广东省惠州市惠城区九年级上学期期末教学质量模拟考试数学试题(含答案)

合集下载

2019-2020学年上学期广东省惠州市九年级期末考试数学模拟试卷及答案

2019-2020学年上学期广东省惠州市九年级期末考试数学模拟试卷及答案

2019-2020学年上学期广东省惠州市九年级期末考试数学模拟试卷(考试时长90分钟,全卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列事件是必然事件的是()A.明天太阳从西边升起B.掷出一枚硬币,正面朝上C.打开电视机,正在播放世界杯足球赛D.任意画一个三角形,它的内角和为180°3.关于x的一元二次方程x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1 B.0或2 C.1或2 D.04.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣25.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2106.如图,直线c与直线a相交于点A,与直线b相交于点B,∠1=130°,∠2=60°,若要使直线a∥b,则将直线a绕点A按如图所示的方向至少旋转()A.10°B.20°C.60°D.130°7.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB的度数为()A.60°B.45°C.30°D.25°8.对于二次函数y=(x﹣2)2+3的图象,下列说法正确的是()A.开口向下B.对称轴是直线x=﹣2C.顶点坐标是(2,3)D.与x轴有两个交点9.已知x=a是方程x2﹣3x﹣5=0的根,代数式a2﹣3a+4的值为()A.6 B.9 C.14 D.﹣610.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是BC、AB的中点,则MN长的最大值是()A.10 B.5C.10D.20二、填空题(本大题共7小题,每小题4分,共28分)11.方程x2﹣16=0的解为.。

惠州市初三数学九年级上册期末模拟试卷

惠州市初三数学九年级上册期末模拟试卷

惠州市初三数学九年级上册期末模拟试卷一、选择题1.已知3sin α=,则α∠的度数是( ) A .30°B .45°C .60°D .90°2.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .13.一组数据0、-1、3、2、1的极差是( ) A .4 B .3 C .2 D .1 4.函数y=(x+1)2-2的最小值是( )A .1B .-1C .2D .-25.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 6.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .237.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .68.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+9.如图,△ABC 内接于⊙O ,若∠A=α,则∠OBC 等于( )A .180°﹣2αB .2αC .90°+αD .90°﹣α10.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+D .()2241y x =++11.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤ 12.数据3、4、6、7、x 的平均数是5,这组数据的中位数是( ) A .4 B .4.5 C .5 D .6 13.若两个相似三角形的相似比是1:2,则它们的面积比等于( )A .1:2B .1:2C .1:3D .1:414.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1215.下表是二次函数y =ax 2+bx +c 的部分x ,y 的对应值: x… ﹣1﹣120 121322523 …y … 2 m﹣1﹣74 ﹣2 ﹣74﹣1 142 …可以推断m 的值为( ) A .﹣2B .0C .14D .2二、填空题16.已知∠A =60°,则tan A =_____. 17.已知tan (α+15°)=33,则锐角α的度数为______°. 18.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.19.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为__________ .20.一个不透明的袋中原装有2个白球和1个红球,搅匀后从中任意摸出一个球,要使摸出红球的概率为23,则袋中应再添加红球____个(以上球除颜色外其他都相同). 21.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.22.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m . 23.若32x y =,则x y y+的值为_____. 24.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BE F”面积最大时,点E 的坐标为_________________________.25.一组数据3,2,1,4,x 的极差为5,则x 为______.26.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,母线AB =10米,则该圆锥的侧面积是_____平方米(结果保留π).27.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)28.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.29.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.30.已知234x y z x z y+===,则_______ 三、解答题31.如图,AB 是⊙O 的直径,AC 是⊙O 的弦,∠BAC 的平分线交⊙O 于点D ,过点D 作DE ⊥AC 交AC 的延长线于点E ,连接BD .(1)求证:DE 是⊙O 的切线; (2)若BD =3,AD =4,则DE = .32.如图,矩形ABCD 中,AB =6cm ,AD =8cm ,点P 从点A 出发,以每秒一个单位的速度沿A→B→C 的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B→C→D 的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒. (1)当t = 时,两点停止运动; (2)设△BPQ 的面积面积为S (平方单位) ①求S 与t 之间的函数关系式;②求t为何值时,△BPQ面积最大,最大面积是多少?33.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB 的高度.34.如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.35.某公司研发了一种新产品,成本是200元/件,为了对新产品进行合理定价,公司将该产品按拟定的价格进行销售,调查发现日销量y(件)与单价x(元/件)之间存在一次函数关系y=﹣2x+800(200<x<400).(1)要使新产品日销售利润达到15000元,则新产品的单价应定为多少元?(2)为使公司日销售获得最大利润,该产品的单价应定为多少元?四、压轴题36.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。

2022年广东省惠州市惠城区数学九上期末达标检测试题含解析

2022年广东省惠州市惠城区数学九上期末达标检测试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.关于x 的二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .0.52.已知菱形的周长为40 cm ,两对角线长度比为3:4,则对角线长分别为( )A .12 cm .16 cmB .6 cm ,8 cmC .3 cm ,4 cmD .24 cm ,32 cm3.如图,抛物线y=ax 2+bx+c (a≠0)的对称轴是直线x=1,与x 轴交于A 、B (-1,0),与y 轴交于C .下列结论错误的是( )A .二次函数的最大值为a+b+cB .4a-2b+c ﹤0C .当y >0时,-1﹤x ﹤3D .方程ax 2+bx+c=-2解的情况可能是无实数解,或一个解,或二个解.4.如图,线段AB 两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为( )A .(3,3)B .(4,3)C .(3,1)D .(4,1)5.已知x=1是方程x 2+px+1=0的一个实数根,则p 的值是( )A .0B .1C .2D .﹣26.如图,四边形ABCD 是矩形,BC =4,AB =2,点N 在对角线BD 上(不与点B ,D 重合),EF ,GH 过点N ,GH ∥BC 交AB 于点G ,交DC 于点H ,EF ∥AB 交AD 于点E ,交BC 于点F ,AH 交EF 于点M .设BF =x ,MN =y ,则y 关于x 的函数图象是( )A.B.C.D.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax﹣2b(a≠0)与反比例函数y=cx(c≠0)在同一平面直角坐标系中的图象大致是()A.B.C.D.8.如图,将命题“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”改写成“已知……求证……”的形式,下列正确的是()A .已知:在⊙O 中,∠AOB=∠COD ,弧AB=弧CD .求证:AB=CDB .已知:在⊙O 中,∠AOB=∠COD ,弧AB=弧BC .求证:AD=BCC .已知:在⊙O 中,∠AOB=∠COD .求证:弧AD=弧BC ,AD=BCD .已知:在⊙O 中,∠AOB=∠COD .求证:弧AB=弧CD ,AB=CD9.某车间20名工人日加工零件数如表所示: 日加工零件数45 6 7 8人数 2 6 5 4 3 这些工人日加工零件数的众数、中位数、平均数分别是( )A .5、6、5B .5、5、6C .6、5、6D .5、6、610.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AH BC ⊥于点H ,连接OH ,若4OB =,24ABCD S =菱形,则OH 的长为( )A .3B .4C .5D .6二、填空题(每小题3分,共24分)11.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1210O O =,则R 的值为________.12.一元二次方程(x+1)(x-3)=2x-5根的情况_______.(表述正确即可)13.如图,矩形ABCD 的顶点A 、B 在x 轴的正半轴上,反比例函数y =k x(k ≠0)在第一象限内的图象经过点D ,交BC 于点E .若AB =4,CE =2BE ,tan ∠AOD =34,则k 的值_____.14.若ABC A B C '''∽△△,50A ∠=︒,100C '∠=︒,则B '∠的度数为__________15.如图,正六边形ABCDEF 中的边长为6,点P 为对角线BE 上一动点,则PC 的最小值为_______.16.一支反比例函数4y x=-,若02x <<,则y 的取值范围是_____. 17.在一个不透明的盒子中装有6个白球,x 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到白球的概率为23,则x=_______. 18.太原市某学校门口的栏杆如图所示,栏杆从水平位置AB 绕定点O 旋转到DC 位置,已知栏杆AB 的长为3.5,m OA 的长为3,m C 点到AB 的距离为0.3m .支柱OE 的高为0.5m ,则栏杆D 端离地面的距离为__________.三、解答题(共66分)19.(10分)某苗圃用花盆培育某种花苗,经过试验发现,每盆植人3株时,平均每株盈利3元.在同样的栽培条件下,若每盆增加1株,平均每株盈利就减少0.5元,要使每盆的盈利为10元,且每盆植入株数尽可能少,每盆应植入多少株?20.(6分)某种商品进价为每件60元,售价为每件80元时,每个月可卖出100件;如果每件商品售价每上涨5元,则每个月少卖10件设每件商品的售价为x 元(x 为正整数,且x >80).(1)若希望每月的利润达到2400元,又让利给消费者,求x 的值;(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?21.(6分)为迎接2019年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为22400m 运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面积是乙队每天能改造面积的2倍,并且在独立完成面积为2400m 的改造时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成塑胶改造的面积;(2)设甲工程队施工x 天,乙工程队施工y 天,刚好完成改造任务,求y 与x 的函数解析式;(3)若甲队每天改造费用是0.55万元,乙队每天改造费用是0.2万元,且甲、乙两队施工的总天数不超过30天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.22.(8分)某校九年级(1)班甲、乙两名同学在5次引体向上测试中的有效次数如下:甲:8,8,7,8,1.乙:5,1,7,10,1.甲、乙两同学引体向上的平均数、众数、中位数、方差如下: 平均数 众数 中位数 方差 甲8 b 8 0.4 乙 a 1 c3.2 根据以上信息,回答下列问题:(1)表格中a =_______,b =_______,c =_______.(填数值)(2)体育老师根据这5次的成绩,决定选择甲同学代表班级参加年级引体向上比赛,选择甲的理由是_______________________________________.班主任李老师根据去年比赛的成绩(至少1次才能获奖),决定选择乙同学代表班级参加年级引体向上比赛,选择乙的理由是_______________________________________.(3)乙同学再做一次引体向上,次数为n ,若乙同学6次引体向上成绩的中位数不变,请写出n 的最小值.23.(8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,且AD//BC ,BD 的垂直平分线经过点O ,分别与AD 、BC 交于点E 、F(1)求证:四边形ABCD 为平行四边形;(2)求证:四边形BFDE 为菱形.24.(8分)如图,在ABC ∆中,90ABC ∠=︒,过点B 作AC 的平行线交CAB ∠的平分线于点D ,过点D 作AB 的平行线交AC 于点E ,交BC 于点F ,连接BE ,交AD 于点G .(1)求证:四边形ABDE 是菱形;(2)若14BD =,7cos 8GBH ∠=,求GH 的长. 25.(10分)某日,深圳高级中学(集团)南北校区初三学生参加东校区下午15:00时的交流活动,南校区学生中午13:30乘坐校车出发,沿正北方向行12公里到达北校区,然后南北校区一同前往东校区(等待时间不计).如图所示,已知东校区在南校区北偏东60︒方向,在北校区北偏东72︒方向.校车行驶状态的平均速度为60km/h ,途中一共经过30个红绿灯,平均每个红绿灯等待时间为30秒.(1)求北校区到东校区AC 的距离;(2)通过计算,说明南北校区学生能否在15:00前到达东校区.(本题参考数据:sin120.2︒≈,3 1.73≈)26.(10分)甲、乙两个人在纸上随机写一个-2到2之间的整数(包括-2和2).若将两个人所写的整数相加,那么和是1的概率是多少?参考答案一、选择题(每小题3分,共30分)1、B【分析】把0x =代入可得210a -=,根据一元二次方程的定义可得10a -≠,从而可求出a 的值.【详解】把0x =代入()22110a x x a -++-=,得:210a -=,解得:1a =±,∵()22110a x x a -++-=是关于x 的一元二次方程, ∴10a -≠,即1a ≠,∴a 的值是1-,故选:B .【点睛】本题考查了对一元二次方程的定义,一元二次方程的解,以及一元二次方程的解法等知识点的理解和运用,注意隐含条件10a -≠.2、A【解析】试题分析:如图,四边形ABCD 是菱形,且菱形的周长为40cm ,14010,4AB ∴=⨯=11,,22OA AC OB BD == ,AC BD ⊥:3:4,AC BD =:3:4,OA OB ∴=设3,4,OA x OB x ==2222(5),AB OA OB x ∴=+=510, 2.x x ∴==6,8.OA OB ∴==12,16.AC BD ∴==故选A .考点:1、菱形的性质;2、勾股定理.3、D【分析】A. 根据对称轴为1x =时,求得顶点对应的y 的值即可判断;B. 根据当2x =-时,函数值小于0即可判断;C. 根据抛物线与x 轴的交点坐标即可判断.D. 根据抛物线与直线2y =-的交点情况即可判断.【详解】A.∵当1x =时,y a b c =++,根据图象可知,0a b c ++=,正确.不符合题意;B.∵当2x =-时,42y a b c =-+,根据图象可知,420a b c -+<,正确.不符合题意;C.∵抛物线是轴对称图形,对称轴是直线1x =,点()10B -,,所以与x 轴的另一个交点A 的坐标为()30,,根据图象可知:当0y >时,13x ,正确.不符合题意;D. 根据图象可知:抛物线与直线2y =-有两个交点,∴关于x 的方程22ax bx c ++=-有两个不相等的实数根,本选项错误,符合题意.故选:D .【点睛】本题考查了二次函数与系数的关系、根的判别式、抛物线与x 轴的交点,掌握二次函数的性质、二次函数图象与系数的关系是解题的关键.4、A【分析】利用位似图形的性质和两图形的位似比,并结合点A 的坐标即可得出C 点坐标.【详解】解:∵线段AB 的两个端点坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的12后得到线段CD , ∴端点C 的横坐标和纵坐标都变为A 点的一半,∴端点C 的坐标为:(3,3).故选A .【点睛】本题主要考查位似变换、坐标与图形性质,解题的关键是结合位似比和点A 的坐标.5、D【分析】把x =1代入x 2+px +1=0,即可求得p 的值.【详解】把x =1代入把x =1代入x 2+px +1=0,得1+p +1=0,∴p =-2.故选D.【点睛】本题考查了一元二次方程的解得定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.6、B【分析】求出2142tan DBC ∠== ,12112428x DH CD CH x AD A D n D A ta H --=∠==-=,y =EF−EM−NF =2−BFtan ∠DBC−AEtan ∠DAH ,即可求解. 【详解】解:2142tan DBC ∠==, 12112428x DH CD CH x AD A D n D A ta H --=∠==-= y =EF ﹣EM ﹣NF =2﹣BFtan ∠DBC ﹣AEtan ∠DAH =2﹣x×12﹣x (1128x -)=18x 2﹣x+2, 故选:B .【点睛】本题考查的是动点图象问题,涉及到二次函数,此类问题关键是确定函数的表达式,进而求解.7、D【分析】先根据二次函数的图象开口向上可知a >0,对称轴在y 轴的左侧可知b >0,再由函数图象交y 轴的负半轴可知c <0,然后根据一次函数的性质和反比例函数的性质即可得出正确答案.【详解】∵二次函数的图象开口向上,对称轴在y 轴的左侧,函数图象交于y 轴的负半轴∴a >0,b >0,c <0,∴反比例函数y =c x的图象必在二、四象限; 一次函数y =ax ﹣2b 一定经过一三四象限,故选:D .【点睛】此题主要考查二次函数与反比例函数的图像与性质,解题的关键是熟知二次函数各系数与图像的关系.8、D【分析】根据命题的概念把原命题写成:“如果...求证...”的形式.【详解】解:“在同圆中,相等的圆心角所对的弧相等,所对的弦也相等”,改写成:已知:在⊙O 中,∠AOB=∠COD.求证:弧AB=弧CD ,AB=CD故选:D【点睛】本题考查命题,掌握将命题改写为“如果...求证...”的形式,是解题的关键.9、D【详解】5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数是第10,11个数的平均数,则中位数是(6+6)÷2=6; 平均数是:(4×2+5×6+6×5+7×4+8×3)÷20=6; 故答案选D .10、A【分析】根据菱形面积的计算公式求得AC ,再利用直角三角形斜边中线的性质即可求得答案.【详解】∵四边形ABCD 是菱形,OB=4,∴28OA OC BD OB ===,;∵24ABCD S =菱形, ∴1242BD AC =, ∴6AC =;∵AH ⊥BC ,OA OC =, ∴132OH AC ==. 故选:A.【点睛】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式:菱形的面积等于两条对角线乘积的一半是解题的关键.二、填空题(每小题3分,共24分)11、6或14【解析】⊙O 1和⊙O 2相切,有两种情况需要考虑:内切和外切.内切时,⊙O 2的半径=圆心距+⊙O 1的半径;外切时,⊙O 2的半径=圆心距-⊙O 1的半径.【详解】若⊙1O 与⊙2O 外切,则有4+R=10,解得:R=6;若⊙1O 与⊙2O 内切,则有R-4=10,解得:R=14,故答案为6或14.12、有两个正根【分析】将原方程这里为一元二次方程的一般形式直接解方程或者求判别式与0的关系都可解题.【详解】解:(x+1)(x-3)=2x-5整理得:22325x x x --=-,即 2420x x -+=,配方得:2(2)2x -=,解得:123x =>,220x =>,∴该一元二次方程根的情况是有两个正跟;故答案为:有两个正根.【点睛】此题考查解一元二次方程,或者求判别式与根的个数的关系.13、1【解析】由tan ∠AOD =34,可设AD =1a 、OA =4a ,在表示出点D 、E 的坐标,由反比例函数经过点D 、E 列出关于a 的方程,解之求得a 的值即可得出答案.【详解】解:∵tan ∠AOD =AD OA =34, ∴设AD =1a 、OA =4a ,则BC =AD =1a ,点D 坐标为(4a ,1a ),∵CE =2BE ,∴BE =13BC =a , ∵AB =4,∴点E (4+4a ,a ), ∵反比例函数k y x= 经过点D 、E , ∴k =12a 2=(4+4a )a ,解得:a =12或a =0(舍), ∴D (2,32) 则k =2×32=1. 故答案为1.【点睛】本题考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k .14、30【分析】先根据三角形相似求A '∠,再根据三角形内角和计算出B '∠的度数.【详解】解:如图:∵∠A=50°,ABC A B C '''∽△△,∴50A A '∠=∠=︒∵100C '∠=︒,∴1801805010030B A C '''∠=︒-∠-∠=︒-︒-︒=︒故答案为30.【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等.15、33【分析】如图,过点C 作CP ⊥BE 于P ,可得CG 为PC 的最小值,由ABCDEF 是正六边形,根据多边形内角和公式可得∠GBC=60°,进而可得∠BCG=30°,根据含30°角的直角三角形的性质及勾股定理即可求出PC 的长.【详解】如图,过点C 作CG ⊥BE 于G ,∵点P 为对角线BE 上一动点,∴点P 与点G 重合时,PC 最短,即CG 为PC 的最小值,∵ABCDEF 是正六边形,∴∠ABC=1(62)1806⨯-⨯︒=120°, ∴∠GBC=60°,∴∠BCG=30°,∵BC=6,∴BG=12BC=3, ∴22BC BG -2263-33故答案为:33【点睛】 本题考查正六边形的性质、含30°角的直角三角形的性质及勾股定理,根据垂线段最短得出点P 的位置,并熟练掌握多边形内角和公式是解题关键.16、y <-1【分析】根据函数解析式可知当x >0时,y 随x 的增大而增大,求出当x=1时对应的y 值即可求出y 的取值范围. 【详解】解:∵反比例函数4y x =-, -4<0,∴当x >0时,y 随x 的增大而增大,当x=1时,y=-1,∴当02x <<,则y 的取值范围是y <-1,故答案为:y <-1.【点睛】本题考查了根据反比例函数自变量的取值范围,确定函数值的取值范围,解题的关键是熟知反比例函数的增减性. 17、1【分析】直接以概率求法得出关于x 的等式进而得出答案. 【详解】解:由题意得:6263x =+ , 解得3x =,故答案为:1.【点睛】本题考查了概率的意义,正确把握概率的求解公式是解题的关键.18、2.3m【分析】作DF ⊥AB CG ⊥AB,根据题意得△ODF ∽△OCB ,CG OC DF OD= ,得出DF ,D 端离地面的距离为DF+OE,即可求出.【详解】解:如图作DF ⊥AB 垂足为F , CG ⊥AB 垂足为G ;∴ ∠DFO=∠CGO=90°∵∠DOA=∠COB∴ △DFO ∽△CGO 则CG OC DF OD= ∵CG=0.3m OD=OA=3m OC=OB=3.5-3=0.5m∴DF=1.8m则D 端离地面的距离=DF+OE=1.8+0.5=2.3m【点睛】此题主要考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.三、解答题(共66分)19、4株【分析】根据已知假设每盆花苗增加x 株,则每盆花苗有(3)x +株,得出平均单株盈利为(30.5)x -元,由题意得(3)(30.5)10x x +-=求出即可。

九年级上册惠州数学期末试卷(Word版 含解析)

九年级上册惠州数学期末试卷(Word版 含解析)

九年级上册惠州数学期末试卷(Word 版 含解析) 一、选择题 1.已知34a b =(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b = C .43b a = D .43a b =2.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )A .32或42B .3或4C .22或42D .2或43.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50° 4.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 5.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( )A .80°B .40°C .50°D .20° 6.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°7.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .8.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )A .43B .23C .334D .3229.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .410.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数 11.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒12.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A .平均分不变,方差变大B .平均分不变,方差变小C .平均分和方差都不变D .平均分和方差都改变二、填空题13.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.14.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.15.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21⎡⎤=⎣⎦,…,则123420192020⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(其中“+”“-”依次相间)的值为______.16.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)17.某校五个绿化小组一天的植树的棵数如下:9,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是_____.18.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________.19.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.20.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______.21.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.22.已知234x y z x z y+===,则_______ 23.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.24.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.三、解答题25.如图,AC 为圆O 的直径,弦AD 的延长线与过点C 的切线交于点B ,E 为BC 中点,AC= 43,BC=4.(1)求证:DE 为圆O 的切线;(2)求阴影部分面积.26.在平面直角坐标系中,二次函数y=ax 2+bx+c(a≠0)的顶点A (-3,0),与y 轴交于点B(0,4),在第一象限内有一点P (m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P 为圆心的圆与直线AB 、x 轴相切,求点P 的坐标.(3)若点A 关于y 轴的对称点为点A′,点C 在对称轴上,且2∠CBA+∠PA′O=90◦.求点C 的坐标.27.如图,在矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取一点O,以点O 为圆心,OF 为半径作⊙O 与AD 相切于点P .AB=6,BC=33(1)求证:F 是DC 的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.28.如图,在△ABC 中,AB =AC =13,BC =10,求tan B 的值.29.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.30.(1)如图①,AB 为⊙O 的直径,点P 在⊙O 上,过点P 作PQ ⊥AB ,垂足为点Q .说明△APQ ∽△ABP ;(2)如图②,⊙O 的半径为7,点P 在⊙O 上,点Q 在⊙O 内,且PQ =4,过点Q 作PQ 的垂线交⊙O 于点A 、B .设PA =x ,PB =y ,求y 与x 的函数表达式.31.如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为6.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.cm,那么这个三角形的32.如果一个直角三角形的两条直角边的长相差2cm,面积是242两条直角边分别是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【详解】解:由34a b =,得出,3b=4a, A.由等式性质可得:3b=4a ,正确;B.由等式性质可得:4a=3b ,错误;C. 由等式性质可得:3b=4a ,正确;D. 由等式性质可得:4a=3b ,正确.故答案为:B.【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键. 2.A解析:A【解析】【分析】利用A 、B 、C 、D 四点共圆,根据同弧所对的圆周角相等,得出ADC ABC ∠∠=,再作AE CD ⊥,设AE=DE=x ,最后利用勾股定理求解即可.【详解】解:如图所示,∵△ABC 、△ABD 都是直角三角形,∴A,B,C,D 四点共圆,∵AC=BC ,∴BAC ABC 45∠∠==︒,∴ADC ABC 45∠∠==︒,作AE CD ⊥于点E,∴△AED 是等腰直角三角形,设AE=DE=x,则AD 2x =,∵CD=7,CE=7-x,∵AB 52=∴AC=BC=5,在Rt△AEC 中,222AC AE EC =+,∴()22257x x =+-解得,x=3或x=4,∴AD ==. 故答案为:A.【点睛】本题考查的知识点是勾股定理的综合应用,解题的关键是根据题目得出四点共圆,作出合理辅助线,在圆内利用勾股定理求解. 3.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC ,然后根据圆周角定理计算∠ADC 的度数.【详解】∵BC 的度数为50°,∴∠BOC=50°,∵半径OC ⊥AB ,∴=AC BC ,∴∠ADC=12∠BOC=25°. 故选B .【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理. 4.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 5.C解析:C【解析】∵∠BOC=2∠BAC ,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.6.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.8.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=∴1333322ABCS=⨯=.故选:C.【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.9.B解析:B【解析】【分析】将x=2代入方程即可求得k的值,从而得到正确选项.【详解】解:∵一元二次方程x2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B.【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.10.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D .【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.A解析:A【解析】【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.【详解】连接AC ,如图,∵BC 是O 的直径,∴90BAC ︒∠=,∵70ACB ADB ︒∠=∠=,∴907020ABC ︒︒︒∠=-=.故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.12.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.二、填空题13.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG 为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.14.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.15.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数解析:-22【解析】【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4……2020中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22 【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.16.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】根据黄金比值为12计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴AP 2AB ==故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.17.2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+8解析:2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],计算方差即可.【详解】∵组数据的平均数是10,∴15(9+10+12+x+8)=10,解得:x=11,∴S2=15[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(8﹣10)2],=15×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.6【解析】【分析】将方程的根-2代入原方程求出m的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.19.【解析】【分析】圆C 过点P 、Q ,且与相切于点M ,连接CM ,CP ,过点C 作CN⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再解析:4223-【解析】【分析】圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再根据等腰直角三角形的性质即可用r 表示出CD 、NC ,最后根据勾股定理列方程即可求出r .【详解】解:如图所示,圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D∵2OP =,6OQ =,∴PQ=OQ -OP=4根据垂径定理,PN=122PQ = ∴ON=PN +OP=4在Rt △OND 中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,=设圆C 的半径为r ,即CM=CP=r∵圆C 与OB 相切于点M ,∴∠CMD=90°∴△CMD 为等腰直角三角形∴CM=DM=r ,=∴NC=ND -CD=4根据勾股定理可得:NC 2+PN 2=CP 2即()22242r -+=解得:12r r +==DM >OD ,点M 不在射线OB 上,故舍去)故答案为:.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.20.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m 是关于x 的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m 2-2m-3=0,变形得m 2-2m=3,再将要求的代数式提取公因式-2,然后将m 2-2m=3代入,计算即可.【详解】解:∵m 是关于x 的方程x 2-2x-3=0的解,∴m 2-2m-3=0,∴m 2-2m=3,∴4m-2m 2+2= -2(m 2-2m )+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.21.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.22.2【解析】【分析】设,分别用k表示x、y、z,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z. 23.16【解析】【分析】【详解】延长EF 交BC 的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD ∥BC∴△DEF ∽△CHF, △DEM ∽△BHM∴ ,∵F 是CD 的中点∴DF解析:16【解析】【分析】【详解】延长EF 交BC 的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD ∥BC∴△DEF ∽△CHF, △DEM ∽△BHM ∴DE DF CH CF = ,2()DEM BMHS DE S BH ∆∆= ∵F 是CD 的中点∴DF=CF∴DE=CH∵E 是AD 中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEM S ∆= ∴211()3BMH S ∆= ∴9BMH S ∆=∴9CFH BCFM S S ∆+=四边形∴9DEF BCFM S S ∆+=四边形∴9DME DFM BCFM S S S ∆∆++=四边形∴19BCD S ∆+=∴8BCD S ∆=∵四边形ABCD 是平行四边形∴2816ABCD S =⨯=四边形故答案为:16.24.或【解析】【分析】如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H ,连接FH ,则HF ⊥AC ,解直角三角形得到AC =4,AB =5,根据旋转的性质得到∠DCE =∠ACB =90°,DE =AB =5解析:209或145【解析】【分析】 如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H ,连接FH ,则HF ⊥AC ,解直角三角形得到AC =4,AB =5,根据旋转的性质得到∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,根据相似三角形的性质得到DF =209;如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,推出点H 为切点,DH 为⊙F 的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H , 连接FH ,则HF ⊥AC ,∴DF =HF , ∵Rt △ABC 中,∠ACB =90°,BC =3,tan A =BC AC =34, ∴AC =4,AB =5,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,∴∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,∵FH ⊥AC ,CD ⊥AC ,∴FH ∥CD ,∴△EFH ∽△EDC ,∴FH CD =EF DE , ∴4DF =55DF , 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A=∠D,∠AEH=∠DEC∴∠AHE=90°,∴点H为切点,DH为⊙F的直径,∴△DEC∽△DBH,∴DEBD=CDDH,∴57=4DH,∴DH=285,∴DF=145,综上所述,当FD=209或145时,⊙F与Rt△ABC的边相切,故答案为:209或145.【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.三、解答题25.(1)证明见解析;(2)S阴影32π【解析】【分析】(1)根据斜边中线等于斜边一半得到DE=CE,再利用切线的性质得到∠BCO=90°,最后利用等量代换即可证明,(2)根据S阴影=2S△ECO-S扇形COD即可求解.【详解】(1)连接DC、DO.因为AC 为圆O 直径,所以∠ADC=90°,则∠BDC=90°,因为E 为Rt △BDC 斜边BC 中点, 所以DE=CE=BE=12BC , 所以∠DCE=∠EDC,因为OD=OC ,所以∠DCO=∠CDO.因为BC 为圆O 切线,所以BC ⊥AC ,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED ⊥OD ,所以DE 为圆O 的切线.(2)S 阴影=2S △ECO -S扇形COD =3-2π 【点睛】本题主要考查切线的性质和判定及扇形面积的计算,掌握切线的判定定理及扇形的面积公式是解题的关键.26.(1)24(3)9y x =+;(2)P(1511,2411);(3)C(-3,-5)或 (-3,2513) 【解析】【分析】(1)设顶点式,将B 点代入即可求;(2)根据4m+3n=12确定点P 所在直线的解析式,再根据内切线的性质可知P 点在∠BAO 的角平分线上,求两线交点坐标即为P 点坐标;(3)根据角之间的关系确定C 在∠DBA 的角平分线与对称轴的交点或∠ABO 的角平分线与对称轴的交点,通过求角平分线的解析式即可求.【详解】(1)∵抛物线的顶点坐标为A(-3,0),设二次函数解析式为y=a(x+3)2,将B (0,4)代入得,4=9a∴a=49 ∴24(3)9y x =+ (2)如图 ∵P (m,n),且满足4m+3n=12∴443n m =-+ ∴点P 在第一象限的443y x =-+上, ∵以点P 为圆心的圆与直线AB 、x 轴相切,∴点P 在∠BAO 的角平分线上,∠BAO 的角平分线:y=1322x +, ∴134=4223x x +-+, ∴x=1511,∴y=2411∴P(1511,2411)(3)C(-3,-5)或 (-3,2513)理由如下: 如图,A ´(3,0),可得直线L A ´B 的表达式为443y x =-+ , ∴P 点在直线A ´B 上,∵∠PA ´O=∠ABO=∠BAG, 2∠CBA+∠PA′O=90°,∴2∠CBA=90°-∠PA′O=∠GAB,在对称轴上取点D,使∠DBA=∠DAB,作BE ⊥AG 于G 点,设D点坐标为(-3,t)则有(4-t)2+32=t2t=25 8,∴D(-3,25 8),作∠DBA的角平分线交AG于点C即为所求点,设为C1∠DBA的角平分线BC1的解析式为y=913x+4,∴C1的坐标为 (-3, 25 13);同理作∠ABO的角平分线交AG于点C即为所求,设为C2,∠ABO的角平分线BC2的解析式为y=3x+4,∴C2的坐标为(-3,-5).综上所述,点C的坐标为(-3, 2513)或(-3,-5).【点睛】本题考查了二次函数与图形的结合,涉及的知识点角平分线的解析式的确定,切线的性质,勾股定理及图象的交点问题,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.27.(1)见解析;(2)见解析;(3)2【解析】【分析】(1)易求DF长度即可判断;(2)通过30°角所对的直角边等于斜边一半证得AE=2EF,EF=2CE即可得;(3)先证明△OFG为等边三角形,△OPG为等边三角形,即可确定扇形圆心角∠POG和∠GOF的大小均为60°,所以两扇形面积相等,通过割补法得出最后阴影面积只与矩形OPDH和△OGF有关,根据面积公式求出两图形面积即可.【详解】(1)∵AF=AB=6,AD=BC=∴DF=3,∴CF=DF=3,∴F是CD的中点(2)∵AF=6, DF=3,∴∠DAF=30°,∴∠EAF=30◦ ,∴AE=2EF;∴∠EFC=30◦ ,EF=2CE,∴AE=4CE(3)如图,连接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边三角形,同理△OPG为等边三角形,∴∠POG=∠FOG=60°,OH=32OG ,∴S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-32S△OFG=313 2323222,即图中阴影部分的面积2.【点睛】本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.28.12 5【解析】【分析】过A点作AD⊥BC,将等腰三角形转化为直角三角形,利用勾股定理求AD,利用锐角三角函数的定义求∠B的正切值.【详解】过点A作AD⊥BC,垂足为D,∵AB=AC=13,BC=10,∴BD=DC=12BC=5,∴AD222213512AB BD-=-=,在Rt△ABD中,∴tan B125 ADBD==.【点睛】本题考查了勾股定理,等腰三角形的性质和三角函数的应用,关键是将问题转化到直角三角形中求解,并且要熟练掌握好边角之间的关系.29.8+83【解析】【分析】过点A作AD⊥BC,垂足为点D,构造直角三角形,利用三角函数值分别求出AD、BD、CD 的值即可求三角形面积.【详解】解:过点A 作AD ⊥BC ,垂足为点D ,在Rt △ADB 中,∵sin AD ABC AB ∠=, ∴sin AD AB ABC =⋅∠= 1842⨯= ∵cos BD ABC AB∠=, ∴3cos 8432BD AB ABC =⋅∠=⨯= 在Rt △ADC 中,∵45ACB ︒∠=,∴45CAD ︒∠=,∴AD =DC =4∴ 111()(443)4883222ABC S BC AD BD CD AD ∆=⋅=+⋅=⨯+⨯=+【点睛】本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.30.(1)见解析;(2)56y x=【解析】【分析】(1)根据圆周角定理可证∠APB =90°,再根据相似三角形的判定方法:两角对应相等,两个三角形相似即可求证结论;(2)连接PO ,并延长PO 交⊙O 于点C ,连接AC ,根据圆周角定理可得∠PAC =90°,∠C =∠B ,求得∠PAC =∠PQB ,根据相似三角形的性质即可得到结论.【详解】(1)如图①所示:∵AB 为⊙O 的直径∴∠APB =90°又∵PQ ⊥AB∴∠AQP =90°∴∠AQP =∠APB又∵∠PAQ =∠BAP∴△APQ ∽△ABP .(2)如图②,连接PO ,并延长PO 交⊙O 于点C ,连接AC .∵PC 为⊙O 的直径∴∠PAC =90°又∵PQ ⊥AB∴∠PQB =90°∴∠PAC =∠PQB又∵∠C =∠B (同弧所对的圆周角相等) ∴△PAC ∽△PQB∴=PA PC PQ PB又∵⊙O 的半径为7,即PC =14,且PQ =4,PA =x ,PB =y∴144x y = ∴56y x =. 【点睛】 本题考查相似三角形的判定及其性质,圆周角定理及其推论,解题的关键是综合运用所学知识.31.(1)y =x 2+2x ﹣3;(2)存在,点P 坐标为113331322⎛+ ⎝⎭或53715337-+-⎝⎭;(3)点N 的坐标为(﹣4,1) 【解析】【分析】(1)分别令y =0 ,x =0,可表示出A 、B 、C 的坐标,从而表示△ABC 的面积,求出a 的值继而即可得二次函数解析式;(2)如图①,当点P 在x 轴上方抛物线上时,平移BC 所在的直线过点O 交x 轴上方抛物线于点P ,则有BC ∥OP ,此时∠POB =∠CBO ,联立抛物线得解析式和OP 所在直线的解析式解方程组即可求解;当点P 在x 轴下方时,取BC 的中点D ,易知D 点坐标为(12,32-),连接OD 并延长交x 轴下方的抛物线于点P ,由直角三角形斜边中线定理可知,OD =BD ,∠DOB =∠CBO 即∠POB =∠CBO ,联立抛物线的解析式和OP 所在直线的解析式解方程组即可求解.(3)如图②,通过点M 到x 轴的距离可表示△ABM 的面积,由S △ABM =S △BNM ,可证明点A 、点N 到直线BM 的距离相等,即AN ∥BM ,通过角的转化得到AM =BN ,设点N 的坐标,表示出BN 的距离可求出点N .【详解】(1)当y =0时,x 2﹣(a +1)x +a =0,解得x 1=1,x 2=a ,当x =0,y =a∴点C 坐标为(0,a ),∵C (0,a )在x 轴下方∴a <0∵点A 位于点B 的左侧,∴点A 坐标为(a ,0),点B 坐标为(1,0),∴AB =1﹣a ,OC =﹣a ,∵△ABC 的面积为6, ∴()()1162a a --=, ∴a 1=﹣3,a 2=4(因为a <0,故舍去),∴a =﹣3,∴y =x 2+2x ﹣3;(2)设直线BC :y =kx ﹣3,则0=k ﹣3,∴k =3;①当点P 在x 轴上方时,直线OP 的函数表达式为y =3x ,则2323y x y x x =⎧⎨=+-⎩,∴11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点P坐标为⎝⎭; ②当点P 在x 轴下方时,直线OP 的函数表达式为y =﹣3x ,则2323y x y x x =-⎧⎨=+-⎩ ∴1153715337y x ⎧-+=⎪⎪⎨-⎪=⎪⎩,2253715337y x ⎧--=⎪⎪⎨+⎪=⎪⎩,∴点P 坐标为53715337,22⎛⎫-+- ⎪ ⎪⎝⎭, 综上可得,点P 坐标为1133313,22⎛⎫++ ⎪ ⎪⎝⎭或53715337,22⎛⎫-+- ⎪ ⎪⎝⎭;(3)如图,过点A 作AE ⊥BM 于点E ,过点N 作NF ⊥BM 于点F ,设AM 与BN 交于点G ,延长MN 与x 轴交于点H ;∵AB =4,点M 到x 轴的距离为d ,∴S △AMB =114222AB d d d ⨯⨯⨯== ∵S △MNB =2d ,∴S △AMB =S △MNB ,∴1122BM AE BM NF ⨯=⨯, ∴AE =NF ,∵AE ⊥BM ,NF ⊥BM ,∴四边形AEFN 是矩形,∴AN ∥BM ,∵∠MAN =∠ANB ,∴GN =GA ,∵AN ∥BM , ∴∠MAN =∠AMB ,∠ANB =∠NBM ,∴∠AMB =∠NBM ,∴GB =GM ,∴GN +GB =GA +GM 即BN =MA ,在△AMB 和△NBM 中AMB NB AM NB MB BM M =⎧=∠∠⎪⎨⎪⎩=∴△AMB ≌△NBM (SAS ),∴∠ABM =∠NMB ,∵OA =OC =3,∠AOC =90°,∴∠OAC =∠OCA =45°,又∵AN ∥BM ,∴∠ABM =∠OAC =45°,∴∠NMB =45°,∴∠ABM +∠NMB =90°,∴∠BHM =90°,∴M 、N 、H 三点的横坐标相同,且BH =MH ,∵M 是抛物线上一点,∴可设点M 的坐标为(t ,t 2+2t ﹣3),∴1﹣t =t 2+2t ﹣3,∴t 1=﹣4,t 2=1(舍去),∴点N 的横坐标为﹣4,可设直线AC :y =kx ﹣3,则0=﹣3k ﹣3,∴k =﹣1,∴y =﹣x ﹣3,当x =﹣4时,y =﹣(﹣4)﹣3=1,∴点N 的坐标为(﹣4,1).【点睛】本题主要考查二次函数的图象与性质,还涉及到全等三角形的判定及其性质、三角形面积公式等知识点,综合性较强,解题的关键是熟练掌握二次函数的图象与性质.32.一条直角边的长为 6cm ,则另一条直角边的长为8cm .【解析】【分析】可设较短的直角边为未知数x ,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【详解】解:设一条直角边的长为xcm ,则另一条直角边的长为(x+2)cm .根据题意列方程,得1(2)242x x •+=. 解方程,得:x 1=6,x 2=8-(不合题意,舍去).∴一条直角边的长为 6cm ,则另一条直角边的长为8cm .【点睛】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.。

广东省惠州市惠城区九年级数学上学期期末试卷

广东省惠州市惠城区九年级数学上学期期末试卷

广东省惠州市惠城区九年级数学期末试卷(考试时间:100分钟 满分:120分)一.选择题(本题共10小题,每小题3分,共30分)1.一元二次方程4x 2+1=4x 的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根2.在正方形、矩形、菱形、平行四边形中,其中是中心对称图形的个数为( )A .1B .2C .3D .43.如图,四边形ABCD 是⊙O 的内接四边形,若∠A =70°,则∠C 的度数是( )A .100°B .110°C .120°D .130°第3题 第7题4.⊙O 的半径为5cm , 点A 到圆心O 的距离OA =3cm ,则点A 与圆O 的位置关系为( )A .点A 在圆内B .点A 在圆上C .点A 在圆外D .无法确定5.关于反比例函数xy 2-=,下列说法正确的是( ) A .图象过点(1,2) B .图象在第一、三象限C .当0>x 时,y 随x 的增大而减小D .当0<x 时, y 随x 的增大而增大6.对于二次函数y=﹣x 2+2x ﹣4,下列说法正确的是( )A .图象开口向上B .对称轴是x =2C .当x >1时,y 随x 的增大而减小D .图象与x 轴有两个交点7.已知二次函数y =ax 2+bx +c 的图像如图所示,那么下列判断不正确的是( )A .b 2-4ac >0B .a ﹣b +c >0C .b =﹣4aD .关于x 的方程ax 2+bx +c =0的根是x 1=﹣1,x 2=58.在平面直角坐标系中,将A (﹣1,5)绕原点逆时针旋转90°得到A ′,则点A ′的坐标是( )A .(﹣1,5)B .(5,﹣1)C .(﹣1,﹣5)D .(﹣5,﹣1)9.如图,幼儿园计划用30m 的围栏靠墙围成一个面积为100 m 2的矩形小花园(墙长为15m ),则与墙垂直的边x 为( )A. 10 m 或5 mB. 5 m 或8 mC. 10 m10.如图,在平面直角坐标系中,点P (1,4)、Q (m ,n )在函数(0)k y x x=>的图象上, 当1m >时,过点P 分别作x 轴、y 轴的垂线,垂足为点A 、B x 轴、 y 轴的垂线,垂足为点C 、D .QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积( )A .增大B .减小C .先减小后增大D .先增大后减小第9题第10题二.填空题(本题共6小题,每小题4分,共24分)11.已知关于x的方程x2+3x + a =0有一个根为﹣2,则另一个根为.12.抛物线y=-x2+1向右平移2个单位长度,再向下平移3个长度单位得到的抛物线解析式是.13.如图,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.14.如图是一个可以自由转动的转盘,下表是一次活动中的一组统计数据:转动转盘的次数n100 150 200 500 800 1000落在“铅笔”的次数m68 111 136 345 546 701 转动转盘一次,落在“铅笔”的概率约是(结果保留小数点后一位).15.若圆锥底面圆的周长为8π,侧面展开图的圆心角为90°,则该圆锥的母线长为.16.如图,在平面内2条直线相交最多形成1个交点,3条直线相交最多形成3个交点,4条直线相交最多形成6个交点.现有10条直线相交最多形成个交点.第13题第14题第16题三.解答题(一)(本题共3小题,每小题6分,共18分)17.解方程:2--=x x323018.如图,AB是⊙O的直径,弦CD⊥AB于E,∠CDB=30°,CD=2,求阴影部分的面积19.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线21855y x x =-+,其中y (m )是球的飞行高度,x (m )是球飞出的水平距离,结果球离球洞的水平距离还有2m .⑴ 请写出抛物线的顶点坐标.⑵ 若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行、路线应满足怎样的抛物线,求出其解析式.四.解答题(二)(本题共3小题,每小题7分,共21分)20.某钢铁厂计划今年第一季度一月份的总产量为500 t ,三月份的总产量为720 t ,若平均每月的增长率相同.⑴ 第一季度平均每月的增长率;⑵ 如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000 t ?21.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上的两点,∠EAD =45°,将△ADC 绕点A 顺时针旋转90°,得到△AFB ,连接EF .⑴ 求证:EF =ED⑵ 若AB =22,CD =1,求FE 的长22.小明、小刚和小红各自打算随机选择元旦的上午或下午去红花湖景区游玩.画树状图解答下列问题:⑴ 小明和小刚都在元旦上午去游玩的概率为;⑵ 求他们三人在同一个半天去游玩的概率.五.解答题(三)(本题共3小题,每小题9分,共27分)23. 如图,直线y =-x +1与反比例函数y =k x的图像相交于点A 、B ,过点A 作AC ⊥x 轴,垂足为点C (-2,0).连接AC 、BC .⑴求反比例函数的解析式;⑵求S△ABC⑶利用函数图象直接写出关于x的不等式-x+1 <kx的解集.24. 如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作直线BF,交AC的延长线于点F.⑴求证:BE=CE;⑵若AB=6,求»DE的长;⑶当∠F的度数是多少时,BF与⊙O相切.证明你的结论.25.如图,△ABC中,∠ACB=90°,AC=CB=2,以BC为边向外作正方形BCDE,动点M从A点出发,以每秒1个单位的速度沿着A→C→D的路线向D点匀速运动(M不与A、D重合);过点M作直线l⊥AD,l与路线A→B→D相交于N,设运动时间为t秒.⑴填空:当点M在AC上时,BN= (用含t的代数式表示);⑵当点M在CD上时(含点C),是否存在点M,使△DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;⑶过点N作NF⊥ED,垂足为F,矩形MDFN与△ABD重叠部分的面积为S,求S的最大值.备用图。

广东省惠州市第一中学教育集团2022-2023学年九年级上学期期末教学质量检测数学试题(含答案)

广东省惠州市第一中学教育集团2022-2023学年九年级上学期期末教学质量检测数学试题(含答案)

A. 25°
B. 20°
C. 30°
D. 35°
10. 如图,在矩形 ABCD 中, AB 2 , DM 6 ,E 是 BC 的中点,若 AE BD 于点 F,M 是 DF 3
的中点,连接 CM、AM ,则下列正确的结论是( ) ① FC CD ,② DBC FAM ,③ EF 1 CM ,④矩形 ABCD 的面积是 2.
D 都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是( )
A. 只闭合1个开关
B. 只闭合 2 个开关
C. 只闭合 3 个开关
D. 闭合 4 个开关
9. 如图,AB 为⊙O的切线,点 A 为切点,OB 交⊙O 于点 C,点 D 在⊙O 上,连接 AD、CD、OA,若
∠ADC=30°,则∠ABO 的度数为( )
四、解答题(二)(本题包括 3 小题,每小题 9 分,共 27 分)
19. 我校举行“中国梦·我的梦”主题演讲,将学生的成绩分为 A,B,C,D 四个等级,并将结果绘制成如 图所示的条形统计图和扇形统计图,但均不完整. 请你根据统计图解答下列问题.
(1)参加比赛的学生人数共有______名,在扇形统计图中,表示“D 等级”的扇形的圆心角为______ 度,图中 m 的值为______; (2)补全条形统计图; (3)组委会决定从本次比赛中获得 A 等级的学生中,选出两名去参加市中学生演讲比赛,已知 A 等级中 男生只有 1 名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.
二、填空题(本题包括 5 小题,每题 3 分,共 15 分,请将答案直接填在题中横线上)
【11 题答案】
1
【答案】
3
【12 题答案】 【答案】2 【13 题答案】

广东惠城区2022-2023学年数学九年级第一学期期末统考试题含解析

广东惠城区2022-2023学年数学九年级第一学期期末统考试题含解析

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每小题3分,共30分)1.如图,已知AB ∥CD ∥EF ,:1:2BD DF =,那么:AC AE 的值是( )A .13B .12C .23D .22.已知关于x 的一元二次方程2x k 1x 10+--=有两个不相等的实数根,则k 的取值范围是( ) A .k>-3 B .k ≥-3 C .k ≥0 D .k ≥13.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )A .3242B .3或4C .22D .2或4 4.若反比例函数2k y x -=的图象在每一条曲线上y 都随x 的增大而增大,则k 的取值范围是() A .2k > B .2k < C .02k << D .k 2≤5.下列事件中,属于必然事件的是( )A .小明买彩票中奖B .投掷一枚质地均匀的骰子,掷得的点数是奇数C .等腰三角形的两个底角相等D .a 是实数,0a < 6.对于反比例函数2y x=-,下列说法不正确的是( ) A .图象分布在第二、四象限B .当0x >时,y 随x 的增大而增大C .图象经过点(1,-2)D .若点()11,A x y ,()22,B x y 都在图象上,且12x x <,则12y y <7.从下列两组卡片中各摸一张,所摸两张卡片上的数字之和为5的概率是( )第一组:1,2,3 第二组:2,3,4A .49B .38C .29D .138.如图,P 为线段AB 上一点,AD 与BC 交与点E ,CPD A B ∠=∠=∠,BC 交PD 与点F ,AD 交PC 与点G ,则下列结论中错误的是( )A .CGE CBP ∆∆B .APD PGD ∆∆C .APG BFP ∆∆D .PCF BCP ∆∆9.如图,在⊙O 中,∠BAC =15°,∠ADC =20°,则∠ABO 的度数为( )A .70°B .55°C .45°D .35°10.如图,已知□ABCD 的对角线BD=4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为( )A .4π cmB .3π cmC .2π cmD .π cm二、填空题(每小题3分,共24分)11.二次函数2y x bx c =-++的部分图像如图所示,要使函数值3y >,则自变量x 的取值范围是_______.12.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____.13.在Rt △ABC 中,∠C =90°,若sin A =34,则cos B =_____. 14.在比例尺为1:1000000的地图上,量得甲、乙两地的距离是2.6cm,则甲、乙两地的实际距离为_______千米.15.掷一个质地均匀的正方体骰子,向上一面的点数为奇数的概率是_____.16.抛物线y =2(x ﹣1)2﹣5的顶点坐标是_____.17.如图,正方形ABCD 的边长为a ,在AB BC CD DA 、、、边上分别取点1111A B C D 、、、,111114AA BB CC DD a ====,在边11111111A B B C C D D A 、、、上分别取点2222A B C D 、、、,使121212121114A A B B C C D D A B ====.....依次规律继续下去,则正方形n n n n A B C D 的面积为__________.18.若关于x 的方程25211--=---a x x 的解为非负数,且关于x 的不等式组122260x a x ⎧≥-⎪⎨⎪->⎩有且仅有5个整数解,则符合条件的所有整数a 的和是__________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,抛物线2y ax bx c =++的图象与x 轴交于(4,0)A ,B 两点,与y 轴交于点()0,2C ,对称轴32x =与x 轴交于点H. (1)求抛物线的函数表达式(2)直线10y kx k =+≠()与y 轴交于点E ,与抛物线交于点P,Q (点P 在y 轴左侧,点Q 在y 轴右侧),连接CP ,CQ ,若CPQ 的面积为172,求点P ,Q 的坐标.(3)在(2)的条件下,连接AC 交PQ 于G ,在对称轴上是否存在一点K ,连接GK ,将线段GK 绕点G 逆时针旋转90°,使点K 恰好落在抛物线上,若存在,请直接写出点K 的坐标不存在,请说明理由.20.(6分)如图,在四边形ABCD 中,AD ∥BC ,AD=2,AB=22,以点A 为圆心,AD 为半径的圆与BC 相切于点E ,交AB 于点F .(1)求∠ABE 的大小及DEF 的长度;(2)在BE 的延长线上取一点G ,使得DE 上的一个动点P 到点G 的最短距离为222-,求BG 的长.21.(6分)用适当的方法解下列方程:(1)(x ﹣2)2﹣16=1(2)5x 2+2x ﹣1=1.22.(8分)如图,反比例函数2m y x-=的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:(1)图象的另一支在第________象限;在每个象限内,y 随x 的增大而________,常数m 的取值范围是________; (2)若此反比例函数的图象经过点()2,3-,求m 的值.23.(8分)科研人员在测试火箭性能时,发现火箭升空高度()h km 与飞行时间()t s 之间满足二次函数22009920h t t =-+-.(1)求该火箭升空后飞行的最大高度;(2)点火后多长时间时,火箭高度为44km.24.(8分)两个相似多边形的最长边分别为6cm和8cm,它们的周长之和为56cm,面积之差为28cm2,求较小相似多边形的周长与面积.25.(10分)商场某种商品平均每天可销售40件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件,设每件商品降价x元(x为正整数).据此规律,请回答:(1)商场日销轡量增加件,每件商品盈利元(用含x的代数式表示);(2)每件商品降价多少元时,商场日盈利可达到2400元;(3)在上述条件不变,销售正常情况下,求商场日盈利的最大值.26.(10分)如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为(1,0),抛物线y=﹣x2+bx+c经过A、B两点.(1)求点A的坐标;(2)求抛物线的解析式;(3)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=12 DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.参考答案一、选择题(每小题3分,共30分)1、A【分析】根据平行线分线段成比例定理得到AC:CE=BD:DF=1:2,然后利用比例性质即可得出答案进行选择.【详解】解:∵AB ∥CD ∥EF ,∴AC :CE=BD :DF ,∵:1:2BD DF =,∴AC :CE=BD :DF=1:2,即CE=2AC ,∴AC :AE=1:3=13. 故选A.【点睛】本题考查平行线分线段成比例即三条平行线截两条直线,所得的对应线段成比例.2、D【解析】根据∆>0且k -1≥0列式求解即可. 【详解】由题意得(1k -)2-4×1×(-1)>0且k -1≥0,解之得k ≥1.故选D.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2﹣4ac 与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.3、A【分析】利用A 、B 、C 、D 四点共圆,根据同弧所对的圆周角相等,得出ADC ABC ∠∠=,再作AE CD ⊥,设AE=DE=x ,最后利用勾股定理求解即可.【详解】解:如图所示,∵△ABC 、△ABD 都是直角三角形,∴A,B,C,D 四点共圆,∵AC=BC ,∴BAC ABC 45∠∠==︒,∴ADC ABC 45∠∠==︒,作AE CD ⊥于点E,∴△AED 是等腰直角三角形,设AE=DE=x,则AD =, ∵CD=7,CE=7-x,∵AB =∴AC=BC=5,在Rt△AEC 中,222AC AE EC =+,∴()22257x x =+-解得,x=3或x=4,∴AD ==故答案为:A.【点睛】本题考查的知识点是勾股定理的综合应用,解题的关键是根据题目得出四点共圆,作出合理辅助线,在圆内利用勾股定理求解.4、B【分析】根据反比例函数的性质,可求k 的取值范围. 【详解】解:∵反比例函数2k y x-=图象的每一条曲线上,y 都随x 的增大而增大, ∴k−2<0,∴k<2故选B .【点睛】本题考查了反比例函数的性质,熟练掌握当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.5、C【分析】由题意根据事件发生的可能性大小判断相应事件的类型即可判断选项.【详解】解:A. 小明买彩票中奖,是随机事件;B. 投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件;C. 等腰三角形的两个底角相等,是必然事件;D. a是实数,0a<,是不可能事件;故选C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、D【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;C.∵221-=-,∴点(1,−2)在它的图象上,故本选项正确;D. 若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0< x2,则y2<y1,故本选项错误.故选:D.【点睛】本题考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.7、D【分析】根据题意,通过树状图法即可得解.【详解】如下图,画树状图可知,从两组卡片中各摸一张,一共有9种可能性,两张卡片上的数字之和为5的可能性有3种,则P(两张卡片上的数字之和为5)31 93 ==,故选:D.【点睛】本题属于概率初步题,熟练掌握树状图法或者列表法是解决本题的关键.8、A【分析】先根据条件证明△PCF∽△BCP,利用相似三角形的性质:对应角相等,再证明△APD∽△PGD,进而证明△APG∽△BFP再证明时注意图形中隐含的相等的角,故可进行判断.【详解】∵∠CPD=∠B,∠C=∠C,∴△PCF∽△BCP.∵∠CPD=∠A,∠D=∠D,∴△APD∽△PGD.∵∠CPD=∠A=∠B,∠APG=∠B+∠C,∠BFP=∠CPD+∠C∴∠APG=∠BFP,∴△APG∽△BFP.故结论中错误的是A,故选A.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定定理. 9、B【分析】根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠ABO的度数【详解】连接OA、OC,∵∠BAC=15°,∠ADC=20°,∴∠AOB=2(∠ADC+∠BAC)=70°,∵OA=OB(都是半径),∴∠ABO=∠OAB=12(180°﹣∠AOB)=55°.故选B.【点睛】本题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.10、C【分析】点D所转过的路径长是一段弧,是一段圆心角为180°,半径为OD的弧,故根据弧长公式计算即可.【详解】解:BD=4,∴OD=2∴点D 所转过的路径长=1802180π⨯=2π. 故选:C .【点睛】 本题主要考查了弧长公式:180n r l π=.二、填空题(每小题3分,共24分)11、20x -<<【分析】根据3y >,则函数图象在直线3y =的上方,所以找出函数图象在直线3y =的上方x 的取值范围即可.【详解】根据二次函数的图象可知:对称轴为1x =-,已知一个点为()03,, 根据抛物线的对称性,则点()03,关于对称性对称的另一个点为()23-,, 所以3y >时,x 的取值范围是20x -<<.故答案为:20x -<<.【点睛】本题主要考查了二次函数的性质,主要利用了二次函数的对称性,读懂图象信息,利用对称轴求出点()03,的对称点是解题的关键.12、2【详解】试题分析:设此圆锥的底面半径为r ,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得, 2πr=0208161π⨯,解得r=2cm . 考点:圆锥侧面展开扇形与底面圆之间的关系.13、34. 【解析】根据一个角的余弦等于它余角的正弦,可得答案.【详解】解:由∠C=90°,若sinA=34,得cosB=sinA=34, 故答案为34. 【点睛】本题考查了互余两角的三角函数,利用一个角的余弦等于它余角的正弦是解题关键. 14、1【解析】根据比例尺=图上距离:实际距离.根据比例尺关系即可直接得出实际的距离.【详解】根据比例尺=图上距离:实际距离,得:A ,B 两地的实际距离为2.6×1000000=100000(cm )=1(千米). 故答案为1. 【点睛】本题考查了线段的比.能够根据比例尺正确进行计算,注意单位的转换. 15、12【解析】解:掷一次骰子6个可能结果,而奇数有3个, 所以掷到上面为奇数的概率为:3162=. 故答案为12. 16、 (1,﹣5)【分析】根据二次函数的顶点式即可求解.【详解】解:抛物线y =2(x ﹣1)2﹣5的顶点坐标是(1,﹣5). 故答案为(1,﹣5). 【点睛】本题考查了顶点式对应的顶点坐标,顶点式的理解是解题的关键17、258na ⎛⎫ ⎪⎝⎭【分析】利用勾股定理可得A 1B 12=58a 2,即正方形A 1B 1C 1D 1的面积,同理可求出正方形A 2B 2C 2D 2的面积,得出规律即可得答案.【详解】∵正方形ABCD 的边长为a ,111114AA BB CC DD a ====,∴A 1B 12=A 1B 2+BB 12=2231()()44a +=58a 2,A 1B 1a ,∴正方形A 1B 1C 1D 1的面积为58a 2, ∵121212121114A AB BC CD D A B ====, ∴A 2B 22=2231()()44+=(58)2a 2,∴正方形A 2B 2C 2D 2的面积为(58)2a 2, ……∴正方形n n n n A B C D 的面积为(58)n a 2, 故答案为:(58)n a 2 【点睛】本题考查正方形的性质及勾股定理,正确计算各正方形的面积并得出规律是解题关键. 18、1【分析】解方程得x=52a -,512a-≠即a≠1,可得a≤5,a≠1;解不等式组得0<a ≤1,综合可得0<a<1,故满足条件的整数a 的值为1,2.【详解】解不等式组122260x a x ⎧≥-⎪⎨⎪->⎩,可得43x a x ≥-⎧⎪⎨⎪⎩,∵不等式组有且仅有5个整数解, ∴013a≤, ∴0<a ≤1,解分式方程25211--=---a x x , 可得x=52a -,512a-≠即a≠1 又∵分式方程有非负数解, ∴x ≥0,即52a-≥0, 解得a≤5,a≠1 ∴0<a<1,∴满足条件的整数a 的值为1,2, ∴满足条件的整数a 的值之和是1+2=1, 故答案为:1. 【点睛】考点:分式方程的解;一元一次不等式组的整数解;含待定字母的不等式(组);综合题,熟练掌握和灵活运用相关知识是解题的关键.三、解答题(共66分)19、(1)213222y x x =-++;(2)3737,2222P Q ⎛⎛⎫-----+ ⎪ ⎪⎝⎭⎝⎭;(3)123939,,214214K K ⎛⎛ ⎝⎭⎝⎭【分析】(1)利用对称轴和A 点坐标可得出(1,0)B -,再设(1)(4)y a x x =+-,代入C 点坐标,求出a 的值,即可得到抛物线解析式;(2)求C 点和E 点坐标可得出CE 的长,再联立直线与抛物线解析式,得到2131022x k x ⎛⎫+--= ⎪⎝⎭,设点P,Q 的横坐标分别为12,x x ,利用根与系数的关系求出12x x -,再根据CPQ 的面积1212=⋅⋅-=CE x x k 的值,将k 的值代入方程求出12,x x ,即可得到P 、Q 的坐标;(3)先求直线AC 解析式,再联立直线PQ 与直线AC ,求出交点G 的坐标,设3K 2,⎛⎫ ⎪⎝⎭m ,()K ,'x y ,过G 作MN ∥y 轴,过K 作KN ⊥MN 于N ,过K'作K'M ⊥MN 于M ,然后证明△MGK'≌△NKG ,推出MK'=NG ,MG=NK ,建立方程求出K '的坐标,再代入抛物线解析式求出m 的值,即可得到K 的坐标. 【详解】解:(1)∵抛物线对称轴32x =,点(4,0)A ∴(1,0)B -设抛物线的解析式为(1)(4)y a x x =+- 将点(0,2)C 代入解析式得:(01)(04)=2+-a ,解得12a =-,∴抛物线的解析式为1(1)(4)2y x x =-+-,即213222y x x =-++ (2)当x=0时,2132=222=-++y x x∴C 点坐标为(0,2),OC=2直线1(0)y kx k =+≠与y 轴交于点E , 当x=0时,1=1=+y kx ∴点(0,1)E ,OE=1 ∴1CE =联立1(0)y kx k =+≠和213222y x x =-++得: 2131=222+-++kx x x整理得:2131022x k x ⎛⎫+--= ⎪⎝⎭ 设点P,Q 的横坐标分别为12,x x 则12,x x 是方程2131022x k x ⎛⎫+--= ⎪⎝⎭的两个根, ∴121232,2+=-⋅=-x x k x x ∴()221212124(32)8x x x x x x k -=+-=-+∴CPQ 的面积1211722=⋅⋅-=CE x x 2117(32)822k -+=解得1230,==k k (舍)将k=3代入方程2131022x k x ⎛⎫+--= ⎪⎝⎭得: 2131022+-=x x解得:12x x ==∴211277312213+=+---+===x y y x∴3737,2222P Q ⎛⎫⎛------+ ⎪⎪ ⎝⎭⎝⎭(3)存在,设AC 直线解析式为='+y k x b , 代入A(4,0),C(0,2)得4=02k b b '+⎧⎨=⎩,解得1=22k b ⎧'-⎪⎨⎪=⎩, ∴AC 直线解析式为122y x =-+ 联立直线PQ 与直线AC 得12231y x y x ⎧=-+⎪⎨⎪=+⎩,解得27137x y ⎧=⎪⎪⎨⎪=⎪⎩∴213G 77,⎛⎫⎪⎝⎭设3K 2,⎛⎫ ⎪⎝⎭m ,()K ,'x y , 如图,过G 作MN ∥y 轴,过K 作KN ⊥MN 于N ,过K'作K'M ⊥MN 于M ,∵∠KGK'=90°, ∴∠MGK'+∠NGK=90° 又∵∠NKG+∠NGK=90° ∴∠MGK'=∠NKG 在△MGK'和△NKG 中,∵∠M=∠N=90°,∠MGK'=∠NKG ,GK'=GK ∴△MGK'≌△NKG (AAS ) ∴MK'=NG ,MG=NK∴213771332727x m y ⎧-=-⎪⎪⎨⎪-=-⎪⎩,解得1574314x m y ⎧=-⎪⎪⎨⎪=⎪⎩即K'坐标为(157-m ,4314) 代入213222y x x =-++得:2431153152142727⎛⎫⎛⎫=-⨯-+⨯-+ ⎪ ⎪⎝⎭⎝⎭m m 解得:92114m ±=∴K 的坐标为3921,214⎛⎫+ ⎪ ⎪⎝⎭或3921,214⎛⎫⎪ ⎪⎝⎭【点睛】本题考查二次函数的综合问题,是中考常考的压轴题型,难度较大,需要熟练掌握待定系数法求函数解析式,二次函数与一元二次方程的关系,第(3)题构造全等三角形是解题的关键. 20、(1)15°,32π;(2)1.【解析】试题分析:(1)连接AE ,如图1,根据圆的切线的性质可得AE ⊥BC ,解Rt △AEB 可求出∠ABE ,进而得到∠DAB ,然后运用圆弧长公式就可求出DEF的长度;(2)如图2,根据两点之间线段最短可得:当A 、P 、G 三点共线时PG 最短,此时AG=AP+PG=22=AB ,根据等腰三角形的性质可得BE=EG ,只需运用勾股定理求出BE ,就可求出BG 的长.试题解析:(1)连接AE ,如图1,∵AD 为半径的圆与BC 相切于点E ,∴AE ⊥BC ,AE=AD=2. 在Rt △AEB 中,sin ∠ABE=AEAB=222=22,∴∠ABE=15°.∵AD ∥BC ,∴∠DAB+∠ABE=180°,∴∠DAB=135°,∴DEF的长度为1352180π⨯=32π;(2)如图2,根据两点之间线段最短可得:当A 、P 、G 三点共线时PG 最短,此时AG=AP+PG=2222+-=22,∴AG=AB .∵AE ⊥BG ,∴BE=EG .∵BE=22ABAE-=84-=2,∴EG=2,∴BG=1.考点:切线的性质;弧长的计算;动点型;最值问题. 21、(1)x 1=-2,x 2=6;(2)x 1-16+,x 2-1-6【分析】(1)先移项,两边再开方,即可得出两个一元一次方程,求出方程的解即可; (2)求出b 2-4ac 的值,代入公式求出即可. 【详解】(1)(x-2)2-16=1, (x-2)2=16,两边开方得:x-2=±4, 解得:x 1=-2,x 2=6; (2)5x 2+2x-1=1, b 2-4ac=22+4×5×1=24, -1?6,∴x 1x 2 【点睛】本题考查了解一元二次方程的应用,主要考查了学生的计算能力,题目是一道比较好的题目,难度适中. 22、(1)故答案为四;增大;2m <;(2)4m =-. 【分析】(1)根据反比例函数的图象特点即可得; (2)将点()2,3-代入反比例函数的解析式即可得.【详解】(1)由反比例函数的图象特点得:图象的另一支在第四象限;在每个象限内,y 随x 的增大而增大 由反比例函数的性质可得:20m -<,解得2m < 故答案为:四;增大;2m <; (2)把()2,3-代入2m y x-=得到:232m -=-,则4m =- 故m 的值为4-. 【点睛】本题考查了反比例函数的图象特点、反比例函数的性质,熟记函数的图象特点和性质是解题关键. 23、(1)该火箭升空后飞行的最大高度为80km ;(2)点火后94s 和106s 时,火箭高度为44km . 【分析】(1)直接利用配方法将二次函数写成顶点式,进而求出即可; (2)把44h =直接带入函数2(100)80h t =--+,解得t 的值即为所求. 【详解】解:(1)由题意可得:22009920h t t =-+-2(20010000)100009920t t =--++- 2(100)80t =--+.∴该火箭升空后飞行的最大高度为80km .(2)44h =时,2(100)8044t --+=.解得:94t =或106.∴点火后94s 和106s 时,火箭高度为44km .【点睛】本题考查了二次函数的应用,明确h 与t 的值是解题的关键. 24、较小相似多边形的周长为14cm ,面积为36cm 1.【分析】设较小相似多边形的周长为x,面积为y,则较大相似多边形的周长为56﹣x,面积18+y,根据相似多边形的性质得到6568xx=-,26()288yy=+,然后利用比例的性质求解即可.【详解】解:设较小相似多边形的周长为x,面积为y,则较大相似多边形的周长为56﹣x,面积18+y,根据题意得6568xx=-,26()288yy=+,解得x=14,y=36,所以较小相似多边形的周长为14cm,面积为36cm1.【点睛】本题考查了相似多边形的性质:对应角相等;对应边的比相等;两个相似多边形周长的比等于相似比;两个相似多边形面积的比等于相似比的平方.25、(1)2x;(50-x);(2)每件商品降价1元,商场可日盈利2400元;(3)商场日盈利的最大值为2450元.【分析】(1)降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=原来的盈利−降低的钱数;(2)根据日盈利=每件商品盈利的钱数×(原来每天销售的商品件数40+2×降价的钱数),列出方程求解即可;(3)求出(2)中函数表达式的顶点坐标的横坐标即可解决问题.【详解】(1)商场日销售量增加2x件,每件商品盈利(50−x)元,故答案为:2x;(50−x);(2)由题意得:(50-x)(40+2x)=2400化简得:x2-30x+10=0,即(x-10)(x-1)=0,解得:x1=10,x2=1,∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴x=1.答:每件商品降价1元,商场可日盈利2400元.(3)y = (50- x)×(40+ 2x) = -2(x-15)2 +2450当x=15时,y最大值= 2450即商场日盈利的最大值为2450元.【点睛】此题主要考查了二次函数的应用;得到日盈利的等量关系是解决本题的关键.26、(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6);②点M的坐标为:∴M(﹣1,)或(﹣1,3)或(﹣1,﹣1)或(﹣1,132). 【解析】(1)先根据已知求点A 的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB 的解析式为:y=-2x+2,根据PD ⊥x 轴,设P (x ,-x 2-3x+4),则E (x ,-2x+2),根据PE=12DE ,列方程可得P 的坐标;②先设点M 的坐标,根据两点距离公式可得AB ,AM ,BM 的长,分三种情况:△ABM 为直角三角形时,分别以A 、B 、M 为直角顶点时,利用勾股定理列方程可得点M 的坐标. 【详解】(1)∵B (1,0), ∴OB=1, ∵OC=2OB=2, ∴C (﹣2,0),Rt △ABC 中,tan ∠ABC=2,∴ACBC =2, ∴3AC=2, ∴AC=6, ∴A (﹣2,6),把A (﹣2,6)和B (1,0)代入y=﹣x 2+bx+c 得:426{10b c b c -+=-++=,解得:3{4b c =-=, ∴抛物线的解析式为:y=﹣x 2﹣3x+4; (2)①∵A (﹣2,6),B (1,0), 易得AB 的解析式为:y=﹣2x+2,设P (x ,﹣x 2﹣3x+4),则E (x ,﹣2x+2), ∵PE=12DE , ∴﹣x 2﹣3x+4﹣(﹣2x+2)=12(﹣2x+2), x=1(舍)或﹣1, ∴P (﹣1,6);②∵M 在直线PD 上,且P (﹣1,6), 设M (﹣1,y ),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3∴M(﹣1,)或(﹣1,3);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=132,∴M(﹣1,132);综上所述,点M的坐标为:∴M(﹣1,)或(﹣1,3﹣1,﹣1)或(﹣1,132).【点睛】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.。

广东省惠州市惠城区2018届九年级上学期期末教学质量检查数学试题(答案)$832710

广东省惠州市惠城区2018届九年级上学期期末教学质量检查数学试题(答案)$832710

惠城区2017~2018学年第一学期期末教学质量检查九年级数学试卷说明:1、答卷前,考生必须将自己的学校、班级、学号按要求填写在左边密封线内的空格内.2.答题可用黑色或蓝色钢笔、圆珠笔按各题要求答在试卷(或答题卡)上,但不能用铅笔或红笔.(注:画图用铅笔)3.本试卷共五大题,25小题,满分120分,100分钟内完成,相信你一定会有出色的表现!一.选择题(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选择项中,只有一个是正确的,请将正确选择项前的字母填在下面表格中相应的位置. 1. 下列图形中,不是中心对称图形的为( )A.圆B.正六边形C.正方形D.等边三角形 2. 一元二次方程2340x x +-=的两根为1x ,2x ,则21x x ⋅的值是( )A.4B.-4C.3D.-3 3. 二次函数()221y x =+-错误!未找到引用源。

的图像大致为( )A. B. C. D.4. 一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有( )A .1种B . 2种C . 3种D .6种5. 已知⊙O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )A. 相交B. 相切C. 相离D. 不能确定6. 如图,△ODC 是由△OAB 绕点O 顺时针旋转50°后得到的图形,若点D 恰好落在AB 上,且∠AOC 的度数为130°,则∠C 的度数是( )A. 25°B. 30°C. 35°D. 40°7. 在长方形ABCD 中,AB = 16,如图所示,裁出一扇形ABE ,将扇形围成一个圆锥(AB 和AE 重合),则此圆锥的底面圆半径为( )A .4B .16C .24D .8第6题图 第7题图8. 如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为x m ,则下面所列方程正确的是( )A. (322)(20)570x x --=B. 32220570x x +⨯=C. (322)(20)3220570x x --=⨯-D. 2322202570x x x +⨯-=9. 如图,在平面直角坐标系中,平行四边形ABCD 的顶点B 、C 在x 轴上,A 、D 两点分别在反比例函数ky x=(k <0,x <0)与1y x=(x >0)的图像上,若平行四边形ABCD 的面积为4,则k 的值为( ) A. -1 B. -2 C. -3 D. -510. 在平面直角坐标系中,已知抛物线与直线的图象如图所示,则下列说法:① 当0<x <2时, y 1>y 2;② y 1随x 的增大而增大的取值范围是x <2; ③ 使得y 2大于4的x 值不存在; ④ 若y 1=2,则x =2或x =1. 其中正确的有( )A. 1个B. 2个C. 3个D. 4个B二.填空题(本大题共6个小题,每小题4分,共24分)请把答案直接填写在相应位置上,不需写出解答过程.11.若关于x 的方程230x x a ++=有一个根为-1,则另一个根为12.点P (-3,2)与点P′关于原点O 成中心对称,则点P′ 的坐标为13.将抛物线y =-2x 2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为 14.如图,⊙O 的内接四边形ABCD 中,∠BOD =140°,则∠A 等于______°.第14题图 第16题图15.一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,比赛组织者应邀请 个队参赛.16.如图,已知点A 是反比例函数y=2x-的图象上的一个动点,连接OA ,若将线段O A 绕点O 顺时针旋转90°得到线段OB ,则点B 所在图象的函数表达式为________. 三.解答题(一)(本大题共3个小题,每小题6分,共18分) 17.已知关于x 的方程220x ax a ++-=.⑴ 证明:不论a 取任何实数,该方程都有两个不相等的实数根; ⑵ 当a =1时,求该方程的根.18.已知二次函数()2y a x h =-,当x =2时有最大值,且此函数的图象经过点(1,﹣3).求此二次函数的关系式,并指出当x 为何值时,y 随x 的增大而增大.19.如图,正方形ABCD 内接于⊙O ,若正方形的边长等于4,求图中阴影部分面积.四.解答题(二)(本大题共3个小题,每小题7分,共21分)20. 某商店今年1月份的销售额是2万元,3月份的销售额是3.38万元.⑴求从1月份到3月份,该商店销售额平均每月的增长率⑵如果该商店4月份销售额增长率保持不变,销售额能否达到4.5万元,若不能,请说明理由.21.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(-1,-1),(1,-2),将△ABC绕着点C顺时针旋转90°得到△A′B′C′.⑴在图中画出△A′B′C′并写出点A的对应点A′坐标;⑵求出在△ABC旋转的过程中,点A经过的路径长.22.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,请用列表法或画树状图的方法,求点(m,n)在函数y=6x图象上的概率.五.解答题(三)(本大题共3个小题,每小题9分,共27分)23.如图,正比例函数y1=-3x的图象与反比例函数y2=kx 的图象交于A、B两点,点C在x轴负半轴上,AC=AO,S△ACO=12.⑴求k的值;⑵当y1>y2时,写出x的取值范围;⑶当x为何值时,y2<1.24.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,作OF∥AB交BC于点F,连接EF.⑴求证:OF⊥CE⑵求证:EF是⊙O的切线;⑶若O的半径为3,∠EAC=60°,求AD的长.25.矩形AOCD绕顶点A(0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2,CM=4.⑴求AD的长;⑵求经过A、B、D三点的抛物线的解析式;⑶在直线AM下方,⑵中的抛物线上是否存在点P,使S△PAM =25?若存在,求出P2点坐标;若不存在,请说明理由.备用图2017~2018学年度第一学期期末教学质量检查密九年级数学试题答卷说明:1.答卷共4页.考试时间为100分钟,满分120分.2.答卷前必须将自己的姓名、座号等信息按要求填写在密封线左边的空格内一、选择题(本题共10小题,每小题3分,共30分.)二、填空题(本题共6小题,每小题4分,共24分.11. 12. 13.14. 15. 16.三、解答题(一)(本题共3小题,每小题6分,共18分)四、解答题(二)(本题共3小题,每小题7分,共21分)五、解答题(三)(本题共3小题,每小题9分,共27分)分)惠城区2017~2018学年第一学期期末教学质量检查九年级数学答案与评分标准一.选择题(本大题共10个小题,每小题3分,共30分)二.填空题(本大题共6个小题,每小题4分,共24分)11.-2 12.(3,-2)13.()2232 y x=--+14. 110 15.6 16. y=2x三.解答题(一)(本大题共3个小题,每小题6分,共18分)17. 解:⑴∵∆=()()2242240a a a--=-+>∴该方程有两个不相等的实数根.⑵当a=1时,方程可化为210x x+-=解得:x1x218.解:根据题意得()22y a x=-,把(1,﹣3)代入得a=﹣3,所以二次函数解析式为()232y x=--,∵抛物线的对称轴为直线x=2,抛物线开口向下,∴当x<2时,y随x的增大而增大19.解:如图,连结OA、OB,作OE⊥AB,垂足为E,则∠AOB=90°,OE=12AB=2OA=∴S阴影=S扇形OAB-S△OAB=21903602OA AB OE π⋅⋅-⋅ =(2190423602π⋅⋅-⨯⨯=24π-四.解答题(二)(本大题共3个小题,每小题7分,共21分) 20.解:⑴ 设该店销售额平均每月的增长率为x ,则二月份销售额为()21x +万元,三月份销售额为()221x +万元,由题意可得:()221 3.38x +=,解得:x 1=0.3=30%,x 2=﹣2.3(不合题意舍去),答:从1月份到3月份,该店销售额平均每月的增长率为30%; ⑵ 不能.理由如下:∵ 该商店4月份销售额增长率保持不变 ∴ 四月份销售额为()3.381x +万元当x =0.3时, ()()3.381 3.3810.3 4.394 4.5x +=⨯+=<21.解:⑴ 如图,A 点坐标为(0,2),将△ABC 绕点C 顺时针旋转90°,则点A 的对应点A ′的坐标为(5,-1).⑵ 点A 经过的路径长/290360AA lπ==22.解:树状图:如图,等可能的结果共有12种,点(m ,n )恰好在反比例函数y =6x图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1), ∴ 点(m ,n )在函数y =6x 图象上的概率P =41123=.五.解答题(三)(本大题共3个小题,每小题9分,共27分) 23.解:(1)如图,过点A 作AD ⊥x 轴,作AE ⊥y 轴,垂足为D 、E ∵AC =AO . ∴CD =DO . ∴S △ADO =S △ACO =6.∴|k |=S 四边形ADOE =2 S △ADO =12. ……3分 又∵双曲线分布在第二、四象限 ∴ k <0∴ k =-12(2)由(1)得y 2=12x-,由312y xy x =-⎧⎪-⎨=⎪⎩得:1126x y =-⎧⎨=⎩,2226x y =⎧⎨=-⎩∴A(-2,6),B(2,-6)由图象可知:x<-2或0<x<2时,y1>y2……6分(3)当x<0时,由12=1得,x=-12x∵k=-12<0∴y2随x的增大而减小∴当x<-12时,y2<1当x>0时,y2<0<1综上,当x<-12或x>0时,y2<1……9分24.解:如图,(1)证明:∵AC是⊙O的直径,∴CE⊥AE∵OF∥AB∴OF⊥CE……2分(2)证明:∵OF⊥CE∴OF所在直线垂直平分CE,∴FC=FE∴∠FCE=∠FEC,又∵OE=OC,∠OEC=∠OCE,∵∠ACB=90°,即∠OCE+∠FCE=90°,∴∠OEC+∠FEC=90°,即∠FEO=90°,∴FE为O的切线. ……5分注:也可通过证△OEF≌△OCF证明.(3)∵O的半径为3,∴AO=CO=EO=3.∵∠EAC =60°,OA =OE ,∴△AEO 为等边三角形, ∴∠EOA =60°, ∴∠COD =∠EOA =60°.∵在Rt △OCD 中,∠COD =60°,OC =3, ∴CD =∵在Rt △ACD 中,∠ACD =90°,AC =6,∴AD……9分25.解:⑴ 如图1,连接AM ,在矩形AOCD 中,∠AOC =∠ADC =90°,AD =OC ,CD =AO =5, ∵CM =4, ∴DM =1,由旋转,得∠B =∠AOC =90°,BE =OC ,AB =AO =5, 设BE =OC = AD =x ,在Rt △ADM 中,2AM =12+x , 在Rt △ABM 中,2AM =25)2(2+-x ,∴12+x =25)2(2+-x ,解得x =7, ∴AD =7. ……3分图1⑵ 如图2,过点B 作x 轴的平行线,交AO 于G ,交DC 于H , 则 ∠AGB =∠BHM =90°,∴ ∠ABG +∠BAG =90°, ∵ ∠ABE =90°,∴ ∠ABG +∠MBH =90°, ∴ ∠BAG =∠MBH , ∵ AB =BM =5,∴ △AGB ≌△BHM (AAS ), ∴ BH =AG ,MH =BG ,设MH =BG =n ,则DH =n +1,∴BH =AG =n +1, ∵ GH =OC =AD =7, ∴ n +(n +1)=7, ∴ n =3,∴ AG =4,BG =3, ∵ A (0,5),∴ 点B 的坐标为(3,1),设经过A 、B 、D 三点的抛物线的解析式为52++=bx ax y ,将B (3,1), D (7,5)代入,得9351,49755,a b a b ++=⎧⎨++=⎩解得1,37,3a b ⎧=⎪⎪⎨⎪=-⎪⎩∴537312+-=x x y .……6分图2⑶ 存在.设直线AM 的解析式为5+=kx y ,将M (7,4)代入,得k =71-, ∴571+-=x y ∵点P 在线段AD 的下方的抛物线上,作PK ∥y 轴交AM 于K , 设P (x ,217533x x -+),则K (x ,157x -+), ∴KP =157x -+﹣217533x x ⎛⎫-+ ⎪⎝⎭=2146321x x -+, ∵S △P AM =252,∴12•2146321x x ⎛⎫-+ ⎪⎝⎭•7=252, 整理得7x 2﹣46x +75=0, 解得x 1=3,x 2=257,此时P 点坐标为(3,1)、(257,4549). ……9分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省惠州市惠城区2019届九年级上学期期末教学质量模拟考试数学试题一.选择题(共10小题,满分30分)1.下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中是中心对称图形的是()A.B.C.D.2.设方程x2﹣3x﹣1=0的两根分别为x1,x2,则x1+x2=()A.﹣3B.3C.﹣1D.13.函数y=ax2+ax+a(a≠0)的图象可能是下列图象中的()A.B.C.D.4.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习5.半径为10的⊙O和直线l上一点A,且OA=10,则直线l与⊙O的位置关系是()A.相切B.相交C.相离D.相切或相交6.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,把△AB C绕AB边上的点D 顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是()A.3B.5C.11D.67.一个圆锥的底面半径是5cm,其侧面展开图是圆心角是150°的扇形,则圆锥的母线长为()A.9cm B.12cm C.15cm D.18cm8.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣50×20=10890D.(x+180)(50﹣)﹣50×20=108909.如图,点A在双曲线y=﹣上,过点A作AB∥x轴交双曲线y=﹣于点B,点C、D都在x轴上,连接AD、BC,若四边形ABCD是平行四边形,则▱ABCD 的面积为()A.1B.2C.3D.410.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.c<0C.当﹣1<x<2时,y>0D.当x<时,y随x的增大而减小二.填空题(共6小题,满分24分,每小题4分)11.一元二次方程x2﹣4x+2=0的两根为x1,x2,则x12﹣4x1+2x1x2的值为.12.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=.13.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.14.如图,四边形ABCD内接于⊙O,OC∥AD,∠DAB=60°,∠ADC=106°,则∠OCB=°.15.有一人感染流感,经过两轮传播后共有121人患病,则第三轮感染后共有患病.16.如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C(2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y=的图象上,则k的值为.三.解答题(共3小题,满分18分,每小题6分)17.(6分)已知关于x的一元二次方程(x﹣m)2﹣2(x﹣m)=0(m为常数).(1)求证:不论m为何值,该方程总有两个不相等的实数根;(2)若该方程一个根为3,求m的值.18.(6分)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C (0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)求出抛物线的顶点坐标,对称轴及二次函数的最大值.19.(6分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.=S1+S2+S3=2,S4=,S5=,S6=+ ,S阴证明:S矩形ABCDS6=S1+S2+S3=.影=S1+20.(7分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地(阴影部分)上种植草坪,使草坪的面积为570m2.求每条道路的宽.21.(7分)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣4,1),B(﹣1,1),C(﹣1,3)请解答下列问题:(1)画出△ABC关于原点O的中心对称图形△A1B1C1,并写出点C的对应点C1的坐标;(2)画出△ABC绕原点O逆时针旋转90°后得到的△A2B2C2,并直接写出点A旋转至A2经过的路径长.22.(7分)在一个不透明的布袋里装有三个标号分别为1,2,3的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,然后将小球放回布袋,小敏再从布袋中随机取出一个小球,记下数字为y,这样确定了点A的坐标为(x,y).请用列表或画树形图的方法,求点A在函数图象上的概率.23.(9分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.24.(9分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.25.(9分)如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.参考答案一.选择题1.解:A、不是中心对称图形;B、不是中心对称图形;C、是中心对称图形;D、不是中心对称图形.故选:C.2.解:∵方程x2﹣3x﹣1=0的两根分别为x1,x2,∴x1+x2=3.故选:B.3.解:在函数y=ax2+ax+a(a≠0)中,当a<0时,则该函数开口向下,顶点在y轴左侧,抛物线与y轴的负半轴相交,故选项D错误;当a>0时,则该函数开口向上,顶点在y轴左侧,抛物线与y轴的正半轴相交,故选项A、B错误;故选项C正确;故选:C.4.解:由图形可知,与“前”字相对的字是“真”.故选:B.5.解:若OA⊥l,则圆心O到直线l的距离就是OA的长,等于半径,所以直线l与⊙O相切;若OA与直线l不垂直,根据垂线段最短,圆心O到直线l的距离小于5,即小于半径,所以直线l与⊙O相交.故选:D.6.解:Rt△ABC中,AB==10,由旋转的性质,设AD=A′D=BE=x,则DE=10﹣2x,∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,∴∠A′=∠A,∠A′DE=∠C=90°,∴△A′DE∽△ACB,∴=,即=,解得x=3,=DE×A′D=×(10﹣2×3)×3=6,∴S△A′DE故选:D.7.解:设圆锥的母线长为R,根据题意得2π•5=,解得R=12.即圆锥的母线长为12cm.故选:B.8.解:设房价定为x元,根据题意,得(x﹣20)(50﹣)=10890.故选:B.9.解:∵点A在双曲线y=﹣上,点B在双曲线y=﹣上,且AB∥x轴,∴设A(﹣,b),B(﹣,b),则AB=﹣+,▱ABCD的CD边上高为b,∴S▱ABCD=(﹣+)×b=﹣4+6=2.故选:B.10.解:A、由图象可知函数有最小值,故正确;B、由抛物线与y轴的交点在y的负半轴,可判断c<0,故正确;C、由抛物线可知当﹣1<x<2时,y<0,故错误;D、由图象可知在对称轴的左侧y随x的增大而减小,故正确;故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:∵一元二次方程x2﹣4x+2=0的两根为x1、x2,∴x12﹣4x1=﹣2,x1x2=2,∴x12﹣4x1+2x1x2=﹣2+2×2=2.故答案为:2.12.解:∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12.故答案为:12.13.解:二次函数y=x2﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,2),所以平移后的抛物线解析式为y=x2+2.故答案为:y=x2+2.14.解:∵OC∥AD,∴∠OCD=180°﹣∠ADC=74°,∵四边形ABCD内接于⊙O,∴∠BCD=180°﹣∠DAB=120°,∴∠OCB=∠BCD﹣∠OCD=46°,故答案为:46.15.解:设每轮传染中平均一个人传染了x个人则有:1+x+x(1+x)=121解这个方程,得x1=10,x2=﹣12(不合题意,舍去)所以平均一人传染了10个人第三轮后共有121+121×10=1331(人)即第三轮后共有1331人患病故答案为:1331人16.解:∵A(﹣3,5),B(﹣3,0),C(2,0),∴AB=5,BC=2﹣(﹣3)=2+3=5,AB⊥x轴,∴△ABC是等腰直角三角形,过点A′作A′E⊥AB于E,过点C′作C′F⊥x轴于F,则A′E=3,BE==4,∵△A′BC′是△ABC旋转得到,∴∠A′BE=∠C′BF,在△A′BE和△C′BF中,,∴△A′BE≌△C′BF(AAS),∴BF=BE=4,C′F=A′E=3,∴OF=BF﹣OB=4﹣3=1,∴点C′的坐标为(1,﹣3),把(1,﹣3)代入y=得,=﹣3,解得k=﹣3.故答案为:﹣3.三.解答题(共3小题,满分18分,每小题6分)17.(1)证明:原方程可化为x2﹣(2m+2)x+m2+2m=0,∵a=1,b=﹣(2m+2),c=m2+2m,∴△=b2﹣4ac=[﹣(2m+2)]2﹣4(m2+2m)=4>0,∴不论m为何值,该方程总有两个不相等的实数根.(2)解:将x=3代入原方程,得:(3﹣m)2﹣2(3﹣m)=0,解得:m1=3,m2=1.∴m的值为3或1.18.解:(1)设抛物线解析式为y=a(x+1)(x﹣3),把C(0,3)代入得a•1•(﹣3)=3,解得a=﹣1,所以抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,所以抛物线的顶点坐标为(1,4),对称轴为:直线x=1,二次函数的最大值是4.19.证明:由题意:S矩形ABCD=S1+S2+S3=2,S4=S2,S5=S3,S6=S4+S5,S阴影面积=S1+S6=S1+S2+S3=2.故答案为:S2,S3,S4,S5,2.四.解答题(共3小题,满分21分,每小题7分)20.解:设道路的宽为xm,则草坪的长为(32﹣2x)m,宽为(20﹣x)m,根据题意得:(32﹣2x)(20﹣x)=570整理得:x2﹣36x+35=0,解得:x1=1,x2=35(不合题意,舍去).答:每条道路的宽为1米.21.解:(1)△ABC关于原点O的中心对称图形△A1B1C1如图所示:点C1的坐标为(1,﹣3).(2)△ABC绕原点O逆时针旋转90°后得到的△A2B2C2如图所示:∵OA==,∴点A经过的路径长为=π.22.解:由表格可知,共有9种等可能出现的结果,其中点A在函数图象上(记为事件A)的结果有两种,即(2,3),(3,2)所以,.五.解答题(共3小题,满分27分,每小题9分)23.解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=x y=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)=S△CDA+S△EDA=∴S△CDE(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不高于反比例函数图象∴由图象得,x≥10,或﹣4≤x<024.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°,∴△AEC∽△ACB,∴=,∴AE==.25.解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣=∵S△AMN=AM•MN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).。

相关文档
最新文档