基于Matlab-Simulink的机械振动仿真研究
基于MATLABSimulink机电系统动态仿真教程第一章

二、仿真的分类
按模型分类
1、物理仿真:采用物理模型,有实物介入! 具有效果逼真,精度高等优点,但造价高或耗时长, 大多在一些特殊场合下采用(如导弹、卫星一类飞 行器的动态仿真,发电站综合调度仿真与培训系统 等),具有实时性、在线的特点。 2、数学仿真:采用数学模型 在计算机上进行,具有非实时性、离线的特点,经 济、快速、实用。
《机电系统动态仿真——基于 MATLAB/Simulink》
刘白雁教授编著 机械工业出版社
2006,8
仿真软件的简介 一、仿真的发展
1、程序编程阶段: 所有问题(如:微分方程求解、 矩阵运算、绘图等)都是用高级算法语言(如C、 FORTRAN等)来编写。 2、程序软件包阶段: 出现了“应用子程序库”。 3、交互式语言阶段(仿真语言:仿真语言可用一 条指令实现某种功能,如“系统特征值的求解”, 使用人员不必考虑什么算法,以及如何实现等低 级问题。 4、模型化图形组态阶段:符合设计人员对基于模 型图形化的描述。
三、常见的几种仿真软件
PSPICE、ORCAD:通用的电子电路仿真软件, 适合于元件级仿真。 SYSTEM VIEW:系统级的电路动态仿真软 件 MATLAB:具有强大的数值计算能力,包含 各种工具箱,其程序不能脱离MATLAB环境 而运行,所以严格讲,MATLAB不是一种计 算机语言,而是一种高级的科学分析与计算软 件。 SIMULINK:是MATLAB附带的基于模型化 图形组态的动态仿真环境。
按计算机类型分类
1、模拟仿真:采用数学模型,在模拟计算机 上进行的实验研究。50年代 2、数字仿真:采用数学模型,在数字计算机 上借助于数值计算方法所进行的仿真实验。 60年代
3、混合仿真:结合了模拟仿真与数字仿真。 4、现代计算机仿真:采用先进的微型计算机,基于 专用的仿真软件、仿真语言来实现,其数值计算 功能强大,使用方便,易学。80年代以来
基于MATLAB的机械振动分析研究

2018年第1期时代农机TIMES AGRICULTURAL MACHINERY第45卷第1期Vol.45No.12018年1月Jan.2018作者简介:刘鸿智(1988-),男,辽宁沈阳人,硕士研究生,助教,主要研究方向:机械设计及理论、机械制造。
基于MATLAB 的机械振动分析研究刘鸿智(,458030)摘要:矩阵工厂的应用是在关于机械振动的问题应用,这说明矩阵实验室的应用可以用来解决一些在机械振动方面的比较复杂的计算和作图等问题,并且很方便且高效。
矩阵实验室对解决机械振动方面的问题有着很多的作用。
所以说,在一些机械振动方面的问题解决可以大力推广矩阵实验室的使用。
矩阵实验室对机械振动的一些系统理论的分析或研究有着一些特定的步骤。
一些系统运用矩阵实验室软件中的数值积分法来对该系统作出分析。
矩阵实验室软件可以用来计算也可以用来编程,在一些问题的提出和表达通常会采用数学描述方法来对一些机械振动的问题进行计算,而不是用传统的语言程序进行处理。
这样会使矩阵实验室成为一些应用程序得到良好的开发。
关键词:机械振动;MATLAB 软件;分析矩阵实验室是对于机械振动问题处理及数值计算的分析软件。
这个软件可以将一些数值及函数调用出来,对相关问题进行运算,这种特征对一些机械振动中经常会遇到的问题及所需要的公式计算提供较为便捷的途径及可以比较方便的去对机械振动涉及到的问题进行计算。
因此对于机械专业并且在学习机械振动又换问题过程中应当采用矩阵实验室软件,使得部分专业人员能够使用矩阵实验室软件进而对专业理论知识进行有效研究,也可以利用矩阵实验室软件来解决机械振动实际上所存在的问题。
机械振动是一个比较普遍的现象,是通过物体的来回运动而使物体发生位移等物理运动。
矩阵实验室软件的出现给一些工程问题的研究与解决带来了很大程度上的方便。
在其它应用软件的使用过程中,一些数值计算的问题可能没有那么容易操作,可能一些数据也没有那么可视化,而矩阵实验室相比之下有很大的改善,给一些机械问题带来很多的便利。
基于MATLAB/simulink的《机械工程控制基础》仿真教学应用研究

) = 1 ( f ) ,对 其 拉 氏变 换 ,
要 求 算 出该系 统 的输 出信 号时 间响应 ,并分 析其 动
态 性 能指 标 . 按照传 统 方法 ,要 分析 其稳 态性 能和 暂 态性 能
1 MAT L AB / s i mu l i n k 软 件
…
…
…
・
‘
≥… … … …
2  ̄ c o . :2
c o . =9
( 2 )
( 3)
Ti me of f s e t : 0
图 3 二 阶 系统 输 出 时 间响 应 曲 线
由上式 可得 出4 = o . 3 3( 0 < ( < 1 )该 系统 为欠 阻
尼状 态 ∞ = 3 .
复杂推 理 以及 习题 练 习等 ,难 以理 解 ,学 生 的学 习积极 性 普遍 不高 . 本 文将MA T L AB软件 引入 到 《 机械 工 程控 制基 础 》 课程中, 通 过软 件s i mu l i n k 仿 真 ,对 一些 典 型 的系统进 行 数学 建模 ,系统 输 出响应 、频率 特性 及 根轨迹 等 方面 进行 分 析 ,通 过 曲线形 象直 观 的反 映 了系统 动态 特 性 ,提高 学
《 机械 工 程控 制基 础 》作 为高 职 院校机 电一
体 化专 业 一 门专业 课程 ,具有 理论 性 强 、知识面
识 点 ,然后 对 该工程 实例进 行数 学建 模 ,将其 化 成
Ⅳ个典 型环 节连 接 的 闭环 系统 ,再 引 入MAT L AB软
广 、系统 复 杂 的特 点 J .传统 的课 堂 教 学模 式 的
Matlab作业Simulink 振动仿真

山东大学Matlab 课程作业学院:机械工程学院专业:姓名:学号:基于Simulink仿真得振动学问题解决实例1.单自由度无阻尼自由振动仿真表达式:仿真框图:参数设置:k=100N/m m=4kg初始状态:初速度为0 初始位移为5仿真结果:2.简谐波形得里沙茹图形分析仿真框图:参数设置:K=100m=4→rad/sSin wave参数设置:Amplitude1 ;Frequency 5 1015初始状态:①→φ=②→φ=③=1,=5→φ=45;④=1,=−5→φ=135;⑤=0,=−1→φ=180XY Graph参数x-min -2;x-max 2;y-min—2; y-max 2Frequency 5时仿真结果:Frequency 10时仿真结果:Frequency 15时仿真结果:3.单自由度有阻尼自由振动表达式:仿真框图:参数设置:ﻫ令k=100,m=10,c=10 初始状态:ﻫ初始速度为0,位移为1仿真结果:4、衰减振荡得阻尼比得估计参数:k=100,m=10,c=2初始条件:x0=1,v0=0仿真图框:初始振幅为1,约7个周期时衰减为0、25,对数减幅:δ=(ln4)/7≈0、099阻尼比§≈δ/2≈0、032理论值§=0、5c(km)−0、5≈0、0325、单自由度有阻尼+正弦激励表达式:令激励则方程变形为参数设置:令k=4,m=1,c=0、2初始状态:ﻫ初始速度为0,位移为0、05 仿真框图:仿真结果:6、利用速度共振得里沙茹图进行固有频率与阻尼系数分析仿真框图:改变激励频率:=1、2;1、6;1、8;1、9;1、95;2;2、05;2、1;2、2等7、两自由度无阻尼系统自由振动表达式:参数设置:m1=1,m2=2 k1=1,k2=1,k3=2初始状态:①速度0,m1、m2位移均为1②速度0,m1位移1,m2位移−0、5③速度0,m1位移1,m2位移0 仿真结果:①②③。
基于MATLAB_Simulink再生车削颤振仿真研究

试验在 C2 - 50HK /1 型数控机床上进行,图 2 为实验 图片及 X、Y 方向的频率响应函数( FRF) 。进行多次
试验取均值后获得该机床刀具系统模态参数见表 1。
图 2( a) 中 b 为刀具,该刀具经过重新设计,将三
向力传感器,即 a 安装进刀具,使其能够实时记录车
削过程的切削力,并计算切削力系数,同时为以后颤
Key words: cylindrical turning; impact testing; model testing; numerical simulation
1引言
机械加工过程中的颤振是由于切削过程内部激 发反馈而引起的,属于自激振动。颤振会导致工件表 面质量下降,加剧刀具及机床的磨损,产生大量噪声, 降低生产率。人们对颤振进行了大量的研究,这些研 究可分为三个方面,分别是是颤振机理研究,颤振监 测及颤振抑制[1]。颤振的有效抑制是以一个能正确 描述切削颤振过程的数学模型为基础的,所以颤振机 理的研究是是整个颤振研究的基石。颤振抑制及监 测都需要对现有模型进行深入研究,才能选择合适的 控制策略 及 监 测 方 法,实 现 研 究 目 的[2]。 笔 者 将 借 助于 MATLAB / Simulink 对再生型外圆车削颤振进行 仿真研究。首先建立了二自由度的颤振模型,理论分 析了颤振极限切深,随后通过锤击法进行模态测试, 获得了仿真过程所必须的参数,通过对仿真结果的分 析,获得了一些有意义的成果。
( 11)
由式( 7) 、( 10) 联立可得:
F( iω) = w( 1 - ue -iωτ) AG( iω) F( iω)
( 12)
·24·
上式可写为: [I - w( 1 - ue -iωτ ) AG( iω) ]F( iω) = 0 ( 13)
Simulink机械振动仿真

1 Simulink 基本操作
1.2 建立Simulink仿真模型 d) 模块调整 改变模块位置、大小; 改变模块方向 使模块输入输出端口的方向改变。选中模块后,选取菜 单Format→RotateBlock,可使模块旋转900。
按快捷键Ctrl+R结果相同。
1.2 建立Simulink仿真模型 e) 模块参数设置 用鼠标双击指定模块图标,打开模块对话框,根据对话框栏 目中提供的信息进行参数设置或修改。 例如双击模型窗口的传递函数模块,弹出图示对话框, 在对话框中分别输入分子、分母多项式的系数,点击OK 键,完成该模型的设置,如右下图所示:
5.
Signals & Systems 库 ① :信号分路器 。
② 将混路器输出的信号依照原来的构成方法分解成多路信号 。 :信号汇总器 将多路信号依照向量的形式混合成一路信号。
(a)
(b)
2.2 Simulink环境下的仿真运行 1. 仿真参数对话框 点击Simullink模型窗simulation菜单下的Parameters命令,弹出仿真 参数对话框如右图所示。它共有5页,用得较多的主要是Solver页 和Workspace I/O页。 ① Solver页 Simulation time ( 仿 真 时 间): 设置Start time(仿真 开始时间)和Stop time(仿 真终止时间)可通过页内编 辑框内输入相应数值,单位 “秒”。另外,用户还可以 利用Sinks库中的Stop模块来 强行中止仿真。
1 Simulink 基本操作 利用Simulink进行系统仿真的步骤是: ① 启动Simulink,打开Simulink模块库 ② 打开空白模型窗口; ③ 建立Smulink仿真模型; ④ 设置仿真参数,进行仿真; ⑤ 输出仿真结果。
机械振动分析的Matlab_Simulink仿真研究

王文娟 : 机械振动分析的 Matlab /Simulink 仿真研究
机械振动分析的 Matlab /Simulink 仿真研究
王文娟
( 西安工业大学 陕西 西安 710032)
摘 要 : 振动在工程实际中普遍存在 。为了研究和掌握振动规律 ,利用功能强大的仿真软件 Matlab/ Simulink 对一个三 自由度系统进行仿真 ,介绍 Matlab/ Simulink 在机械振动分析中的 3 种建模方法 ,并针对第 3 种建模方法编写了相应的 S 函 数和程序 ,可快速而有效地进行不同物理常数时的模态分析 。该方法简单易行 、 准确可靠 。 关键词 :Matlab/ Simulink ; 机械振动 ; 建模 ; 模态分析 中图分类号 : TP391. 9 文献标识码 :A 文章编号 :1004 373X ( 2006) 24 046 03
嵌入式与单片机
此 ,在 Matlab 命令窗口中要写出计算 A ,B ,C ,D 的程序代
0 1 0
0 0 1 2
¨ x1 ¨ x3
- 1
2 0 #43; x3
码 , 或者新建一个 M 文件来计算 A ,B ,C ,D 的值 。后者较 前者使用更方便 , 但是在每次仿真前 , 都必须先在 Matlab 命令窗口输入 M 文件的名称 , 才能开始仿真 , 使用起来还 是不方便 。
1 引 言 振动在日常生活和工程实际中普遍存在 。为了认识 振动现象 , 有必要研究和掌握振动规律 , 掌握他的益处来 为生产和生活服务 ,同时在生产和日常生活中有效地避免 振动造成的危害 。随着计算机技术的不断发展 , 人们研究 事物的手段也在发生着变化 ,一批卓越的现代化工程应用 分析软件纷纷占领市场 ,给人们在解决工程实际问题时带 来了极大的优越性 ,机械振动分析领域也不例外 。在众多 的软件中以 Matlab/ Simulink 仿真软件最为亮眼 。利用
基于Matlab_Simulink的多自由度机械振动系统仿真

写成矩阵的形式为 : M X + CX + KX = F ( t) . 应用文献 [ 6 ]中的影响系数法建立系统的质量矩阵 、 刚度矩阵和阻尼矩阵如下 :
・
¨
・
X = ( x1 , x2 , x3 , x4 ) ; X = ( x1 , x2 , x3 , x4 ) ;
Abstract: Taking a four DOF mechanical vibrating system as an examp le, this paper discusses the mod2 elling method and sim ulation analysis of multi - degree - of - freedom m echanical vibration system s by u2 sing M atlab / Si m ulink soft w are, and focuses on the establishment method and utilization of the vibration differential equation and the state - space sim ulation model . The m ethod not only sim p lifies the p rocess of p rogramm ing, and imp roves the quality and reliability of p rogramm ing, but also offers effective reference for the sim ulation of the si m ilar multi - degrees of freedom vibrating system. Key words: M atlab / Sim ulink; mechanical vibration system; model; sim ulation
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目 录1引言——机械振动的仿真原理 (1)1.1 Matlab Simulink 功能简述 (1)1.2机械振动的物理模型 (1)1.2.1简谐振动的物理模型 (1)1.2.2阻尼振动的物理模型 (2)1.2.3受迫振动的物理模型 (2)1.3 Matlab Simulink 仿真原理简述 (4)2简谐振动方程的解及其模拟仿真 (5)2.1简谐振动方程的求解 (5)2.2简谐振动模型的仿真研究 (5)2.2.1基本模型的建立 (5)2.2.2 速度、加速度的监测 (7)2.2.3 动能、势能、机械能监测 (8)2.3简谐振动的图像分析 (9)3阻尼振动方程的求解和仿真模拟 (11)3.1弹簧振子做阻尼振动方程的求解 (11)3.2弹簧振子做阻尼振动的模拟仿真研究 (11)3.3阻尼振动的图像分析 (14)4受迫振动的方程的求解和仿真模拟 (16)4.1弹簧振子做受迫振动方程的求解 (16)4.2弹簧振子做受迫振动的仿真模拟研究 (17)4.2.1策动力频率0ωω<时弹簧振子的受迫振动仿真模拟 (17)4.2.2策动力频率0ωω>时弹簧振子受迫振动的仿真模拟 (20)4.2.3策动力频率0ωω=时弹簧振子的仿真模拟 (22)4.3受迫振动的图像分析 (23)5几点补充说明与仿真模拟中问题分析 (25)5.1物理振动模型建立的补充说明 (25)5.2方程求解中的补充说明 (25)5.3仿真模拟中的问题分析 (25)6结语 (27)参考文献 (28)附录 (29)致 (30)摘要机械振动主要有简谐振动,阻尼振动,受迫振动三种。
对三种振动建立模型,列出振动方程,再对三种振动给定初始条件,就可以利用Matlab Simulink功能对三种振动进行仿真模拟,得出振动的位移,速度,加速度,动能,势能,机械能随时间的变化关系图像。
另外,我们对振动方程求解,得出振子位移关于时间的函数,再分别对其求一阶、二阶导数,就可以得出速度、加速度函数,再经过简单运算就可以得到动能、势能、机械能函数。
我们再通过分析函数来分析其图像,再对比仿真模拟出的图像,就可以确定我们的仿真研究方法的可信度。
关键词:简谐振动;阻尼振动;受迫振动;共振AbstractThe mechanical vibration mainly includes three kinds of vibrations: the simple harmonic oscillator, the pure damping vibration and the forced damping vibration. According to the three vibrations, we can build models for them, list the vibration equations. After giving the initial conditions, we can carry out analog simulations to test the three vibrations by using Matlab Simulink functions, and obtain the images of vibration displacement, velocity, acceleration, kinetic energy, potential energy, mechanical energy variation over time. In addition, we come to the function of oscillator displacement over time after we seek the solution of equations. And then we can gain the derivatives of their first order and second order respectively, so we can draw functions of speed and acceleration. Furthermore, we can get the functions of kinetic energy, potential energy, mechanical energy by a simple operation. Let us analyze the images by analyzing the functions, and then we make a comparison between the images of analog simulations and them. Finally, we can determine the credibility of the simulation methodology.Keywords:Simple harmonic oscillator; Damping vibration; Forced vibration; Resonance1引言——机械振动的仿真原理1.1 Matlab Simulink 功能简述Simulink 是基于Matlab 的框图设计环境,可以用来对各种动态系统进行建模、分析和仿真,它的建模围广泛,可以针对任何能用数学来描述的系统进行建模,例如航空航天动力学系统、卫星控制制导系统、通信系统、船舶及汽车等,其中包括了连续、离散,条件执行,事件驱动,单速率、多速率和混杂系统等。
Simulink 提供了利用鼠标拖放的方法来建立系统框图模型的图形界面,而且还提供了丰富的功能块以及不同的专业模块集合,利用Simulink 几乎可以做到不书写一行代码即完成整个动态系统的建模工作。
除此之外,Simulink 还支持Stateflow ,用来仿真事件驱动过程。
Simulink 是从底层开发的一个完整的仿真环境和图形界面,是模块化了的编程工具,它把Matlab 的许多功能都设计成一个个直观的功能模块,把需要的功能模块用连线连起来就可以实现需要的仿真功能了。
也可以根据自己的需要设计自己的功能模块,Simulink 功能强大,界面友好,是一种很不错的仿真工具[1]。
1.2机械振动的物理模型物理学中的机械振动主要分为简谐振动、阻尼振动、受迫振动三种。
下面我们根据这三种类型的振动建立物理模型来分别研究。
1.2.1简谐振动的物理模型图1 弹簧振子做简谐振动物理实验模型如上图所示,弹簧振子在O 附近做简谐振动。
已知弹簧振子质量为m ,所受合力为F ,弹簧劲度系数为k ,则有:F kx =-。
又由牛顿第二定律有: 22d x F ma m dt == (1) 于是可以得到: 220d x k x dt m+= (2) 令m k =2ω,则可得: 2220d x x dt ω+= (3) 方程(3)的解x 即为弹簧振子在时刻t 时的振动位移,一阶导数x 即为弹簧振子在时刻t 时振动速度,其二阶导数x 即为弹簧振子在时刻t 时的加速度。
1.2.2阻尼振动的物理模型如图1,若弹簧振子在x 轴上受到粘滞阻尼的作用力,则弹簧振子做阻尼的振动。
设弹簧振子受到的阻尼力为: dx f v dtγγ=-=- (4) 式中γ 为阻尼系数,与物体的形状以及周围性质有关。
弹簧振子受到的弹力为F kx =-,则对弹簧振子,有牛顿第二定律有:22d d d d x x m kx t tγ=-- (5) 整理后得: 22d d d d x k x x t m m tγ=-- (6) 令20k m ω=,2n mγ=,则有: 2202d d 20d d x x n x t tω++= (7) 这就是阻尼振动的振动方程。
其解x 即为弹簧振子在时刻t 时的振动位移,一阶导数x 即为弹簧振子在时刻t 时振动速度,其二阶导数x即为弹簧振子在时刻t 时的加速度。
1.2.3受迫振动的物理模型如图2,弹簧振子在O 附近做阻尼振动。
已知弹簧振子质量为m ,弹簧劲度系数为k 。
平行于x 轴的平面对弹簧振子有阻尼力的作用。
对弹簧振子施加一外加激励力()f t ,设0()sin f t F t ω=,则称为谐激励力,其中ω为外施激励频率,t 是持续时间。
对弹簧振子受力分析,其所受弹力为:F kx =-。
由于阻尼振动是振幅(或能量)随时间不断减少的振动。
能量减少的原因是有粘滞阻尼和辐射阻尼。
为方便,均视为粘滞阻尼。
则弹簧图2 弹簧振子在外加激励力作用下做阻尼受迫振动振子所受阻尼力为: dx f v dtγγ=-=- (8) 式中γ 为阻尼系数,与物体的形状以及周围性质有关。
则对弹簧振子,由牛顿第二定律有:202sin d x dx m kx F t dt dt γω=--+ (9) 对(9)式变形可得:202sin F d x k dx x t dt m m dt mγω=--+ (10) 令00,2,F k n h m m m γω===,0ω为固有频率,n 为阻尼因数,则(10)可变为: 22022sin d x dx n x h t dt dtωω++= (11) 方程(11)的解就是时刻t 时弹簧振子的位移,其一阶导数x 即为弹簧振子在时刻t 时振动速度,其二阶导数x 即为弹簧振子在时刻t 时的加速度[2]。
我们记0/n ξω=为相对阻尼系数或阻尼比。
根据阻尼对系统振动的影响,振动响应分为弱阻尼(ξ<1)、强阻尼(ξ>1)和临界阻尼(ξ=1)三种情况,这里仅讨论弱阻尼的情况。
1.3 Matlab Simulink仿真原理简述在得到弹簧振子的简谐振动、阻尼振动和受迫振动方程后,通过这三个方程,我们可以用高等数学的方法求出这三个方程的通解。
同时,我们可以用Matlab的计算功能求出它们的通解。
这三个方程的通解表示振子位移随时间的变化情况。
我们得到的这三个方程,前两个为二阶常系数线性齐次微分方程,第三个为二阶常系数非齐次微分方程。
根据这三个方程,我们可以通过Matlab Simulink中的各种模块模拟弹簧振子的位移、速度、加速度,再添加一个平方模块,设置好系数,就可以模拟振子动能、势能、机械能,用线连接各模块,这样流程图就做好了。
设置好各模块的参数后,再设置好系统环境变量,点击运行,通过示波器模块就可以模拟出相应的图像曲线[3]。
图像的横坐标均表示时间,纵坐标相应为位移、速度、加速度、动能、势能、机械能。
图像表示这些物理量随时间变化关系。
通过这三种情况方程的通解,我们可以分析振子位移随时间变化情况,再和模拟出的图像对比分析。
对方程通解求一阶导,就可以得到振子速度随时间变化关系,分析出速度随时间变化情况,再和模拟出的图像对比分析。