2+a 3=12⎝⎛⎭⎪⎫a 3+1a3, 得a 23+22a 3-1=0,所以a 3=3- 2. (2)猜想a n =n -n -1(n ∈N *). 证明:①n =1时,a 1=1-0=1,命题成立.②假设n =k (k ≥1,k ∈N *)时,a k =k -k -1成立,则n =k +1时,a k +1=S k +1-S k =12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k ,即a k +1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-k ,所以a 2k +1+2ka k +1-1=0,所以a k +1=k +1-k ,则n =k +1时,命题成立. 由①②知,n ∈N *,a n =n -n -1.。
2016-2017学年高中数学人教A版选修2-2学业测评:1.1.1+2 变化率问题 导数的概念

C.6D.-6
【解析】由平均速度和瞬时速度的关系可知,
v=s′(1)= (-3Δt-6)=-6.
【答案】D
3.已知函数f(x)=2x2-4的图象上一点(1,-2)及附近一点(1+Δx,-2+Δy),则 =()
A.4B.4x
C.4+2ΔxD.4+2(Δx)2
【解析】因为Δy=f(1+Δx)-f(1)=2(1+Δx)2-4-(2×12-4)=4Δx+2(Δx)2,
∴f′(x0)= [3x +3x0Δx+(Δx)2]=3x ,
由f′(x0)=3,得3x =3,∴x0=±1.
【答案】C
2.如果函数y=f(x)在x=1处的导数为1,那么 =()【导学号:60030004】
A. B.1
C.2D.
【解析】因为f′(1)=1,所以 =1,
所以 = = .【答Fra bibliotek】A3.已知f′(x0)>0,若a= ,b= ,c= ,
【答案】-
7.汽车行驶的路程s和时间t之间的函数图象如图1 1 2所示.在时间段[t0,t1],[t1,t2],[t2,t3]上的平均速度分别为 1, 2, 3,其三者的大小关系是________.
图1 1 2
【解析】∵ 1= =kMA,
2= =kAB,
3= =kBC,
由图象可知:kMA<kAB<kBC,∴ 3> 2> 1.
=2x2+2x+2+ (Δx)2+2x·Δx+Δx.
当Δx→0时, →2x2+2x+2,
令2x2+2x+2=14,
解得x=2,
即经过2 s该物体的运动速度达到14 m/s.
学业分层测评
(建议用时:45分钟)
[学业达标]
天津市高中数学人教A版选修2-2学业测评:2.2.1 综合法和分析法

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.在证明命题“对于任意角θ,cos 4θ-sin 4 θ=cos 2θ”的过程:“cos 4 θ-sin 4 θ=(cos 2 θ+sin 2 θ)(cos 2 θ-sin 2 θ)=cos 2 θ-sin 2 θ=cos 2θ”中应用了( )A .分析法B .综合法C .分析法和综合法综合使用D .间接证法【解析】 此证明符合综合法的证明思路.故选B. 【答案】 B2.要证a 2+b 2-1-a 2b 2≤0,只需证( ) A .2ab -1-a 2b 2≤0B .a 2+b 2-1-a 2+b22≤0C.(a +b )22-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0【解析】 要证a 2+b 2-1-a 2b 2≤0, 只需证a 2b 2-a 2-b 2+1≥0, 只需证(a 2-1)(b 2-1)≥0,故选D. 【答案】 D3.在集合{a ,b ,c ,d }上定义两种运算⊕和⊗如下:d d b b d那么,d⊗(a⊕c)等于(A.a B.bC.c D.d【解析】由⊕运算可知,a⊕c=c,∴d⊗(a⊕c)=d⊗c.由⊗运算可知,d⊗c=a.故选A.【答案】 A4.欲证2-3<6-7成立,只需证()A.(2-3)2<(6-7)2B.(2-6)2<(3-7)2C.(2+7)2<(3+6)2D.(2-3-6)2<(-7)2【解析】∵2-3<0,6-7<0,故2-3<6-7⇔2+7<3+6⇔(2+7)2<(3+6)2. 【答案】 C5.对任意的锐角α,β,下列不等式中正确的是()A.sin(α+β)>sin α+sin βB.sin(α+β)>cos α+cos βC.cos(α+β)>sin α+sin βD.cos(α+β)<cos α+cos β【解析】因为0<α<π2,0<β<π2,所以0<α+β<π,若π2≤α+β<π,则cos(α+β)≤0,因为cos α>0,cos β>0.所以cos α+cos β>cos (α+β).若0<α+β<π2,则α+β>α且α+β>β,因为cos(α+β)<cos α,cos(α+β)<cos β,所以cos(α+β)<cos α+cos β,总之,对任意的锐角α,β有cos(α+β)<cos α+cos β.【答案】 D二、填空题6.命题“函数f(x)=x-x ln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-x ln x求导得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”应用了________的证明方法.【解析】该证明方法是“由因导果”法.【答案】综合法7.如果a a>b b,则实数a,b应满足的条件是__________.【解析】要使a a>b b,只需使a>0,b>0,(a a)2>(b b)2,即a>b>0.【答案】a>b>08.若对任意x>0,xx2+3x+1≤a恒成立,则a的取值范围是__________. 【导学号:60030056】【解析】若对任意x>0,xx2+3x+1≤a恒成立,只需求y=xx2+3x+1的最大值,且令a 不小于这个最大值即可.因为x >0,所以y =x x 2+3x +1=1x +1x +3≤12x ·1x +3=15,当且仅当x =1时,等号成立,所以a 的取值范围是⎣⎢⎡⎭⎪⎫15,+∞.【答案】 ⎣⎢⎡⎭⎪⎫15,+∞三、解答题9.已知倾斜角为60°的直线L 经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A ,B 两点,其中O 为坐标原点.(1)求弦AB 的长; (2)求三角形ABO 的面积.【解】 (1)由题意得,直线L 的方程为y =3(x -1), 代入y 2=4x ,得3x 2-10x +3=0. 设点A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=103.由抛物线的定义,得弦长|AB |=x 1+x 2+p =103+2=163. (2)点O 到直线AB 的距离d =|-3|3+1=32,所以三角形OAB 的面积为S =12|AB |·d =433.10.已知三角形的三边长为a ,b ,c ,其面积为S ,求证:a 2+b 2+c 2≥43S .【证明】 要证a 2+b 2+c 2≥43S ,只要证a 2+b 2+(a 2+b 2-2ab cos C )≥2 3 ab sin C ,即证a 2+b 2≥2ab sin(C +30°),因为2ab sin(C +30°)≤2ab ,只需证a 2+b 2≥2ab ,显然上式成立.所以a2+b2+c2≥43S.[能力提升]1.设a>0,b>0,若3是3a与3b的等比中项,则1a+1b的最小值为()A.8 B.4C.1 D.1 4【解析】3是3a与3b的等比中项⇒3a·3b=3⇒3a+b=3⇒a+b=1,因为a>0,b>0,所以ab≤a+b2=12⇒ab≤14,所以1a+1b=a+bab=1ab≥114=4.【答案】 B2.(2016·石家庄高二检测)已知关于x的方程x2+(k-3)x+k2=0的一根小于1,另一根大于1,则k的取值范围是()A.(-1,2)B.(-2,1)C.(-∞,-1)∪(2,+∞)D.(-∞,-2)∪(1,+∞)【解析】令f(x)=x2+(k-3)x+k2.因为其图象开口向上,由题意可知f(1)<0,即f(1)=1+(k-3)+k2=k2+k-2<0,解得-2<k<1.【答案】 B3.如果a a+b b>a b+b a,则实数a,b应满足的条件是__________.【解析】a a+b b>a b+b a⇔a a-a b>b a-b b⇔a(a-b)>b(a-b)⇔(a-b)(a-b)>0⇔(a+b)(a-b)2>0,故只需a≠b且a,b都不小于零即可.【答案】 a ≥0,b ≥0且a ≠b4.(2016·天津高二检测)已知α,β≠k π+π2,(k ∈Z )且sin θ+cos θ=2sin α,sin θcos θ=sin 2β.求证:1-tan 2 α1+tan 2 α=1-tan 2β2(1+tan 2 β). 【导学号:60030057】【证明】 要证1-tan 2 α1+tan 2 α=1-tan 2 β2(1+tan 2 β)成立,即证1-sin 2 αcos 2 α1+sin 2 αcos 2 α=1-sin 2 βcos 2 β2⎝ ⎛⎭⎪⎫1+sin 2 βcos 2 β. 即证cos 2α-sin 2α=12(cos 2β-sin 2β), 即证1-2sin 2α=12(1-2sin 2β), 即证4sin 2α-2sin 2β=1, 因为sin θ+cos θ=2sin α, sin θcos θ=sin 2β,所以(sin θ+cos θ)2=1+2sin θcos θ=4sin 2α,所以1+2sin 2β=4sin 2 α,即4sin 2α-2sin 2β=1.故原结论正确.。
人教A版选修2-2高二数学理科试题答案与评分标准.docx

高二数学理科试卷参考答案及评分标准二、填空题(本大题共4小题,每小题5分,共20分.)13. 充分不必要条件 14. (2) 15.2√5 三、解答题(本大题共6小题,满分70分) 17.(本小题满分10分)解:设椭圆的方程为1212212=+b y a x ,双曲线的方程为1222222=-b y a x ,半焦距c =13 ,由已知得:a 1-a 2=4,7:3:21=a ca c , …………………………4分 解得:a 1=7,a 2=3所以:b 12=36,b 22=4, …………………………8分所以两条曲线的方程分别为:1364922=+y x ,14922=-y x …………………………10分 18. (本小题满分12分)解:s=1n=2i=1 …………………………3分 WHILE i <=63 s=s+n ∧i i=i+1WEND …………………………10分 PRINT “1+2+2∧2+2∧3+…+2∧63=”;sEND …………………………12分 19.(本小题满分12分) 解、(1)∵222PB PC BC =+∴PC ⊥BC, 因为PA ⊥平面ABC ,所以PA ⊥BC , …………………………2分()000,AC BC AP PC BC AP BC PC BC •=+•=•+•=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r所以,AC ⊥BC …………………………5分(2)因为PA ⊥平面ABC ,所以PA ⊥AC ,0PA AC •=u u u r u u u r,设PA =x ,又异面直线PB 与AC 所成的角为600,则cos 3PB AC PB AC π•=⨯u u u r u u u r u u u r u u u r 。
而()PB AC PA AB AC PA AC ABAC AB AC •=+•=•+•=•u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r……………………8分 所以AB AC •=u u u r u u u r cos 3PB AC π⨯u u u r u u u r ,AB AC •=u u u r u u u r 34394⨯⨯=。
高中数学人教a版高二选修2-2章末综合测评2 含解析

高中数学人教a版高二选修2-2章末综合测评2 含解析章末综合测评(二)推理与证明(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个推理不是合情推理的是()A.由圆的性质类比推出球的有关性质B.由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的【解析】逐项分析可知,A项属于类比推理,B项和D项属于归纳推理,而C 项中各个学生的成绩不能类比,不是合情推理.【答案】 C2.下列几种推理是演绎推理的是()A.在数列{a n}中,a1=1,a n=12⎝⎛⎭⎪⎫a n-1+1a n-1(n≥2),由此归纳出{a n}的通项公式B.某校高三共有12个班,其中(1)班有55人,(2)班有54人,(3)班有52人,由此得出高三所有班级的人数都超过50人C.由平面三角形的性质,推测出空间四面体的性质D.两条直线平行,同旁内角互补.如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=π【解析】A,B为归纳推理,C为类比推理.【答案】 D3.下列推理是归纳推理的是()A.A,B为定点,动点P满足|P A|+|PB|=2a>|AB|,得P的轨迹为椭圆B.由a1=1,a n=3n-1,求出S1,S2,S3,猜想出数列的前n项和S n的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 【解析】 由归纳推理的特点知,选B. 【答案】 B4.“凡是自然数都是整数,4是自然数,所以4是整数.”以上三段论推理( ) A .完全正确 B .推理形式不正确C .不正确,两个“自然数”概念不一致D .不正确,两个“整数”概念不一致【解析】 大前提“凡是自然数都是整数”正确.小前提“4是自然数”也正确,推理形式符合演绎推理规则,所以结论正确.【答案】 A5.用数学归纳法证明“5n -2n 能被3整除”的第二步中,当n =k +1时,为了使用假设,应将5k +1-2k +1变形为( )A .(5k -2k )+4×5k -2kB .5(5k -2k )+3×2kC .(5-2)(5k -2k )D .2(5k -2k )-3×5k【解析】 5k +1-2k +1=5k ·5-2k ·2=5k ·5-2k ·5+2k ·5-2k ·2=5(5k -2k )+3·2k . 【答案】 B6.已知n 为正偶数,用数学归纳法证明1-12+13-14+…-1n=2⎝ ⎛⎭⎪⎫1n +2+1n +4+…+12n 时,若已假设n =k (k ≥2且k 为偶数)时等式成立,则还需要用归纳假设再证n =________时等式成立.( )A .k +1B .k +2C .2k +2D .2(k +2)【解析】根据数学归纳法的步骤可知,n=k(k≥2且k为偶数)的下一个偶数为n =k+2,故选B.【答案】 B7.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=()A.28 B.76C.123 D.199【解析】利用归纳法,a+b=1,a2+b2=3,a3+b3=4=3+1,a4+b4=4+3=7,a5+b5=7+4=11,a6+b6=11+7=18,a7+b7=18+11=29,a8+b8=29+18=47,a9+b9=47+29=76,a10+b10=76+47=123,规律为从第三组开始,其结果为前两组结果的和.【答案】 C8.分析法又叫执果索因法,若使用分析法证明:“设a>b>c,且a+b+c=0,求证:b2-ac<3a”最终的索因应是()A.a-b>0B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0【解析】因为a>b>c,且a+b+c=0,所以3c<a+b+c<3a,即a>0,c<0.要证明b2-ac<3a,只需证明b2-ac<3a2,只需证明(-a-c)2-ac<3a2,只需证明2a2-ac-c2>0,只需证明2a+c>0(a>0,c<0,则a-c>0),只需证明a+c+(-b-c)>0,即证明a-b>0,这显然成立,故选A.【答案】 A9.在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N*)成立,类比上述性质,在等比数列{b n}中,若b11=1,则有() A.b1·b2·…·b n=b1·b2·…·b19-nB.b1·b2·…·b n=b1·b2·…·b21-nC.b1+b2+…+b n=b1+b2+…+b19-nD.b1+b2+…+b n=b1+b2+…+b21-n【解析】令n=10时,验证即知选B.【答案】 B10.将石子摆成如图1的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 016项与5的差,即a2 016-5=()图1A.2 018×2 014 B.2 018×2 013C.1 010×2 012 D.1 011×2 013【解析】a n-5表示第n个梯形有n-1层点,最上面一层为4个,最下面一层为n+2个.∴a n-5=(n-1)(n+6)2,∴a2 016-5=2 015×2 0222=2 013×1 011.【答案】 D11.在直角坐标系xOy中,一个质点从A(a1,a2)出发沿图2中路线依次经过B(a3,a4),C(a5,a6),D(a7,a8),…,按此规律一直运动下去,则a2 015+a2 016+a2 017=()图2A.1 006 B.1 007C.1 008 D.1 009【解析】依题意a1=1,a2=1;a3=-1,a4=2;a5=2,a6=3;…,归纳可得a1+a3=1-1=0,a5+a7=2-2=0,…,进而可归纳得a2 015+a2 017=0,a2=1,a4=2,a6=3,…,进而可归纳得a2 016=12×2 016=1 008,a2 015+a2 016+a2 017=1 008.故选C.【答案】 C 12.记集合T={0,1,2,3,4,5,6,7,8,9},M=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a 110+a 2102+a 3103+a 4104| a i ∈T ,i =1,2,3,4,将M 中的元素按从大到小排列,则第2 016个数是( )A.710+9102+8103+4104 B.510+5102+7103+2104 C.510+5102+7103+3104 D.710+9102+9103+1104 【解析】 因为a 110+a 2102+a 3103+a 4104=1104(a 1×103+a 2×102+a 3×101+a 4),括号内表示的10进制数,其最大值为9 999,从大到小排列,第2 016个数为9 999-2 016+1=7 984,所以a 1=7,a 2=9,a 3=8,a 4=4. 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.类比上述性质,可以得到椭圆x 2a 2+y 2b2=1类似的性质为__________.【解析】 圆的性质中,经过圆上一点M (x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M (x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y 2b 2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=1.【答案】 经过椭圆x 2a 2+y 2b 2=1上一点P (x 0,y 0)的切线方程为x 0x a 2+y 0yb2=114.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是________ .【解析】 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为n+1,且第n组共有n个“整数对”,这样的前n组一共有n(n+1)2个“整数对”,注意到10×(10+1)2<60<11×(11+1)2,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).【答案】(5,7)15.当n=1时,有(a-b)(a+b)=a2-b2,当n=2时,有(a-b)(a2+ab+b2)=a3-b3,当n=3时,有(a-b)(a3+a2b+ab2+b3)=a4-b4,当n∈N*时,你能得到的结论是__________.【解析】根据题意,由于当n=1时,有(a-b)(a+b)=a2-b2,当n=2时,有(a -b)(a2+ab+b2)=a3-b3,当n=3时,有(a-b)(a3+a2b+ab2+b3)=a4-b4,当n∈N*时,左边第二个因式可知为a n+a n-1b+…+ab n-1+b n,那么对应的表达式为(a-b)·(a n+a n-1b+…+ab n-1+b n)=a n+1-b n+1.【答案】(a-b)(a n+a n-1b+…+ab n-1+b n)=a n+1-b n+116.如图3,如果一个凸多面体是n(n∈N*)棱锥,那么这个凸多面体的所有顶点所确定的直线共有________条,这些直线共有f(n)对异面直线,则f(4)=________,f(n)=__________.(答案用数字或n的解析式表示)图3【解析】所有顶点所确定的直线共有棱数+底边数+对角线数=n+n+n(n-3)2=n(n+1)2.从题图中能看出四棱锥中异面直线的对数为f(4)=4×2+4×12×2=12,所以f(n)=n(n-2)+n(n-3)2·(n-2)=n(n-1)(n-2)2.【答案】n(n+1)212n(n-1)(n-2)2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)用综合法或分析法证明:(1)如果a,b>0,则lg a+b2≥lg a+lg b2;(2)6+10>23+2.【证明】(1)当a,b>0时,有a+b2≥ab,∴lg a+b2≥lg ab,∴lg a+b2≥12lg ab=lg a+lg b2.(2)要证6+10>23+2,只要证(6+10)2>(23+2)2,即260>248,这是显然成立的,所以,原不等式成立.18.(本小题满分12分)观察以下各等式:sin230°+cos260°+sin 30°cos 60°=3 4,sin220°+cos250°+sin 20°cos 50°=3 4,sin215°+cos245°+sin 15°cos 45°=3 4.分析上述各式的共同特点,猜想出反映一般规律的等式,并对等式的正确性作出证明.【解】猜想:sin2α+cos2(α+30°)+sin αcos(α+30°)=3 4.证明如下:sin2α+cos2(α+30°)+sin αcos(α+30°)=sin 2α+⎝ ⎛⎭⎪⎫32cos α-12sin α2+sin α⎝ ⎛⎭⎪⎫32cos α-12sin α =sin 2α+34cos 2α-32sin αcos α+14sin 2α+32sin α·cos α-12sin 2α =34sin 2α+34cos 2α =34. 19.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解】 (1)由已知得⎩⎪⎨⎪⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ,q ,r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0, ∵p ,q ,r ∈N *,∴⎩⎨⎧q 2-pr =0,2q -p -r =0,∴⎝⎛⎭⎪⎫p +r 22=pr ,(p -r )2=0. ∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列.20.(本小题满分12分)点P 为斜三棱柱ABC -A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)在任意△DEF中有余弦定理:DE2=DF2+EF2-2DF·EF·cos∠DFE.扩展到空间类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.【解】(1)因为PM⊥BB1,PN⊥BB1,又PM∩PN=P,所以BB1⊥平面PMN,所以BB1⊥MN.又CC1∥BB1,所以CC1⊥MN.(2)在斜三棱柱ABC-A1B1C1中,有S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1SACC1A1cos α.其中α为平面BCC1B1与平面ACC1A1所成的二面角.证明如下:因为CC1⊥平面PMN,所以上述的二面角的平面角为∠MNP.在△PMN中,因为PM2=PN2+MN2-2PN·MN cos∠MNP,所以PM2·CC21=PN2·CC21+MN2·CC21-2(PN·CC1)·(MN·CC1)cos∠MNP,由于SBCC1B1=PN·CC1,SACC1A1=MN·CC1,SABB1A1=PM·BB1=PM·CC1,所以S2ABB1A1=S2BCC1B1+S2ACC1A1-2SBCC1B1·SACC1A1·cos α.21.(本小题满分12分)如图4,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5.求证:图4(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.【证明】(1)因为D,E分别为棱PC,AC的中点,所以DE∥P A.又因为P A⊄平面DEF,DE⊂平面DEF,所以直线P A ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,P A =6,BC =8,所以DE ∥P A ,DE =12P A =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE ⊥EF . 又P A ⊥AC ,DE ∥P A ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC . 又DE ⊂平面BDE , 所以平面BDE ⊥平面ABC .22.(本小题满分12分)在数列{a n }中,a 1=1,a 2=14,且a n +1=(n -1)a n n -a n (n ≥2).(1)求a 3,a 4,猜想a n 的表达式,并加以证明;(2)设b n =a n ·a n +1a n +a n +1, 求证:对任意的n ∈N *,都有b 1+b 2+…+b n <n 3. 【解】 (1)容易求得:a 3=17,a 4=110.故可以猜想a n =13n -2,n ∈N *. 下面利用数学归纳法加以证明: ①显然当n =1,2,3,4时,结论成立,②假设当n =k (k ≥4,k ∈N *)时,结论也成立,即 a k =13k -2.那么当n =k +1时,由题设与归纳假设可知: a k +1=(k -1)a kk -a k=(k -1)×13k -2k -13k -2=k -13k 2-2k -1=k -1(3k +1)(k -1)=13k+1=13(k+1)-2.即当n=k+1时,结论也成立,综上,对任意n∈N*,a n=13n-2成立.(2)b n=a n·a n+1 a n+a n+1=13n-2·13n+1 13n-2+13n+1=13n+1+3n-2=13(3n+1-3n-2),所以b1+b2+…+b n=13[(4-1)+(7-4)+(10-7)+…+(3n+1-3n-2)]=13(3n+1-1),所以只需要证明13(3n+1-1)<n3⇔3n+1<3n+1⇔3n+1<3n+23n+1⇔0<23n(显然成立),所以对任意的n∈N*,都有b1+b2+…+b n<n 3.第11页共11页。
2016-2017学年高中数学人教A版选修2-2课件:2.2.1 综合法和分析法

综合法的应用
[例 1] 已知 a,b,c 是不全相等的正数,求证:a(b2+c2)
+b(c2+a2)+c(a2+b2)>6abc.
[证明] ∵a,b,c 是正数,∴b2+c2≥2bc,
∴a(b2+c2)≥2abc.
①
同理,b(c2+a2)≥2abc,
②
c(a2+b2)≥2abc.
③
∵a,b,c 不全相等,
2.2
直接证明与间接证明
2.2.1 综合法和分析法
第一页,编辑于星期五:十六点 明过程,回答问题.
求证:π是函数f(x)=sin2x+π4的一个周期. 证明:因为f(x+π)=sin2x+π+π4=sin2x+2π+π4= sin 2x+π4 =f(x),所以由周期函数的定义可知,π是函数f(x) =sin2x+π4的一个周期.
第十九页,编辑于星期五:十六点 四十一分。
[活学活用] 设a,b∈(0,+∞),且a≠b,求证:a3+b3>a2b+ab2. 证明:法一 (分析法) 要证a3+b3>a2b+ab2成立, 即需证(a+b)(a2-ab+b2)>ab(a+b)成立. 又因a+b>0, 故只需证a2-ab+b2>ab成立, 即需证a2-2ab+b2>0成立, 即需证(a-b)2>0成立. 而依题设a≠b,则(a-b)2>0显然成立. 由此命题得证.
(a-b)2≥0.由于(a-b)2≥0显然成立,所以原不等式成立.
答案:a2+b2-2ab≥0 (a-b)2≥0 (a-b)2≥0
第三十一页,编辑于星期五:十六点 四十一分。
5.已知a>0,b>0,求证:
a+ b
b≥ a
a+ b.(要求用两种方
法证明)
证明:法一
(综合法)因为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学业分层测评
(建议用时:45分钟)
[学业达标]
一、选择题
1.在证明命题“对于任意角θ,cos 4θ-sin 4 θ=cos 2θ”的过程:“cos 4 θ-sin 4 θ=(cos 2 θ+sin 2 θ)(cos 2 θ-sin 2 θ)=cos 2 θ-sin 2 θ=cos 2θ”中应用了( )
A .分析法
B .综合法
C .分析法和综合法综合使用
D .间接证法
【解析】 此证明符合综合法的证明思路.故选B. 【答案】 B
2.要证a 2+b 2-1-a 2b 2≤0,只需证( ) A .2ab -1-a 2b 2≤0 B .a 2
+b 2
-1-a 2+b 2
2≤0
C.(a +b )2
2-1-a 2b 2≤0 D .(a 2-1)(b 2-1)≥0
【解析】 要证a 2+b 2-1-a 2b 2≤0, 只需证a 2b 2-a 2-b 2+1≥0, 只需证(a 2-1)(b 2-1)≥0,故选D. 【答案】 D
3.在集合{a ,b ,c ,d }上定义两种运算⊕和⊗如下:
那么,d⊗(a⊕c)等于(
A.a B.b
C.c D.d
【解析】由⊕运算可知,a⊕c=c,
∴d⊗(a⊕c)=d⊗c.
由⊗运算可知,d⊗c=a.故选A.
【答案】 A
4.欲证2-3<6-7成立,只需证()
A.(2-3)2<(6-7)2
B.(2-6)2<(3-7)2
C.(2+7)2<(3+6)2
D.(2-3-6)2<(-7)2
【解析】∵2-3<0,6-7<0,
故2-3<6-7⇔2+7<3+6⇔(2+7)2<(3+6)2. 【答案】 C
5.对任意的锐角α,β,下列不等式中正确的是()
A.sin(α+β)>sin α+sin β
B.sin(α+β)>cos α+cos β
C.cos(α+β)>sin α+sin β
D.cos(α+β)<cos α+cos β
【解析】因为0<α<π
2,0<β<π
2,所以0<α+β<π,
若π
2≤α+β<π,则cos(α+β)≤0,
因为cos α>0,cos β>0.
所以cos α+cos β>cos (α+β). 若0<α+β<π
2,则α+β>α且α+β>β, 因为cos(α+β)<cos α,cos(α+β)<cos β, 所以cos(α+β)<cos α+cos β,
总之,对任意的锐角α,β有cos(α+β)<cos α+cos β. 【答案】 D 二、填空题
6.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x -x ln x 求导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.
【解析】 该证明方法是“由因导果”法. 【答案】 综合法
7.如果a a >b b ,则实数a ,b 应满足的条件是__________. 【解析】 要使a a >b b , 只需使a >0,b >0,(a a )2>(b b )2, 即a >b >0. 【答案】 a >b >0
8.若对任意x >0,x
x 2+3x +1≤a 恒成立,则a 的取值范围是__________. 【导
学号:60030056】
【解析】 若对任意x >0,x x 2+3x +1≤a 恒成立,只需求y =x
x 2+3x +1的最
大值,且令a 不小于这个最大值即可.因为x >0,所以y =
x
x 2+3x +1
=
1x +1x
+3≤12
x ·1x +3
=15,当且仅当x =1时,等号成立,所以a 的取值范围是⎣⎢⎡⎭
⎪⎫15,+∞.
【答案】 ⎣⎢⎡⎭⎪⎫
15,+∞
三、解答题
9.已知倾斜角为60°的直线L 经过抛物线y 2=4x 的焦点F ,且与抛物线相
交于A ,B 两点,其中O 为坐标原点.
(1)求弦AB 的长; (2)求三角形ABO 的面积.
【解】 (1)由题意得,直线L 的方程为y =3(x -1), 代入y 2=4x ,得3x 2-10x +3=0. 设点A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=10
3.
由抛物线的定义,得弦长|AB |=x 1+x 2+p =103+2=16
3. (2)点O 到直线AB 的距离d =|-3|3+1
=32,所以三角形OAB 的面积为S =1
2|AB |·d =43
3.
10.已知三角形的三边长为a ,b ,c ,其面积为S ,求证:a 2+b 2+c 2≥43S .
【证明】 要证a 2+b 2+c 2≥43S ,
只要证a 2+b 2+(a 2+b 2-2ab cos C )≥2 3 ab sin C ,即证a 2+b 2≥2ab sin(C +30°),因为2ab sin(C +30°)≤2ab ,
只需证a 2+b 2≥2ab ,
显然上式成立.所以a 2+b 2+c 2≥43S .
[能力提升]
1.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1
b 的最小值为( ) A .8 B .4 C .1 D.14
【解析】
3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1,因为
a >0,
b >0,所以ab ≤a +b 2=12⇒ab ≤14,所以1a +1b =a +b ab =1ab ≥1
14
=4.
【答案】 B
2.(2016·石家庄高二检测)已知关于x 的方程x 2+(k -3)x +k 2=0的一根小于
1,另一根大于1,则k 的取值范围是( )
A .(-1,2)
B .(-2,1)
C .(-∞,-1)∪(2,+∞)
D .(-∞,-2)∪(1,+∞) 【解析】 令f (x )=x 2+(k -3)x +k 2. 因为其图象开口向上,由题意可知f (1)<0, 即f (1)=1+(k -3)+k 2=k 2+k -2<0, 解得-2<k <1. 【答案】 B
3.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是__________. 【解析】 a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b )⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0,
故只需a ≠b 且a ,b 都不小于零即可. 【答案】 a ≥0,b ≥0且a ≠b
4.(2016·天津高二检测)已知α,β≠k π+π
2,(k ∈Z )且sin θ+cos θ=2sin α,sin θcos θ=sin 2
β.求证:1-tan 2 α1+tan 2 α=1-tan 2 β2(1+tan 2 β)
. 【导学号:60030057】
【证明】 要证1-tan 2 α1+tan 2 α=1-tan 2 β
2(1+tan 2 β)成立,
即证
1-sin 2 αcos 2 α1+sin 2 αcos 2 α=1-sin 2 βcos 2 β2⎝ ⎛⎭⎪
⎫1+sin 2 βcos 2 β. 即证cos 2α-sin 2α=1
2(cos 2β-sin 2β), 即证1-2sin 2
α=1
2(1-2sin 2β),
即证4sin 2α-2sin 2β=1, 因为sin θ+cos θ=2sin α, sin θcos θ=sin 2β,
所以(sin θ+cos θ)2=1+2sin θcos θ=4sin2α,所以1+2sin2β=4sin2α,即4sin2α-2sin2β=1.
故原结论正确.。