基于Matlab_Simulink的机械振动仿真研究

合集下载

基于MATLABSimulink机电系统动态仿真教程第一章

基于MATLABSimulink机电系统动态仿真教程第一章

二、仿真的分类
按模型分类
1、物理仿真:采用物理模型,有实物介入! 具有效果逼真,精度高等优点,但造价高或耗时长, 大多在一些特殊场合下采用(如导弹、卫星一类飞 行器的动态仿真,发电站综合调度仿真与培训系统 等),具有实时性、在线的特点。 2、数学仿真:采用数学模型 在计算机上进行,具有非实时性、离线的特点,经 济、快速、实用。
《机电系统动态仿真——基于 MATLAB/Simulink》
刘白雁教授编著 机械工业出版社
2006,8
仿真软件的简介 一、仿真的发展
1、程序编程阶段: 所有问题(如:微分方程求解、 矩阵运算、绘图等)都是用高级算法语言(如C、 FORTRAN等)来编写。 2、程序软件包阶段: 出现了“应用子程序库”。 3、交互式语言阶段(仿真语言:仿真语言可用一 条指令实现某种功能,如“系统特征值的求解”, 使用人员不必考虑什么算法,以及如何实现等低 级问题。 4、模型化图形组态阶段:符合设计人员对基于模 型图形化的描述。
三、常见的几种仿真软件
PSPICE、ORCAD:通用的电子电路仿真软件, 适合于元件级仿真。 SYSTEM VIEW:系统级的电路动态仿真软 件 MATLAB:具有强大的数值计算能力,包含 各种工具箱,其程序不能脱离MATLAB环境 而运行,所以严格讲,MATLAB不是一种计 算机语言,而是一种高级的科学分析与计算软 件。 SIMULINK:是MATLAB附带的基于模型化 图形组态的动态仿真环境。
按计算机类型分类
1、模拟仿真:采用数学模型,在模拟计算机 上进行的实验研究。50年代 2、数字仿真:采用数学模型,在数字计算机 上借助于数值计算方法所进行的仿真实验。 60年代
3、混合仿真:结合了模拟仿真与数字仿真。 4、现代计算机仿真:采用先进的微型计算机,基于 专用的仿真软件、仿真语言来实现,其数值计算 功能强大,使用方便,易学。80年代以来

Matlab作业Simulink 振动仿真

Matlab作业Simulink 振动仿真

山东大学Matlab 课程作业学院:机械工程学院专业:姓名:学号:基于Simulink 仿真的振动学问题解决实例1. 单自由度无阻尼自由振动仿真 表达式: 仿真框图:参数设置:k=100N/m m=4kg 初始状态:初速度为0 初始位移为5 仿真结果:kx x m-=2. 简谐波形的里沙茹图形分析 仿真框图:参数设置:K=100 m=4→5=n ωrad/sSin wave 参数设置:Amplitude1 ;Frequency 5 10 15 初始状态:①10=x 00=v →φ=︒90 ②00=x 10=v →φ=︒0 ③0x =1, 0v =5→φ=45;④0x=1, 0v=−5→φ=135;⑤0x=0, 0v=−1→φ=180XY Graph参数x-min -2; x-max 2;y-min -2; y-max 2Frequency 5时仿真结果:Frequency 10时仿真结果:Frequency 15时仿真结果:3. 单自由度有阻尼自由振动表达式: 仿真框图:k c x x xm m =--参数设置:令k=100,m=10,c=10初始状态:初始速度为0,位移为1仿真结果:4.衰减振荡的阻尼比的估计参数:k=100,m=10, c=2初始条件:x0=1, v0=0仿真图框:初始振幅为1,约7个周期时衰减为0.25,对数减幅:δ=(ln4)/7≈0.099阻尼比§≈δ/2 ≈0.032理论值§= 0.5c(km)−0.5≈0.0325.单自由度有阻尼+正弦激励表达式: 令激励则方程变形为 参数设置: 令k=4,m=1,c=0.2 初始状态:初始速度为0,位移为0.05 仿真框图:仿真结果:()f t c kx x xm m m=--()2sin(2/3)f t t π=+2sin(2/3)t c k x x xm m mπ+=--6.利用速度共振的里沙茹图进行固有频率和阻尼系数分析仿真框图:改变激励频率:=1.2;1.6;1.8;1.9;1.95;2;2.05;2.1;2.2等7.两自由度无阻尼系统自由振动 表达式:2112111132222122()()k k x x x x m m k k x x x x m m ⎧=--⎪⎪⎨⎪=---⎪⎩参数设置:m1=1,m2=2 k1=1,k2=1,k3=2 初始状态:①速度0,m1、m2位移均为1②速度0,m1位移1,m2位移−0.5③速度0,m1位移1,m2位移0 仿真结果:①②③。

基于Simulink的振动模态分析

基于Simulink的振动模态分析

基于Simulink的振动模态分析引言振动模态分析是一种常用的工程分析方法,用于研究结构体在不同频率下的振动特性和模态。

本文将介绍如何使用Simulink软件进行振动模态分析。

Simulink简介Simulink是一种基于模型的设计和仿真工具,常用于解决动态系统建模和仿真问题。

该软件提供了丰富的工具箱,便于用户搭建模型和进行模拟实验。

振动模态分析步骤1. 结构体建模:首先,需要将待分析的结构体进行建模。

在Simulink中,可以使用各种元件来描述结构体的物理特性,例如质量、弹性等参数。

2. 模态分析设置:在建模完成后,可以设置模态分析的参数,包括分析频率范围、模态数量等。

这些参数会影响模态分析的精度和计算效率。

3. 模型求解:通过在Simulink中运行模型求解器,可以得到结构体在不同频率下的振动模态。

求解过程可以得到每一个模态对应的频率、振型和阻尼比等信息。

4. 结果分析:最后,可以对求解得到的振动模态进行进一步分析和可视化。

比如,可以绘制模态频率与振型的关系图,用于评估结构体的振动特性。

模态分析应用领域振动模态分析在工程领域有着广泛的应用。

它可以帮助工程师了解结构体的固有振动特性,从而优化设计和改进结构体的性能。

在航空航天、汽车工程、建筑设计等领域,振动模态分析被广泛应用于结构体的优化和故障诊断。

结论通过Simulink软件进行振动模态分析是一种简单而高效的方法。

它可以帮助工程师更好地理解结构体的振动特性,并在实际工程项目中起到重要作用。

在使用Simulink进行振动模态分析时,合理设置参数和精确分析结果对于获得准确的振动特性信息尤为重要。

Simulink机械振动仿真

Simulink机械振动仿真


:分子分母为多项式形式的传递函数。 双击该模块,弹出传递函数的参数对话框,设置框图中的参 数后,该传递函数显示如下:
:零极点增益形式的传递函数。 双击该模块,弹出传递函数的参数对话框,设置框图中 的参数后,该传递函数显示如下:
Math 库 该库包含描述一般数学函数 的模块。双击 即弹出右 图。 该库中模块的功能就是 将输入信号按照模块所 描述的数学运算函数计 算,并把运算结果作为 输出信号输出。
[说明]若不设置仿真参数,则采用Simulink缺省设置.
1 Simulink 基本操作
1.3 系统仿真运行 1. Simulink模型窗口下仿真 步骤 ③ 仿真运行和终止:在模型窗口选取菜单【Simulation: Start】, 仿真开始,至设置的仿真终止时间,仿真结束。若在仿真过程 中要中止仿真,可选择【Simulation: Stop】菜单。也可直接点 击模型窗口中的 (或 )启动(或停止)仿真。
Simulink下的机械振动仿真
主要内容如下:
1 2 3 4 Simulink基本操作 基本模块 系统仿真 Simulink仿真举例

Simulink 中的“Simu”一词表示可用于计算机仿真,而 “Link”一词表示它能进行系统连接,即把一系列模块 连接起来,构成复杂的系统模型。作为MATLAB的一 个重要组成部分,Simulink由于它所具有的上述的两大 功能和特色,以及所提供的可视化仿真环境、快捷简 便的操作方法,而使其成为目前最受欢迎的仿真软件 。 介绍Simulink的基本功能和基本操作方法,并通过举例 介绍如何利用Simulink进行系统建模和仿真。

当设置幅值为0.8,阶跃时间 为1秒时,阶跃波形如下图 所示:
Sinks 库

基于MATLAB的机械工程模拟仿真研究

基于MATLAB的机械工程模拟仿真研究

基于MATLAB的机械工程模拟仿真研究近年来,随着计算机和仿真技术的不断发展,基于MATLAB的机械工程模拟仿真研究逐渐成为了一个热门的领域。

这项技术可以帮助工程师们在设计和优化机械系统时更加准确地预测系统的性能,提高工作效率和质量。

一、背景和介绍机械工程模拟仿真是通过计算机模拟和解析机械系统的动态和静态特性,以实验和验证设计方案的可行性和优化性能。

它允许工程师在真正制造和测试原型之前对机械系统进行多次虚拟试验,大大减少了实验成本和时间。

二、MATLAB在机械工程仿真中的应用MATLAB是一种非常强大且灵活的工具,可以用于各种工程领域的数值计算和仿真研究。

在机械工程中,MATLAB可以用来建立机械系统的数学模型,并通过数值计算方法来求解和分析这些模型。

例如,可以使用MATLAB来解决机械系统的动力学和静力学问题,计算系统的运动轨迹和速度加速度等参数。

三、机械系统的建模和仿真在进行机械系统的建模和仿真时,首先需要对系统进行几何分析和运动分析,在MATLAB中使用相应的工具和函数来描述系统的几何特征和运动规律。

然后,根据现实世界中的物理规律,构建机械系统的数学模型和运动方程。

有了这些模型和方程,可以使用MATLAB的数值计算工具来模拟和分析机械系统的动态特性。

例如,可以通过求解非线性常微分方程组来得到机械系统的运动轨迹和状态变量。

四、机械系统的优化和设计除了模拟和分析机械系统的动态特性之外,基于MATLAB的仿真还可以用于机械系统的优化和设计。

通过改变系统的参数和约束条件,可以利用MATLAB的优化工具来寻找最优的设计方案。

例如,可以通过最小化机械系统的重量或最大化其工作效率来确定最佳设计。

五、仿真结果的验证与分析仿真结果的验证和分析是机械工程仿真研究的重要环节。

通过与实际测试结果进行对比,可以验证仿真模型和方法的准确性和可靠性。

同时,还可以对仿真结果进行进一步分析,以了解系统的性能特点和优化潜力。

基于MATLAB/SIMULINK的振动压路机模型的仿真

基于MATLAB/SIMULINK的振动压路机模型的仿真
可行 性 。
关键 词 : T A /I LN 振动 压路机 ; 实度 ; 真 MA L BSMU I K; 压 仿
中图分 类号 : 4 55 1 U 1. 2 文 献标识 码 : B 文 章编 号 :0 0 0 3 (0 70 - 0 0 0 10 - 3 X 2 0 )7 0 5 - 3
Ab t a t I r e t d h r i g c a a trs c fvb o r l r r a b d c mp cn s a u n t — sr c : n o d rt s y t e wo k n h r ce t s o i r —ol ,o d e o a t e s me s r g me h o u i i e i o s a e d s u s d T i ril s sp t i h i r —ol rt n p r n t e mo i g a i h c ee a in i — d r i s e . h s a t e u e u s n t e v b o r l o i s i o h vn x s t e a c l r t n c c e e o sr me tt o h n i c u v y r a b d c mp cn s. a d c r e n t e smu ai n u i g MAT AB t u n o c me t e i d r ts r e o d e o a t e s e n a r s o h i lt s i o n L / S MUL NK t h u l o e . a d h s c n r d t e p a e sb l y wi r vd n o h e tr a b d I I ote b l z r d n a o f me h l n f a i i t. i i l p o i e o e f r t e n x o d e 1 c mp cn s x mi a in t a e t e s n f a c ee e c . o a t e s e a n t o h v h i i c n e r f r n e o g i

Matlab作业Simulink 振动仿真

Matlab作业Simulink 振动仿真

山东大学Matlab 课程作业学院:机械工程学院专业:姓名:学号:基于Simulink仿真得振动学问题解决实例1.单自由度无阻尼自由振动仿真表达式:仿真框图:参数设置:k=100N/m m=4kg初始状态:初速度为0 初始位移为5仿真结果:2.简谐波形得里沙茹图形分析仿真框图:参数设置:K=100m=4→rad/sSin wave参数设置:Amplitude1 ;Frequency 5 1015初始状态:①→φ=②→φ=③=1,=5→φ=45;④=1,=−5→φ=135;⑤=0,=−1→φ=180XY Graph参数x-min -2;x-max 2;y-min—2; y-max 2Frequency 5时仿真结果:Frequency 10时仿真结果:Frequency 15时仿真结果:3.单自由度有阻尼自由振动表达式:仿真框图:参数设置:ﻫ令k=100,m=10,c=10 初始状态:ﻫ初始速度为0,位移为1仿真结果:4、衰减振荡得阻尼比得估计参数:k=100,m=10,c=2初始条件:x0=1,v0=0仿真图框:初始振幅为1,约7个周期时衰减为0、25,对数减幅:δ=(ln4)/7≈0、099阻尼比§≈δ/2≈0、032理论值§=0、5c(km)−0、5≈0、0325、单自由度有阻尼+正弦激励表达式:令激励则方程变形为参数设置:令k=4,m=1,c=0、2初始状态:ﻫ初始速度为0,位移为0、05 仿真框图:仿真结果:6、利用速度共振得里沙茹图进行固有频率与阻尼系数分析仿真框图:改变激励频率:=1、2;1、6;1、8;1、9;1、95;2;2、05;2、1;2、2等7、两自由度无阻尼系统自由振动表达式:参数设置:m1=1,m2=2 k1=1,k2=1,k3=2初始状态:①速度0,m1、m2位移均为1②速度0,m1位移1,m2位移−0、5③速度0,m1位移1,m2位移0 仿真结果:①②③。

基于MATLAB_Simulink再生车削颤振仿真研究

基于MATLAB_Simulink再生车削颤振仿真研究

试验在 C2 - 50HK /1 型数控机床上进行,图 2 为实验 图片及 X、Y 方向的频率响应函数( FRF) 。进行多次
试验取均值后获得该机床刀具系统模态参数见表 1。
图 2( a) 中 b 为刀具,该刀具经过重新设计,将三
向力传感器,即 a 安装进刀具,使其能够实时记录车
削过程的切削力,并计算切削力系数,同时为以后颤
Key words: cylindrical turning; impact testing; model testing; numerical simulation
1引言
机械加工过程中的颤振是由于切削过程内部激 发反馈而引起的,属于自激振动。颤振会导致工件表 面质量下降,加剧刀具及机床的磨损,产生大量噪声, 降低生产率。人们对颤振进行了大量的研究,这些研 究可分为三个方面,分别是是颤振机理研究,颤振监 测及颤振抑制[1]。颤振的有效抑制是以一个能正确 描述切削颤振过程的数学模型为基础的,所以颤振机 理的研究是是整个颤振研究的基石。颤振抑制及监 测都需要对现有模型进行深入研究,才能选择合适的 控制策略 及 监 测 方 法,实 现 研 究 目 的[2]。 笔 者 将 借 助于 MATLAB / Simulink 对再生型外圆车削颤振进行 仿真研究。首先建立了二自由度的颤振模型,理论分 析了颤振极限切深,随后通过锤击法进行模态测试, 获得了仿真过程所必须的参数,通过对仿真结果的分 析,获得了一些有意义的成果。
( 11)
由式( 7) 、( 10) 联立可得:
F( iω) = w( 1 - ue -iωτ) AG( iω) F( iω)
( 12)
·24·
上式可写为: [I - w( 1 - ue -iωτ ) AG( iω) ]F( iω) = 0 ( 13)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目 录1引言——机械振动的仿真原理 (5)1.1 Matlab Simulink 功能简述 (5)1.2机械振动的物理模型 (5)1.2.1简谐振动的物理模型 (5)1.2.2阻尼振动的物理模型 (6)1.2.3受迫振动的物理模型 (6)1.3 Matlab Simulink 仿真原理简述 (8)2简谐振动方程的解及其模拟仿真 (9)2.1简谐振动方程的求解 (9)2.2简谐振动模型的仿真研究 (9)2.2.1基本模型的建立 (9)2.2.2 速度、加速度的监测 (11)2.2.3 动能、势能、机械能监测 (12)2.3简谐振动的图像分析 (13)3阻尼振动方程的求解和仿真模拟 (15)3.1弹簧振子做阻尼振动方程的求解 (15)3.2弹簧振子做阻尼振动的模拟仿真研究 (15)3.3阻尼振动的图像分析 (18)4受迫振动的方程的求解和仿真模拟 (20)4.1弹簧振子做受迫振动方程的求解 (20)4.2弹簧振子做受迫振动的仿真模拟研究 (21)4.2.1策动力频率0ωω<时弹簧振子的受迫振动仿真模拟 (21)4.2.2策动力频率0ωω>时弹簧振子受迫振动的仿真模拟 (24)4.2.3策动力频率0ωω=时弹簧振子的仿真模拟 (26)4.3受迫振动的图像分析 (27)5几点补充说明与仿真模拟中问题分析 (29)5.1物理振动模型建立的补充说明 (29)5.2方程求解中的补充说明 (29)5.3仿真模拟中的问题分析 (29)6结语 (31)参考文献 (32)附录 (33)致谢 (34)摘要机械振动主要有简谐振动,阻尼振动,受迫振动三种。

对三种振动建立模型,列出振动方程,再对三种振动给定初始条件,就可以利用Matlab Simulink功能对三种振动进行仿真模拟,得出振动的位移,速度,加速度,动能,势能,机械能随时间的变化关系图像。

另外,我们对振动方程求解,得出振子位移关于时间的函数,再分别对其求一阶、二阶导数,就可以得出速度、加速度函数,再经过简单运算就可以得到动能、势能、机械能函数。

我们再通过分析函数来分析其图像,再对比仿真模拟出的图像,就可以确定我们的仿真研究方法的可信度。

关键词:简谐振动;阻尼振动;受迫振动;共振AbstractThe mechanical vibration mainly includes three kinds of vibrations: the simple harmonic oscillator, the pure damping vibration and the forced damping vibration. According to the three vibrations, we can build models for them, list the vibration equations. After giving the initial conditions, we can carry out analog simulations to test the three vibrations by using Matlab Simulink functions, and obtain the images of vibration displacement, velocity, acceleration, kinetic energy, potential energy, mechanical energy variation over time. In addition, we come to the function of oscillator displacement over time after we seek the solution of equations. And then we can gain the derivatives of their first order and second order respectively, so we can draw functions of speed and acceleration. Furthermore, we can get the functions of kinetic energy, potential energy, mechanical energy by a simple operation. Let us analyze the images by analyzing the functions, and then we make a comparison between the images of analog simulations and them. Finally, we can determine the credibility of the simulation methodology.Keywords: Simple harmonic oscillator; Damping vibration; Forced vibration; Resonance1引言——机械振动的仿真原理1.1 Matlab Simulink 功能简述Simulink 是基于Matlab 的框图设计环境,可以用来对各种动态系统进行建模、分析和仿真,它的建模范围广泛,可以针对任何能用数学来描述的系统进行建模,例如航空航天动力学系统、卫星控制制导系统、通信系统、船舶及汽车等,其中包括了连续、离散,条件执行,事件驱动,单速率、多速率和混杂系统等。

Simulink 提供了利用鼠标拖放的方法来建立系统框图模型的图形界面,而且还提供了丰富的功能块以及不同的专业模块集合,利用Simulink 几乎可以做到不书写一行代码即完成整个动态系统的建模工作。

除此之外,Simulink 还支持Stateflow ,用来仿真事件驱动过程。

Simulink 是从底层开发的一个完整的仿真环境和图形界面,是模块化了的编程工具,它把Matlab 的许多功能都设计成一个个直观的功能模块,把需要的功能模块用连线连起来就可以实现需要的仿真功能了。

也可以根据自己的需要设计自己的功能模块,Simulink 功能强大,界面友好,是一种很不错的仿真工具[1]。

1.2机械振动的物理模型物理学中的机械振动主要分为简谐振动、阻尼振动、受迫振动三种。

下面我们根据这三种类型的振动建立物理模型来分别研究。

1.2.1简谐振动的物理模型图1 弹簧振子做简谐振动物理实验模型如上图所示,弹簧振子在O 附近做简谐振动。

已知弹簧振子质量为m ,所受合力为F ,弹簧劲度系数为k ,则有:F kx =-。

又由牛顿第二定律有: 22d x F ma m dt == (1) 于是可以得到: 220d x k x dt m+= (2) 令m k =2ω,则可得: 2220d x x dt ω+= (3) 方程(3)的解x 即为弹簧振子在时刻t 时的振动位移,一阶导数x 即为弹簧振子在时刻t 时振动速度,其二阶导数x 即为弹簧振子在时刻t 时的加速度。

1.2.2阻尼振动的物理模型如图1,若弹簧振子在x 轴上受到粘滞阻尼的作用力,则弹簧振子做阻尼的振动。

设弹簧振子受到的阻尼力为: dx f v dtγγ=-=- (4) 式中γ 为阻尼系数,与物体的形状以及周围性质有关。

弹簧振子受到的弹力为F kx =-,则对弹簧振子,有牛顿第二定律有:22d d d d x x m kx t tγ=-- (5) 整理后得: 22d d d d x k x x t m m tγ=-- (6) 令20k m ω=,2n mγ=,则有: 2202d d 20d d x x n x t tω++= (7) 这就是阻尼振动的振动方程。

其解x 即为弹簧振子在时刻t 时的振动位移,一阶导数x 即为弹簧振子在时刻t 时振动速度,其二阶导数x即为弹簧振子在时刻t 时的加速度。

1.2.3受迫振动的物理模型如图2,弹簧振子在O 附近做阻尼振动。

已知弹簧振子质量为m ,弹簧劲度系数为k 。

平行于x 轴的平面对弹簧振子有阻尼力的作用。

对弹簧振子施加一外加激励力()f t ,设0()sin f t F t ω=,则称为谐激励力,其中ω为外施激励频率,t 是持续时间。

对弹簧振子受力分析,其所受弹力为:F kx =-。

由于阻尼振动是振幅(或能量)随时间不断减少的振动。

能量减少的原因是有粘滞阻尼和辐射阻尼。

为方便,均视为粘滞阻尼。

则弹簧图2 弹簧振子在外加激励力作用下做阻尼受迫振动振子所受阻尼力为: dx f v dtγγ=-=- (8) 式中γ 为阻尼系数,与物体的形状以及周围性质有关。

则对弹簧振子,由牛顿第二定律有:202sin d x dx m kx F t dt dtγω=--+ (9) 对(9)式变形可得:202sin F d x k dx x t dt m m dt m γω=--+ (10) 令00,2,F k n h m m m γω===,0ω为固有频率,n 为阻尼因数,则(10)可变为: 22022sin d x dx n x h t dt dtωω++= (11) 方程(11)的解就是时刻t 时弹簧振子的位移,其一阶导数x 即为弹簧振子在时刻t 时振动速度,其二阶导数x 即为弹簧振子在时刻t 时的加速度[2]。

我们记0/n ξω=为相对阻尼系数或阻尼比。

根据阻尼对系统振动的影响,振动响应分为弱阻尼(ξ<1)、强阻尼(ξ>1)和临界阻尼(ξ=1)三种情况,这里仅讨论弱阻尼的情况。

()f t F 弹fm x o1.3 Matlab Simulink仿真原理简述在得到弹簧振子的简谐振动、阻尼振动和受迫振动方程后,通过这三个方程,我们可以用高等数学的方法求出这三个方程的通解。

同时,我们可以用Matlab的计算功能求出它们的通解。

这三个方程的通解表示振子位移随时间的变化情况。

我们得到的这三个方程,前两个为二阶常系数线性齐次微分方程,第三个为二阶常系数非齐次微分方程。

根据这三个方程,我们可以通过Matlab Simulink中的各种模块模拟弹簧振子的位移、速度、加速度,再添加一个平方模块,设置好系数,就可以模拟振子动能、势能、机械能,用线连接各模块,这样流程图就做好了。

设置好各模块的参数后,再设置好系统环境变量,点击运行,通过示波器模块就可以模拟出相应的图像曲线[3]。

图像的横坐标均表示时间,纵坐标相应为位移、速度、加速度、动能、势能、机械能。

图像表示这些物理量随时间变化关系。

通过这三种情况方程的通解,我们可以分析振子位移随时间变化情况,再和模拟出的图像对比分析。

相关文档
最新文档